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Preface

These proceedings include the 23 papers presented at the 10th Workshop on NLP for Similar Languages,
Varieties and Dialects (VarDial), co-located with the 17th Conference of the European Chapter of the
Association for Computational Linguistics (EACL). Both EACL and VarDial were held in Dubrovnik,
Croatia, in a hybrid format, allowing participants to attend on-site or to participate virtually.
This edition marks VarDial’s ten-year anniversary. We are pleased to see that the workshop continues
to serve the community as the main venue for researchers interested in the computational processing of
diatopic language variation. The papers accepted this year address a wide range of topics, such as corpus
building, part-of-speech tagging, and machine translation. This volume once again showcases the great
linguistic diversity that VarDial embodies, including work on dialects and varieties of many different
languages, such as Arabic, Cantonese, Croatian, Finnish, German, Irish, Italian, Mandarin, Occitan,
Serbian, and Spanish.
The VarDial evaluation campaign continues to be an essential part of the workshop. In VarDial 2023, th-
ree shared tasks were organized: Slot and intent detection for low-resource language varieties (SID4LR),
Discriminating Between Similar Languages – True Labels (DSL-TL), and Discriminating Between Simi-
lar Languages – Speech (DSL-S). All three tasks were organized for the first time this year. This volume
includes the system description papers prepared by the participating teams, as well as a report written by
the task organizers summarizing the results and the findings of the evaluation campaign.
Finally, we would like to take this opportunity to thank all the shared task organizers and the participants
for their hard work. We further thank the VarDial program committee members for being an important
part of the workshop’s success over these ten years.

The VarDial workshop organizers:

Yves Scherrer, Tommi Jauhiainen, Nikola Ljubešić, Preslav Nakov, Jörg Tiedemann, and Marcos Zam-
pieri

http://sites.google.com/view/vardial-2023/
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Abstract

Hate speech detection in online platforms has
been widely studied in the past. Most of these
works were conducted in English and a few
rich-resource languages. Recent approaches
tailored for low-resource languages have ex-
plored the interests of zero-shot cross-lingual
transfer learning models in resource-scarce sce-
narios. However, languages variations between
geolects such as American English and British
English, Latin-American Spanish, and Euro-
pean Spanish is still a problem for NLP models
that often relies on (latent) lexical information
for their classification tasks. More importantly,
the cultural aspect, crucial for hate speech de-
tection, is often overlooked.

In this work, we present the results of a thor-
ough analysis of hate speech detection models
performance on different variants of Spanish,
including a new hate speech toward immigrants
Twitter data set we built to cover these variants.
Using mBERT and Beto, a monolingual Span-
ish Bert-based language model, as the basis of
our transfer learning architecture, our results
indicate that hate speech detection models for
a given Spanish variant are affected when dif-
ferent variations of such language are not con-
sidered. Hate speech expressions could vary
from region to region where the same language
is spoken.

1 Introduction

Hate speech detection is a task that has gained
much attention from the NLP community due to
the exponential spread of social media platforms1.
This task aims to identify whether a piece of text
contains hateful messages against a person or a
group based on characteristics such as color, eth-
nicity, race, sexual orientation, religion, and others
(John, 2000). Gender and nationalities are no ex-
ceptions to this. According to the Pew Research

∗Work conducting during an internship at Inria Paris.
1Please be aware that this paper contains some examples

of offensive slurs that may be considered upsetting.

Center report in 2021, 33% of women under 35
report having been sexually harassed online, com-
pared with 11% of men under 35 (Vogels, 2021).
Misogyny is harm against women due to gender,
which might result in psychological, reputational,
professional, or even physical damage (Ging and
Siapera, 2018). On the other hand, xenophobia
is “attitudes, prejudices, and behavior that reject,
exclude and often vilify persons, based on the per-
ception that they are outsiders or foreigners to the
community, society or national identity”2. An on-
line manifestation of such behaviors may include
hostility, social exclusion, threats of violence, and
other forms of discrimination. As a result, the
Internet becomes a less equal, less safe, and less
inclusive environment for targetted groups.

Online hate speech detection in social medias
platforms has been tackled in several studies (Pa-
mungkas et al., 2018; García-Díaz et al., 2022;
Pamungkas et al., 2020; Ahluwalia et al., 2018;
Muaad et al., 2021; Shushkevich and Cardiff, 2018;
Díaz-Torres et al., 2020). However, most studies
have been carried out using English language data
or limited Spanish data. For example, the signifi-
cant morphosyntactic variations between Spanish
variants (Bentivoglio and Sedano, 2011) make con-
sidering the Spanish language homogeneous chal-
lenging for language models. According to Ethno-
logue3 in 2022, Spanish is currently declared as the
official language in 22 countries, being the fourth
language with the most significant number of coun-
tries. Due to the numerous regions where Spanish
is the spoken language, expressions associated with
hate speech may differ across various locations. For
example, in the variation of the Spanish language
from Spain, the word “fregar" only means “scrub"
while at the same time, the same word in the Span-

2https://home-affairs.ec.europa.eu/pa
ges/glossary/xenophobia_en

3https://www.ethnologue.com/ethnoblog
/gary-simons/welcome-25th-edition
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ish Ecuadorian variant can also mean “annoy" or
“having fun". We note the different connotations of
that term across various Latin American regions
provided by the Royal Spanish Academy4 (RAE in
Spanish). Thus, the phrase “Anda a tu casa a fre-
gar" can only be interpreted as “Go home to scrub
(the dishes)" by people from Spain, which can con-
tain a misogynous connotation. On the other hand,
for people speaking Spanish in Ecuador, it may be
mostly interpreted as “Go home to have some fun"
or “Go home to annoy (other people)", which are
not related to discriminatory connotations. Despite
these scenarios, studies proposing models for hate
speech detection towards women and immigrants
in Spanish generally do not include information
about the language or cultural variation of the text.

Due to the previously described challenge, other
difficulties emerge when developing hateful con-
tent detection systems for online platforms.
Current state-of-the-art pre-trained language mod-
els (LM), such as the “multilingual” version of
BERT (mBERT) (Devlin et al., 2018; Pires et al.,
2019), are widely used in several NLP tasks and
achieve impressive results. However, mBERT
might not help to detect hate speech against women
or immigrants when language-specific variants
appear. It has been proven to perform worse
than monolingual implementations of BERT un-
der certain circumstances (Martin et al., 2020; Wu
and Dredze, 2020). mBERT is trained on only
Wikipedia data, particularly the entire Wikipedia
dump for each language, excluding user and talk
pages. However, this is problematic for the Span-
ish language as according to Wikipedia’s Span-
ish Wikipedia article (Spanish Wikipedia, 2021) by
September 2017, 39.2% of the Spanish Wikipedia
edits come from Spain, being the country with the
largest edits, while the rest come from other coun-
tries located in regions such as the Americas and
others. It is important to note that Spain is the
fourth country with the most prominent Spanish
language native speakers, whereas Mexico is the
first according to Statista (2021). Therefore, lan-
guage models trained on Wikipedia data may not
represent the differences between Spanish variants
(Hershcovich et al., 2022). Thus, in this study, we
aim to address the following research questions:

• RQ1: How does language-specific language
models’ performance differ from multilin-
gual LM to detect online hate speech against

4https://dle.rae.es/fregar

women and immigrants in Spanish corpora?
• RQ2: Is zero-shot transfer effective for hate

speech detection when different language vari-
ants of the same language are considered?

To do so, we compare mBERT with a Span-
ish version of BERT, named BETO (Canete et al.,
2020), for binary classification in two different hate
speech domains using various datasets on xeno-
phobia and misogyny. We analyze the effects of
Spanish language variants on model performance
in both domains using a xenophobia detection cor-
pus we created for this purpose as no other cor-
pora include language variant metadata at the tweet
level. Finally, an error analysis conducted with
the SHAP interpretability framework (Lundberg
and Lee, 2017) highlighted the vulnerability to
cultural-specific hateful terms of language mod-
els fine-tuned on another geolect. In an era where
cross-cultural issues in NLP become of increasing
and welcome importance (Hovy and Yang, 2021;
Nozza, 2021; Hershcovich et al., 2022) , our work
and methodology constitute an interesting step in
this process. This is why we release our datasets5,
models, and guidelines to the community, hoping
to enrich a burgeoning ecosystem.

Our main contributions may be summarized as
follows:

• The compilation and annotation of
HaSCoSVa-2022, a new corpus of tweets
related to hate speech towards immigrants
written in Spanish. This corpus contains
information regarding the language variant.
The dataset is subdivided into two subsets
according to the language variant: (1) Latin
American and (2) European. The dataset is
released to the research community.

• Experiments on zero-shot transfer between
European and Latin American Spanish lan-
guage variants on hate speech detection to-
wards women and immigrants to investigate
how the performance of the models vary when
used on different variants of the same lan-
guage.

2 Related Work

Automatic hate speech detection in online plat-
forms has been previously studied across different
hate speech domains such as misogyny (Fersini
et al., 2022; Plaza-Del-Arco et al., 2020), xenopho-

5https://gitlab.inria.fr/counter/HaSC
oSVa

2
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bia (Romero-Vega et al., 2020; Benitez-Andrades
et al., 2022), homophobia (Karayiğit et al., 2022;
Arcila-Calderón et al., 2021) and others (Davidson
et al., 2017; Lozano et al., 2017). Nevertheless, a
limited number of works focus on Spanish data to
develop ML-based systems for online hateful con-
tent identification.6 Most of the research developed
with Spanish corpora posted on micro-blogging
platforms are related to participation in a few re-
cent shared tasks, namely AMI 2018 (Fersini et al.,
2018), HatEval 2019 (Basile et al., 2019) and oth-
ers. In addition, there is a lack of studies consid-
ering different variations of the Spanish language
and how state-of-the-art language models such as
BERT perform in hate speech detection when used
for cross variants over the same language (Zhang
et al., 2021; Hershcovich et al., 2022).

In (Plaza-del Arco et al., 2021), multilingual
and monolingual pre-trained language models were
compared to Deep Learning architectures (CNN,
LSTM, and Bi-LSTM) and traditional ML mod-
els (SVM and Logistic Regression) for detecting
hate speech on tweets written in Spanish. The
authors used two datasets to conduct the compar-
ison. The first corpus, HaterNet (Pereira-Kohatsu
et al., 2019), has no information about the hate
speech domain or the location where the tweets
were posted. The second dataset is the HatEval
corpus which contains only information about the
target for hate speech against women and immi-
grants. They used BETO (Canete et al., 2020), a
Spanish language implementation of BERT trained
on Wikipedia articles, movies and TED Talks sub-
titles, scientific documents, and others written in
Spanish. Results obtained in (Plaza-del Arco et al.,
2021) showed that BETO, a monolingual LM out-
performs multilingual pre-trained models such as
XLM and mBERT as well as the rest of the models
they evaluated for hate speech detection in Spanish.
Results in line with Plaza-del Arco et al. (2021)
have also been achieved in other similar studies
on hate speech detection (Benítez-Andrades et al.,
2022; Tanase et al., 2020).

Nozza (2021) studied hate speech detection
against women and immigrants across three lan-
guages: Spanish, English, and Italian. She inves-
tigated the limitations of zero-shot cross-lingual
approaches using mBERT. Her results suggest
that hate speech targets –i.e. different languages–

6Many of these works can be found via the IberLEF annual
shared tasks.

should be studied separately as transfer learning
in zero-shot scenarios is ineffective for misogyny
detection. In addition to her findings, we aim to
investigate whether such nuances can be extended
to cross-variants within the same language.

3 Datasets

In this section, we describe the datasets we use
for training the misogyny detection models and
the procedure we follow to compile and annotate
the HaSCoSVa-2022 corpus, which is later used to
train and evaluate our models to detect hate speech
against immigrants. In Table 1, you can find a
summary of the datasets we used in this work.

3.1 Misogyny existing datasets
3.1.1 MisoCorpus-2020
The MisoCorpus-2020 dataset (García-Díaz et al.,
2021) compiles tweets written in Spanish, which
are grouped into three categories: VARW (Vio-
lence Against Relevant Women), which refers to
violent tweets directed to women with a significant
social relevance; SELA (Spanish from Europe vs.
Spanish from Latin America), which consists of
tweets charged of misogynistic content written in
Spanish from Europe – i.e., Spain – and posts with
the same type of content written in a Latin Amer-
ica’s variation of Spanish; and DDSS (Discredit,
Dominance, Sexual harassment, and Stereotype),
which comprises Twitter posts subdivided into dif-
ferent types of misogynistic attacks, such as derail-
ing, rape, gender violence, and others. The dataset
contains 10,244 tweet IDs in total. However, as the
tweets were posted some years ago, we could find
only 7,575 tweets in total (74% from the original
dataset), where 49.2% is labeled as misogynistic.

3.1.2 Detección Misoginia (DetMis)
The Detección Misoginia (DetMis) dataset
(Vera Lagos et al., 2021) contains 35K tweets
geo-located in Mexico. The corpus is based on
keywords related to sexism, stereotyping, and
discrimination towards women from (Fisher et al.,
2013). The authors used such keywords to search
and filter tweets geo-located in each of the 32
states of Mexico. Since tweets were filtered based
on keywords, a maximum of 5 tweets per keyword
and label (misogynous and non-misogynous) were
selected for annotation. Finally, 1K tweets were
obtained per label after annotation. It is important
to note that only one annotator participated in the
annotation process.
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Domain Dataset Nb tweets % Hate speech Variation
women MisCorpus-2020 7575 49.2% Europe, LatAm
women DetMis 2000 50% LatAm
women IberEval 2018 3307 49.9% Europe, LatAm*

immigrants HaSCoSVa-2022 4000 13.9% Europe, LatAm
* This dataset does not distinguish between both variations of Spanish — i.e. we

cannot identify which tweets correspond to Europe or LatAm variations.

Table 1: Description of Spanish language corpora used for training the binary
classification models.

3.1.3 IberEval 2018
The dataset is from the Automatic Misogyny Identi-
fication shared task at IberEval 2018 (Fersini et al.,
2018). The corpus contains misogynous tweets in
English and Spanish, and we only use the Spanish
data. There are two main steps in the annotation
process: First, part of the dataset was labeled by
two annotators to define a gold standard. Next, the
rest of the tweets were labeled through a major-
ity voting approach on the CrowdFlower7 platform
based on the standard defined in the first step.

3.2 New Dataset: HaSCoSVa-2022
We reviewed the publicly available data for hate
speech against immigrants in Spanish. However,
to the best of our knowledge, there are no tweets
corpora containing information about different
language variations. Therefore, we create the
HaSCoSVa-2022 corpus (Hate Speech Corpus with
Spanish Variations) to conduct our experiments in
the immigration domain. We focus on two immi-
gration cases: immigration from Latin America and
certain African countries to Spain and immigration
from Venezuela to its surrounding countries where
Spanish is their official language. Both cases carry
a strong discriminatory online discourse due to re-
ligion, stereotypes, and other factors that concern a
fraction of the local population.

3.2.1 Data Extraction
We define two geographical coordinates and ra-
dius to obtain geo-located tweets from Spain and
Latin American regions. Tweets from Spain were
extracted from a 520 Km radius surrounding lati-
tude: 40.416705, longitude: −3.703583. The area
from where we extracted geo-tagged tweets about
immigration coming from Venezuela is centered
on latitude: −3.976015, longitude: −79.225102,
considering a radius of 1,200 Km. Note that the
defined region for obtaining the European tweets
is the same as the one defined by García-Díaz et al.

7https://figure-eight.com/

(2021). However, since the Latin American region
the authors proposed includes Venezuelan territory,
we slightly changed it to exclude tweets produced
in Venezuela as we need tweets from neighboring
countries8. The regions we determine to extract the
posts can be visualized in Figure 2 in Appendix A.
We define three lists of keywords related to immi-
gration and hate speech towards immigrants. Two
sets of keywords contain 72 and 18 terms regard-
ing European and Latin American immigration,
respectively. In addition, the third set of keywords
comprises 26 generic terms related to immigration
– i.e., such terms are not region-specific. The terms
are mainly demonyms, country names, and nick-
names (offensive or not) related to such regions.
The tweets were collected in two-time frames: from
June 6th to June 28th and July 21st to August 4th.
As a result, 75,834 tweets were obtained in total.

3.2.2 Data Annotation
To perform the data annotation, we randomly sam-
pled 2,500 and 1,500 tweets produced in Europe
and Latin America. We describe in detail the sam-
pling strategy we follow in Appendix A.4. Two
annotators, native Spanish speakers from Latin
America, carry out the manual annotation. Both
annotators tag each tweet into one of the three la-
bels: xenophobic, non-xenophobic, or ambiguous.
Whether a tweet is difficult to manually classify by
an annotator, then the label provided by the annota-
tor is “ambiguous”. Otherwise, a tweet is classified
as “xenophobic” if it matches all following condi-
tions:

1. The content of the tweet primarily targets im-
migrants as a group, or even a single individ-
ual, if they are considered to be a member of
that group (and NOT because of their individ-
ual characteristics).

2. The content of the tweet propagates, incites,
promotes, or justifies hatred or violence to-

8Note that our aim is to analyze xenophobia against
Venezuelan immigrants in regions surrounding Venezuela.
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wards the target or a message that aims to
dehumanize, hurt or intimidate the target.

We used the guidelines proposed by Basile et al.
(2019) with minor modifications. A third anno-
tator participated in the annotation campaign to
provide a final label for tweets labeled as “ambigu-
ous” by both previous annotators and posts previ-
ously tagged with different labels (i.e. one annota-
tor tagged as “xenophobic” and the other as “non-
xenophobic”). This annotator did not have access
to the other annotations. Finally, 554 tweets were
tagged as xenophobic, while 3,446 were labeled
non-hateful towards immigrants. Thus, 13.9%
tweets belong to the label of interest. The resulting
corpus contains the tweet ID, the full text of the
post, its label, and the language variation (LatAm
or Europe). The inter-rater agreement reliability be-
tween both initial annotators according to Cohen’s
Kappa (Cohen, 1960) is 0.443 (88% agreement),
which can be interpreted as a moderate agreement
according to its author. The resulting HaSCoSVa-
2022 dataset, keywords used for tweets extraction,
and annotation guidelines are freely available to
the research community9.

4 Experimental Settings

Language Models. For the multilingual lan-
guage model, we use mBERT (Devlin et al.,
2019), the multilingual version of BERT, trained
on Wikipedia data from 104 languages. We also
experiment with BETO (Canete et al., 2020), a
monolingual Spanish Bert, trained on the whole
Spanish Wikipedia dump combined with the Span-
ish language texts of the OPUS Project (Tiedemann,
2012) without any differentiation between the Span-
ish variants. Others models for Spanish exist and
are posterior to BETO (Gutiérrez-Fandiño et al.,
2021; la Rosa et al., 2022), we decided to focus on
BETO because of its pretraining data that makes it
more comparable to mBERT. It would be of course
interesting to conduct a large-scale Spanish mono-
lingual models study on that topic but we leave it
for future work.

Data Preprocessing. We replace all URLs and
mentions with the same tokens, url and @user,
respectively. In addition, since hashtags’ segmen-
tation has been shown to improve the results for
certain tasks (Rosa et al., 2011; Declerck and Lend-
vai, 2016; Gromann and Declerck, 2017), we seg-

9https://gitlab.inria.fr/counter/HaSC
oSVa

ment all hashtags into words to enrich tweets’ mes-
sages with actual words. To develop such hashtags
segmentation, we use Python’s package wordseg-
ment10. We randomly split the dataset into 70%
for training and 30% for testing to ensure that each
set’s class distribution remains balanced. Also, we
randomly pick 20% of the previously selected train-
ing set as the development set.

Evaluation. All fine-tuned models are trained
over 5 different seeds, and all reported performance
metrics are averaged over such runs to ensure eval-
uation robustness. Moreover, we select the best
model out of 5 epochs after each training process
according to the macro-F1 score on the develop-
ment sets.

4.1 Multilingual vs. Language-specific
We use all the data described in Section 3 to com-
pare the performance of the two models, mBERT
and BETO. We aim to evaluate the differences be-
tween mBERT and BETO to detect hate speech in
Twitter posts written in Spanish.

4.2 Spanish Language Variations
We use BETO to evaluate the performance of a
monolingual model across Spanish variants. For
this set of experiments, the Spanish variant of the
tweet is relevant. Then, we exclude tweets that do
not contain information about the region of origin.
As a result, we keep 6,082 tweets for the misogyny
experiments, where 3,596 posts correspond to the
LatAm variant and 2,486 to the European. More
details on the misogyny dataset used for this set of
experiments can be found in Table 6 in Appendix
A. All tweets on the immigration corpus are kept
for this set of experiments.

The Latin American and European variation
datasets sizes are not comparable according to the
hate speech target. Therefore, we randomly under-
sample the largest variation dataset depending on
the hate speech domain to set both variations to
the same size and ensure the comparability of the
transfer setting. As a result, the misogyny corpus
for this set of experiments ends up with two sets
of 2,486 tweets each –i.e., one set per variation.
Therefore, each variation contains 1,392 tweets for
training, 348 for development, and 746 for testing
the models. Similarly, each variation subset in the
immigration dataset includes 840, 210, and 450
records for training, development, and testing. An

10https://pypi.org/project/wordsegment/

5

https://gitlab.inria.fr/counter/HaSCoSVa
https://gitlab.inria.fr/counter/HaSCoSVa
https://pypi.org/project/wordsegment/


overview of the train-dev-test splits can be found
in Table 7 in Appendix A.

5 Results

Results obtained from the comparison between
mBERT and BETO over the whole corpora are
shown in Table 2. Results suggest that BETO
outperforms mBERT in both hate speech do-
mains. Specifically, BETO macro-F1 score is 11
points higher than mBERT on misogyny detection,
whereas 4 points higher on xenophobia-related
tweets classification. High standard deviations in
both mBERT models compared to BETO suggests
that BETO shows more stable and consistent perfor-
mance across different runs. In line with previous
works (Martin et al., 2020; Plaza-del Arco et al.,
2021; Benítez-Andrades et al., 2022; Tanase et al.,
2020), we find that using a language-specific LM
where much more Spanish data is used for train-
ing and no other languages are considered, results
in a better performance for detecting hateful posts
written in Spanish.

Model women immigration

mBERT 74.4 (± 7.0) 69.6 (± 2.8)

BETO 84.9 (± 0.3) 73.1 (± 0.8)

Table 2: Models’ average macro-F1 scores obtained on
the test split over five runs. We select the best model
out of 5 epochs for each run according to the macro-F1
score on the development set. The standard deviation
computed over the 5 runs is inside parenthesis.

The second set of experiments aims to com-
pare mono-lingual and cross-lingual settings across
Spanish variants. Table 3 shows that the BETO
model performance is significantly higher when
trained and tested on the same language variant in
both hate speech domains. For instance, the score
of the misogyny model trained on European Span-
ish is 18 points higher when tested on European
Spanish than on Latin American Spanish. On the
other hand, the difference is 8 points for the xeno-
phobia model, when the model is trained on Latin
American Spanish and tested on tweets from Eu-
rope. We can also note that in all cases, macro-F1
scores present a higher standard deviation when the
source data comes from Latin America.

6 Error Analysis

In this section, we analyze and compare errors in
cross variants evaluation. We briefly examine the

reasons that might lead to poor performance when
the model is trained and tested on different lan-
guage variants. Part of our analyses is inspired by
the error analysis carried out in (Plaza-del Arco
et al., 2021). First, we analyze the errors obtained
by BETO. Such analysis is detailed in Table 4.
Regarding the misogyny models, we can observe
that models tend to wrongly classify non-harmful
tweets from LatAm as misogynous, as 59.5% er-
rors in common by both models are false positives.
Moreover, in the xenophobia-related errors, we can
see that 81.5% of the errors obtained in common
by both models on European tweets correspond to
false negatives. Similarly, a higher rate of false
negatives is obtained by both models on the LatAm
target since 65% of errors obtained in common are
actual xenophobic tweets tagged as non-hateful by
both models. We can attribute these results to the
class imbalance in the immigration dataset (13.9%
of the tweets are xenophobic), which might result
in a difficult task for models to detect the minority
class.

Moreover, in Table 5, we summarize the vocab-
ulary coverage by the training sets on the test sets.
In other words, we display the proportion of terms
from the test sets included in each training set. We
use a Spanish POS tagger to only consider nouns
and adjectives for this analysis. For instance, in
the case of the xenophobia dataset, we found 1,095
terms appearing in the LatAm test set and excluded
in the Europe train set. As expected, for a given test
set, a more significant proportion of terms found
in the training set of the same variation than the
other one. For instance, in the case of misogyny
data, 50.3% of terms from Europe’s test set can be
found in Europe’s training set, while only 39.6% is
found in LatAm’s training set. On average, test sets
include 9.2% more terms in the training sets of the
same variation than the others for both hate speech
domains. Although we do not only consider hate-
speech-related terms for this analysis, we found
that various of the most frequently excluded terms
correspond to derogatory words associated with a
particular variant. For instance, the word “cerda”
(which means pig) is found in the misogyny Eu-
rope set of tweets, but it does not appear in the
Latin America tweets. Such a term is more used in
Spain as an insult than in Latin America. The same
happens with the term “vieja” (which might mean
old woman), appearing in LatAm tweets but not in
the European dataset. This term is mainly used in
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women immigrants

Target Europe LatAm Europe LatAm

So
ur

ce Europe 89.6 (± 0.6) 70.5 (± 0.5) 69.6 (± 0.9) 64.9 (± 1.7)

LatAm 71.4 (± 5.0) 81.8 (± 0.5) 62.8 (± 5.6) 73.3 (± 2.7)

Table 3: BETO’s average macro-F1 scores obtained on the test splits over 5 runs. We select the best model out of 5
epochs for each run according to the macro-F1 score on the development set. The standard deviation computed over
the 5 runs is inside parenthesis. Scores in bold indicate which source outperforms the other for a given target.

women immigrants

Target Source False Pos. False Neg. False Pos. False Neg.

Europe Europe 38 (50.7%) 37 (49.3%) 31 (53.4%) 27 (46.6%)

LatAm 108 (45.2%) 131 (54.8%) 13 (27.7%) 34 (72.3%)

Common 15 (50.0%) 15 (50.0%) 5 (18.5%) 22 (81.5%)

LatAm Europe 117 (55.7%) 93 (44.3%) 32 (43.2%) 42 (56.8%)

LatAm 68 (55.7%) 54 (44.3%) 23 (43.4.%) 30 (56.6%)

Common 44 (59.5%) 30 (40.5%) 12 (34.3%) 23 (65.7%)

Table 4: Number of tweets mislabeled per setting for each hate speech domain. In parenthesis, we show the
percentage of mislabels on each type of error (False Pos. and False Neg.) from all the mislabels of a given domain
and setting. Common mislabels correspond to errors obtained by both models (sources) on the same target.

Mexico for referring to women and can contain a
derogatory connotation.

Finally, we use SHAP (Lundberg and Lee, 2017)
to study the behavior of BETO in terms of explain-
ability. SHapley Additive exPlanations, also known
as SHAP, is a well-known model explainability
technique used to interpret the models’ decisions.
SHAP is based on Game Theory and assigns im-
portance scores to features for a given example
classification. Such scores indicate how much a
feature influences the model toward its final output.
In NLP tasks, it can assign importance scores to
terms. Thus, we use SHAP to examine how the
models behave when the word tonta (which means
idiot, female gendered, in English) appears in a text.
Such an insult is an example of how the same term
can be interpreted differently in two variations of
Spanish. In Spain, that insult is much more aggres-
sive than how it may be interpreted in Latin Amer-
ica. We take one misogynous tweet containing the
word tonta from our corpus and classify such text
by the misogyny Europe and LatAm models. A
colored representation of the scores computed by
SHAP on both classifications is shown in Figure
1. We can observe both models provide different
classifications, where the model trained on Euro-
pean data performs correctly. SHAP finds the word
“tonta” highly influences the model trained on Euro-

pean tweets to classify the tweet as misogynous, as
shown in Figure 1b. In contrast, the same term pro-
vides almost no influence on the LatAm model’s
final decision according to SHAP in Figure 1b. We
can note the analyzed term slightly contributes to-
wards the wrong (non-misogynous) class when the
LatAm model is used.

7 Conclusions

In this study, we showed how BETO, a Spanish
version of BERT, as expected, performs signifi-
cantly better than Multilingual BERT for classi-
fying tweets as hateful for two hate speech do-
mains: misogyny and xenophobia. Our outcomes
align with previous studies mostly conducted with
corpora proposed in popular shared tasks on hate
speech detection. This does not mean that Multi-
lingual BERT is not useful since findings in (Wu
and Dredze, 2020) suggested that mBERT is re-
markably useful on low-resource language tasks,
in contrast to monolingual BERT implementations
that use a significant amount of data.

Moreover, we demonstrated that variants of a
language, for instance, due to its use in different
countries or cultures, affect the performance of hate
speech detection models. In other words, we found
that whether we train a model using data derived
from only one variant of Spanish, the model’s per-
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women immigrants

Europe Test LatAm Test Europe Test LatAm Test

Train Included Excluded Included Excluded Included Excluded Included Excluded

Europe 50.3% 49.7% 38.5% 61.5% 45.3 54.7% 40.3% 59.7%

LatAm 39.6% 60.4% 47.7% 52.3% 36.4% 63.6% 48.1% 51.9%

Table 5: Proportion of terms on the testing sets included and excluded on each training set.

(a) SHAPE values obtained on the misogyny BETO model trained on Europe data. The output of the model for the positive label
is 0.999471, classifying the tweet as misogynous. The term “tonta” (translated to English as idiot) is strongly colored in red,
which means it strongly impacts the model to provide its final output towards the misogyny class.

(b) SHAP values obtained on the misogyny BETO trained on LatAm data. The model’s output for the positive label is 0.017539,
classifying the tweet as non-misogynous. The term “tonta” (translated to English as idiot) is almost not colored, which means it
does not provide any relevant impact on the model to provide its final output.

Figure 1: SHAP values obtained from the misogyny BETO trained on European tweets 1a and LatAm data 1b
classifying the same misogynous tweet from our corpus. The model trained on LatAm data detects no misogyny,
whereas the European model is capable of identifying hateful content. The final output of the models towards the
misogyny class is written in bold. Red colored terms influence the final decision towards the misogyny label, while
blue colored terms provide influence the model classification towards the non-misogyny class. The tweet can be
translated to English as “@user @user Get informed, you can’t be more of an idiot because you don’t train, for a
clown, you’re priceless, ignorant.”

formance may decay if it is used on data derived
from another variant of the same language. An ex-
planation for this may be the usage of terms, which
in some regions where Spanish is spoken as a na-
tive language may denote hate, could be unrelated
to hate speech in other regions where Spanish is
also an official language. Thus, the terms used for
denoting misogyny in countries where the same
language is spoken might differ from one place to
another. In our work, we used data produced in
Spain, compared to data produced in Latin Amer-
ica, considering various countries such as Mexico
(North America), Colombia, Ecuador (South Amer-
ica), and others. Our results extend the findings
obtained by Nozza (2021) to transfer cross variants
within the same language, demonstrating that dif-

ferent language variants from the same language
for a given hate speech domain might also need to
be studied separately to develop hate speech detec-
tion systems. Additionally, if different variants in
the same language are not treated as separate cases
but as one single scenario, we should consider us-
ing examples from as many variants as possible
during the training phase to obtain models capa-
ble of dealing with data collected from different
regions where hateful expressions may vary from
each other. Finally, we followed a structured data
extraction and annotation scheme to build a new
hate speech towards immigrants corpus in Span-
ish, considering different language variants. Our
dataset will help advance the state-of-the-art in hate
speech detection for language variation and con-
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tribute to a better understanding of the dynamics
of hate speech towards immigrants in online envi-
ronments. We release this corpus for use by the
scientific community.

8 Limitations

In order to perform this work, we had to use sim-
plified assumptions regarding the Spanish variants
we worked on. We considered both variants as ho-
mogeneous geolects by themselves, whereas, of
course, those geographical differences may consti-
tute different dialects (cf. Wikipedia’s world map
of Spanish dialects, reproduced in Figure 3 in Ap-
pendix A.5).

The other limitation of our work is tied to the
annotation biases eventually found in our dataset.
Indeed, three annotators worked on the annotation
of tweets forming the HaSCoSVa-2022 dataset, a
new corpus we introduced for hate speech detection
in two Spanish variants. Nevertheless, all annota-
tors are from Latin America. Thus, some inter-
pretations of tweets from the European Spanish
variant might be questionable, given a potential
lack of knowledge of certain hate-speech-related
expressions used in Spain. To mitigate this issue,
we included extensive observations regarding po-
tentially confusing expressions from the European
variant in the guidelines we provided. Additionally,
the adjudicator (i.e. the annotator resolving the con-
flicts) in our annotation campaign has an academic
background in political science and discrimination
towards minorities and has lived in Spain for a sig-
nificant amount of time. We thus believe that this
problem has been properly handled. Nevertheless,
as we will publicly release this dataset, including
the guidelines and the seed words we used, within
an open-source license, we will welcome any con-
current annotation and bug reports.

9 Ethical Considerations

This paper is part of a line of work aiming to investi-
gate the effect of language variation on hate speech
detection, fight the spread of offensive and hateful
speech online, and have a positive global impact
on the world. It has been approved by our institu-
tional review board (IRB), and follows the national
and European General Data Protection Regulation
(GDPR). All our experiments were executed on
clusters whose energy mix is made of nuclear (65–
75%), 20% renewable, and the remaining with gas
(or, more rarely, coal when imported from abroad).
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A Datasets Details

A.1 Misogyny Dataset Description

Europe LatAm

Dataset Nb MIS Nb non-MIS % MIS Nb MIS Nb non-MIS % MIS

MisCorpus-2020 1289 1197 51.9% 1218 378 76.3%

DetMis - - - 1000 1000 50.0%

All 1289 1197 51.9% 2218 1378 61.7%

Table 6: Misogyny corpora descriptions after removing tweets without a variation tag (i.e. no information about the
Spanish variation). Information about classes MIS (Misogyny) and non-MIS (non-misogyny) is disaggregated, as
well as the percentage of misogyny instances per dataset and variation. The IberEval 2018 dataset is not included
because it does not provide information about language variations.

A.2 Subset Splits

women immigrants

Variant train dev test train dev test

Europe 1392 348 746 1400 350 750

LatAm 2014 503 1079 840 210 450

Comparable size 1392 348 746 840 210 450

Table 7: Number of tweets per dataset split on each hate speech domain with comparable data size. The comparable
data size is obtained on each hate speech domain by randomly undersampling observations to ensure the compara-
bility of the transfer settings among language variants.

A.3 HaSCoSVa-2022 Tweets Geolocation

Figure 2: Boundings used to create the HaSCoSVa-2022 dataset by geo-locating European and Latin American
tweets.
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A.4 HaSCoSVa-2022 Sampling Strategy
In order to collect the data, we used keywords related to hate speech to extract subsets of tweets from
Europe and Latin America (LatAm). For each keyword, we randomly sampled up to 50 tweets from
Europe and 200 tweets from LatAm. We use a higher maximum number of tweets for LatAm due to the
lower number of keywords related to hate speech we used for this region. This initial sampling strategy
aims to avoid missing tweets containing non-frequent keywords. We also set a maximum number of
tweets per keyword to avoid overrepresenting or underrepresenting some keywords in our final dataset.

After the initial sampling, we obtain 11,298 tweets in total. We then randomly sampled 2,500 tweets
for Europe and 1,500 for LatAm from this subset. The decision to use different numbers of tweets for
the two regions was based on a review of the datasets, which revealed a higher rate of hate speech in the
European dataset. Therefore, we choose to annotate more European tweets to ensure an adequate number
of hate speech-related tweets. This selection resulted in 231 negative examples for LatAm out of 1,500
tweets and 323 for Europe out of 2,500 tweets.

A.5 World Map of Spanish Dialects

Figure 3: World map of Spanish Dialects (source Wikipedia).
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Abstract

Pre-trained models usually come with a pre-
defined tokenization and little flexibility as to
what subword tokens can be used in down-
stream tasks. This problem concerns espe-
cially multilingual NLP and low-resource lan-
guages, which are typically processed using
cross-lingual transfer. In this paper, we aim to
find out if the right granularity of tokenization
is helpful for a text classification task, namely
dialect classification. Aiming at generalizations
beyond the studied cases, we look for the op-
timal granularity in four dialect datasets, two
with relatively consistent writing (one Arabic
and one Indo-Aryan set) and two with con-
siderably inconsistent writing (one Arabic and
one Swiss German set). To gain more control
over subword tokenization and ensure direct
comparability in the experimental settings, we
train a CNN classifier from scratch comparing
two subword tokenization methods (Unigram
model and BPE). For reference, we compare
the results obtained in our analysis to the state
of the art achieved by fine-tuning pre-trained
models. We show that models trained from
scratch with an optimal tokenization level per-
form better than fine-tuned classifiers in the
case of highly inconsistent writing. In the case
of relatively consistent writing, fine-tuned mod-
els remain better regardless of the tokenization
level.1

1 Introduction

The change from word to subword tokenization
opened a large space of tokenization possibilities:
any substring of a word (subword) is potentially a
good token, but some might be more useful than
others. In contrast to this, pre-trained models usu-
ally come with a predefined tokenization and little
flexibility in input preprocessing.

This problem is even more important in a mul-
tilingual setting, where, for many languages, only

1We will release our code for replication of our results.

a little data is available, often written in a non-
standard writing (e.g. transcriptions of spoken lan-
guage, social media posts) with pronounced re-
gional differences. Fine-tuning pretrained mod-
els (with cross-lingual transfer) has become the
primary approach to processing such languages.
Predefined tokenization, which is part of this re-
search framework, is likely not to be suitable for
the level of inconsistency that is typical for target
low-resource languages.

In this paper, we study the benefits of optimal
subword tokenization in one of the basic tasks in
multilingual NLP — dialect classification. This
task can be seen as a stand-alone task (e.g., for
tracing the source of media posts) or a step in other
end-user tasks such as machine translation or natu-
ral language understanding (NLU). We choose this
task as an especially challenging case of text encod-
ing bridging the work on language modelling and
text classification. Although it is a classification
task, it does not rely on an abstract semantic rep-
resentation of the whole sentence (as in usual text
classification) but on surface features of the text,
such as distinctive suffixes or prefixes of words,
phonetic clusters, and order of tokens, closer to
language modelling. These features show up oc-
casionally in the text, which otherwise might look
the same in two different dialects (Zampieri et al.,
2017; Tiedemann and Ljubešić, 2012). The right
level of tokenization can be expected to help iden-
tify these features and thus encode the text better
for other purposes too.

Aiming at generalizations beyond the studied
cases, we work with four data sets (two Arabic,
one Indo-Aryan, and one Swiss German) represent-
ing two levels of writing consistency (transcribed
speech vs. originally written text) and three differ-
ent types of languages. We consider three levels of
tokenization (character, subword, word) testing two
main subword tokenization methods: one example
of a probabilistic model (Unigram model (Kudo,
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2018)) and one example of a bottom-up compres-
sion algorithm (BPE (Sennrich et al., 2016), also
implemented by Kudo and Richardson (2018)). To
gain flexibility with varying the level of tokeniza-
tion, we train our own classifiers (one Bidirectional
Long Short Term Memory (BiLSTM) and two Con-
volutional Neural Networks (CNNs)), which we
also evaluate against comparable fine-tuned clas-
sifiers with BERT-based pre-trained models. Our
findings are expected to generalize to other tasks
similar to dialect classification and, to a certain
degree, to NLU tasks.

2 Related Work

Dialect identification replaces language identifica-
tion whenever a language has many regional vari-
ants as in the case of Arabic, Chinese or (Swiss)
German. Such cases are mostly covered in a series
of shared tasks (Zampieri et al., 2017, 2018, 2019;
Chakravarthi et al., 2021; Gaman et al., 2020). The
solutions submitted to the shared tasks range from
traditional machine learning to state-of-the-art deep
learning models. Traditional machine learning clas-
sifiers such as Support Vector Machines (SVM),
Logistic Regression (LR), and Naive Bayes (NB)
utilizing character or word level n-gram features
were found to perform quite well across different
languages and dialects (Çöltekin and Rama, 2016;
Jauhiainen et al., 2018b; Zirikly et al., 2016; Best-
gen, 2021; Jauhiainen et al., 2021). For instance, a
version of a character-level n-gram language model
with a domain adaptation technique is the state
of the art for identifying Swiss German (F-score
0.75) and Indo-Aryan (F-score 0.96) dialects with-
out acoustic features (Jauhiainen et al., 2018a,b,
2019). This approach, however, requires numerous
model retraining iterations, which is not suitable
for larger models.

Neural networks have been used for this task
too including CNN, LSTM, and pre-trained Trans-
formers models, in which are currently prevailing
(Bernier-Colborne et al., 2019; Ceolin, 2021; Za-
haria et al., 2020; Butnaru, 2019). The performance
of these models varies depending on the datasets.
Ensembles of neural and traditional models are
also utilized (Popa and S, tefănescu, 2020; Hu et al.,
2019; Yang and Xiang, 2019).

Character-level tokenization proves useful for
capturing the relevant features, but previous studies
do not address specifically the question of input
granularity.

Outside of dialect identification, Domingo et al.
(2018) suggest that tokenization could impact neu-
ral machine translation (NMT) quality. They com-
pared tokenizers such as Moses, SentencePiece,
OpenNMT, Stanford, and Mecab on Japanese, Rus-
sian, Chinese, German and Arabic translations to
English. They found that Moses tokenizer gave the
best result for Arabic, Russian and German; Mecab
for Japanese; and Stanford for Chinese. Uysal and
Gunal (2014) studied the effect of pre-processing
in the English and Turkish languages and they ob-
served that using appropriate domain and language
dependant pre-processing can improve the perfor-
mance. Gowda and May (2020) propose a general
optimization method for finding subword tokens
for machine translation. Mielke et al. (2019) find
that the surprisal of a language model is minimised
cross-linguistically at a particular level of subword
segmentation with the resulting size of the input
vocabulary being the word-level vocabulary multi-
plied by 0.4. Gutierrez-Vasques et al. (2021) find
that much smaller vocabularies minimize text re-
dundancy and lead to a converging text entropy
across 47 languages.

Quite a few solutions have been proposed for
unsupervised subword segmentation (Creutz and
Lagus, 2005; Schuster and Nakajima, 2012; Poon
et al., 2009; Narasimhan et al., 2015; Sennrich et al.,
2016; Bergmanis and Goldwater, 2017; Grönroos
et al., 2020; Kudo, 2018). The SentencePiece li-
brary (Kudo and Richardson, 2018) implements
two very popular methods: BPE, a general data
compression algorithm (Gage, 1994) first applied to
text by Sennrich et al. (2016) and Unigram model
(Kudo, 2018), similar to Morfessor (Creutz and
Lagus, 2005; Grönroos et al., 2020) in that it con-
siders multiple possible subword splits at the same
time. Some related works on fine-tuning vocab-
ulary sizes for NLP applications include (Cherry
et al., 2018; Xu et al., 2021; Ding et al., 2019; Li
et al., 2021).

The work on comparing subword tokenization
algorithms reports rather inconsistent outcomes.
For instance, Vania and Lopez (2017) find that
BPE gives better results than Morfessor on the task
of language modeling, but Ataman and Federico
(2018) show that linguistically motivated vocab-
ulary reduction (LMVR), which is an extension
of Morfessor, gives better results in the context of
machine translation. The benefit of using LMVR
increases with increased morphological richness.
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A similar conclusion is reached in a wide-scope
multilingual comparison with language modeling
as the downstream task is performed by Park et al.
(2021). A study on English by Bostrom and Dur-
rett (2020) compares BPE preprocessing with the
Unigram method by Kudo and Richardson (2018),
again on the task of language modeling, obtaining
lower results with BPE tokenization, which also
gives a slightly larger vocabulary than the compet-
ing method.

For our study, we select representative examples
of neural models for dialect classification and sub-
word tokenization methods, which are detailed in
the next section.

3 Data and Methods

Four datasets used in the main study have been
selected so that they represent different language
types and different levels of consistency in writ-
ing. Table 1 shows the sizes of four datasets ex-
pressed as the number of utterances, the number
of unique characters (character-level vocabulary)
and the number of unique word types (word-level
vocabulary). Three of the datasets were released
as a part of the VarDial workshop shared tasks
(Zampieri et al., 2017, 2018, 2019): the German Di-
alect Identification (GDI)2, Indo-Aryan Language
Identification (ILI) 3 and the Arabic Dialect Identi-
fication (ADI) datasets4. The fourth is the Arabic
Online Commentary (AOC) (Zaidan and Callison-
Burch, 2011) dataset.

The GDI dataset is compiled from the Archi-
Mob corpus of Spoken Swiss German and covers
four areas, namely Basel, Bern, Lucern, and Zurich
(Samardzic et al., 2016). We used the GDI-2018
dataset for our experiments and worked in a 4-way
classification setting.

The ILI dataset includes five closely related
Indo-Aryan language dialects: Hindi, Braj Bhasha,
Awadhi, Bhojpuri, and Magahi. For each language,
15,000 sentences are extracted, mainly from the
literature domain.

The ADI VarDial task (Malmasi et al., 2016; Ali
et al., 2016) includes five Arabic dialects: Mod-
ern Standard Arabic (MSA), Egyptian (EGY), Gulf
(GLF), Levantine (LAV), Moroccan (MOR), and
North-African (NOR). MSA is the modern variety

2https://drive.switch.ch/index.php/s/
DZycFA9DPC8FgD9

3https://github.com/kmi-linguistics/
VarDial2018

4https://arabicspeech.org/resources/

of language which is used in news and educational
articles. It differs lexically, syntactically, and pho-
netically from the actual communication language
of native speakers. The VarDial ADI dataset is
both speech transcribed and transliterated to En-
glish from Arabic.

AOC constitutes a large-scale repository of Ara-
bic dialects extracted from reader commentary of
three Arabic online newspapers. It covers MSA and
the dialectal varieties, viz., Egyptian (EGY), Gulf
(GLF), Levantine (LEV), and Moroccan (MOR).

The languages and dialects represented in these
four datasets belong to two language families (Indo-
European and Semitic). Two of the data sets (GDI
and ADI) are created by transcribing spoken lan-
guage and show a high level of inconsistency in
writing. The other two (ILI and AOC) are originally
written texts with lower level of inconsistency.

In addition to these four datasets used in the main
study, we perform additional experiments on the
data from the Nuanced Arabic Dialect Identifica-
tion (NADI) shared task, which deals with country-
level and province-level Arabic dialect identifica-
tions (Abdul-Mageed et al., 2020, 2021). NADI
2022 shared task covers 18 country dialects with a
training set of ≈ 20K tweets (Abdul-Mageed et al.,
2022).

3.1 Levels of Tokenization

Dialect classification is usually performed at the
level of utterance (loosely structured sentence):
each utterance in a dataset is assigned a label. Clas-
sification features (typically n-grams) are typically
either word-level or character-level. We introduce
subword-level features and compare them to both
character and word-level ones.

Word Level The most common tokenization is
at the word level, mainly using white spaces and
punctuation as delimiters. However, this approach
is not convenient for languages lacking clear word
boundaries (e.g., Chinese and Japanese). This type
of tokenization produces large vocabularies, but
shorter sequences, which are both important con-
cerns for memory and time complexity.

Character Level Character level tokenization
is the simplest way of segmenting the text using
Unicode characters as tokens. This level is good
for generalizing across languages (many languages
share alphabets). It also helps solving some prob-
lems of word-level tokenization, such as out-of-
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GDI ILI ADI AOC NADI
Train 14647 68453 14591 86541 20398
Dev 4659 8286 1566 10820 4871
Test 4752 9032 1492 10812 4871
Word vocabulary (Train) 15041 115766 43150 171184 56163
Character vocabulary (Train) 30 209 52 158 445

Table 1: The size of datasets expressed as the number of utterances. The character (Character vocabulary ) and word
vocabulary (Word vocabulary) sizes (unique number of characters and words in the training set) is also given.

vocabulary (OOV) symbols. However, represent-
ing single characters is hard (too general) and se-
quences of character-level tokens are very long.
Both of these factors have a negative impact on the
performance on downstream tasks.

Subword Level The main idea behind the
subword-level tokenization is to balance generaliza-
tion and specificity so that frequently used words
are considered a single token (as in word-level to-
kenization) and rare words are split into smaller
units (as in character-level tokenization) called sub-
words. For instance, the word lowest, may be split
into low and est depending upon the vocabulary
sizes or merge operations. This helps in creating
smaller vocabularies while preserving some of the
lexical meaning.

3.2 Subword Tokenization Methods

Among many possibilities listed in Section 2, we
select two methods, which represent two main ap-
proaches to finding subword units. We select BPE
(Gage, 1994; Sennrich et al., 2016) as a bottom-up
algorithm that goes from single characters to sub-
words by a sequence of merges. As an alternative
approach, we select the Unigram model (Kudo,
2018), which considers all possible splits of a word
gradually discarding some of them.

For BPE, text input is first tokenized at the word
level. Each word is then split into a sequence of
characters to which a special “end of the word”
symbol is appended. The base vocabulary is cre-
ated from the unique characters in the training cor-
pora. The algorithm iterates through the data many
times merging the most frequent pair of symbols
into a single symbol every time. The new symbol
is added to the vocabulary for the next iteration.
The procedure is repeated until the desired vocabu-
lary size, or a specific number of merge operations
is obtained, which are the hyperparameters to be
tuned.

Unlike the BPE algorithm, the Unigram model

can be viewed as a probabilistic mixture model,
where the likelihood of the whole data is computed
under a given subword split hypothesis. The algo-
rithm starts from a large vocabulary that contains
many possible subword splits (a “reasonably” big
seed vocabulary). It then reduces the vocabulary
gradually by discarding a percentage of vocabulary
entries. The decision on what entries to discard
relies on a loss function: for each vocabulary entry,
measure the difference in the overall likelihood of
the data with and without that entry. Those entries
that result in the smallest difference are discarded.
A threshold η% is set to decide the percentage
of vocabulary entries to be discarded. The pro-
cess is repeated until the desired vocabulary size is
reached, which is the hyperparameter to be tuned.

3.3 Optimizing the Size of the Subword
Vocabulary

We optimize vocabulary sizes (vocab_sizes) for
word-level and subword-level tokenization and take
the character-level vocabularies from the data as
the only option.

In case of the word-level tokenization, we con-
ducted experiments with different vocab_sizes
(2000-20000) and selected the vocab_size that
yielded maximum performance on the dev set.
Based on the experiments, we found the preferred
word level vocab_size is 2000 for the dialect classi-
fication task on the specific languages tested. The
unknown tokens are represented by UNK.

To find the range of vocab_sizes for subword
level experiments, we consider different sizes from
the character set to a limit identified by Mielke
et al. (2019), who find that a BPE vocabulary cor-
responding to a proportion of the size of all word
types |V | minimizes the negative log-likelihood on
the data (dev sets) across 21 languages from the
Europarl dataset 5. This proportion is the same
for all languages: 0.4 ∗ |V |. Given this measure,

5https://www.statmt.org/europarl/
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we consider all the subword vocab_sizes ranging
from character level vocab_size to 0.4 ∗ |V |. These
ranges for each dataset are reported in Table B1.

For finding the BPE and Unigram model vocab-
ularies, we use the Google SentencePiece library6,
which is an unsupervised tokenizer-detokenizer
that accepts raw input (no pre-tokenizations) with
predefined vocabulary sizes as arguments. It adopts
the BPE algorithm by Sennrich et al. (2016), but
unlike specifying the required number of subword
merge operations, here the desired final vocab_size
has to be given (both approaches yield similar re-
sults). We start from the character vocab_size and
increment the size by 100 if vocab_size ≤ 1000
and then by 1000 if vocab_size ≤ 10000. The pro-
cess is repeated until the merge_size (number of
merges) ≤ optimal_merge_size (0.4 ∗ |V |).

3.4 Models for Classification
For selecting the classification models, we con-
sider two kinds of neural networks with shared
parameters: convolutional (CNNs) and recurrent
(specifically LSTM RNN). On the side of CNNs,
we evaluate two concrete architectures: Kim_CNN
(Kim et al., 2016) and Zhang_CNN (Zhang et al.,
2015), which are known to perform well on the
task of text classification and are widely used. On
the side of RNNs, we evaluate the architecture
Lin_SA_BiLSTM (Lin et al., 2017), which has
been shown to give good results on the task of di-
alect classifications (Goswami et al., 2020). We
manipulated the tokenizers of these models using
different granularity levels without changing the
overall architecture. The model architectures are
briefly described in this section.

Lin_SA_BiLSTM This is a BiLSTM architec-
ture with a self-attention component (Lin et al.,
2017), where the sentence embeddings are com-
puted by multiplying the hidden states from BiL-
STM with the attention weights obtained across
multiple attention hops. If S = (w1, w2, ..., wn)
represents a sentence with n tokens, where wi rep-
resents a d dimensional word embedding, then the
sentence is represented by a 2D matrix of the shape
n×d. The BiLSTM component is used to compute
the hidden state matrix H and further, the attention
module takes the H vector and outputs the attention
matrix A using the Equation 1:

A = softmax(Ws2tanh(Ws1H
T )) (1)

6https://github.com/google/
sentencepiece

Here, Ws1 and Ws2 represent the weight matrices.
The final embedding is computed as M = AH . A
penalization term is also used to ensure diversity
among multiple attention hops. These embeddings
are then to be used as input for a downstream task,
such as dialect classification in our case.

Zhang_CNN Zhang et al. (2015) proposed a sim-
ple character level model for text classification uti-
lizing a 1D convolution followed by max pooling
layers. The model has six CNN layers and three
fully connected layers.

Kim_CNN The architecture used by Kim et al.
(2016) is originally a neural language model
(NLM) used for several NLP tasks. We adapted it
in particular for dialect classification. The original
architecture uses a CNN with a highway network
whose output is given to a recurrent neural net-
work (RNN) neural language model. In the origi-
nal Kim_CNN model, the input is segmented at the
character level and hence a word token of length k
is represented as c1, c2, ..., ck. A filter F of width
m is used to produce the feature maps. The main
idea is that a filter captures the n-grams and the
filter width corresponds to the n-gram size. Then a
max-pooling layer is used to extract the important
features. Since, our task is a classification prob-
lem, we utilized only the encoder part of the model
with CNN, while the RNN layers were replaced by
dense layers to perform softmax over the classes.
The model has four convolutional layers and two
fully connected layers.

4 Experimental Settings

We train and test on the task of dialect classification
each of the architectures described in Section 3.4 on
each version of the data produced with the tokeniz-
ers (one version of the data for each vocab_size).
The vocabulary size that gave the best performance
on the development set is chosen as the optimal
vocabulary size. We compare these results to find
out if optimizing the input vocabulary improves
the classification performance. In addition to this,
we compare the performance achieved with the
best performing models trained from scratch with
the performance achieved by fine-tuning respective
pre-trained models.

In the remainder of this section, we describe the
hyperparameters of the neural models trained from
scratch, the vocabulary settings, and the fine-tuning
settings, which we consider to be the state of the
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art.7

4.1 Hyperparameters

For all the models trained from scratch, we used
a batch_size of 128 and maximum input length
(max_len) of 1014 (decided after repeated experi-
ments). The number of epochs is decided by early
stopping criteria, monitoring the validation loss
with patience value set to 2. The optimal number
of epochs ranged between 5-10. For initialization,
we used the Keras embedding layer8, which takes
integer encoded vocabulary and learns the vectors
during training.

Table A1 in the Appendix reports the parameters
for each model as described in the original imple-
mentations. In Lin_SA_BiLSTM, the main pa-
rameters are the LSTM hidden dimensions, dense
layers dimension, and the number of attention hops
in the self-attention mechanism. For Kim_CNN
and Zhang_CNN, the main parameters include the
number of CNN layers and fully connected neural
network (FCNN) layers with their corresponding
dimensions. The Kim_CNN uses a global max
pooling layer, which is common in NLP applica-
tions. Zhang_CNN uses a 1D max pooling with
specific pool sizes except for layers 3, 4, and 5.
The Kernel_size represents the n-gram width, and
the n-grams will be based on the granularity of the
tokenizers.

4.2 Pre-trained Models and Fine-tuning

For comparisons, we use transformer based pre-
trained models. We evaluate Vanilla BERT (En-
glish BERT) and multilingual BERT (mBERT) (De-
vlin et al., 2019) for all the datasets. The language-
specific BERT models are as follows: German
BERT9 and Swiss-German BERT 10 were used
for the GDI dataset; IndicTransformers 11 (Jain
et al., 2020) for ILI; AraBERT12 (Antoun et al.,

7We consider fine-tuned models the state of the art, de-
spite the fact that simpler models can give better performance
when combined with domain adaptation techniques. We note
that domain adaptation can be combined with any model and
should be evaluated separately.

8https://keras.io/api/layers/core_
layers/embedding/

9https://www.deepset.ai/german-bert
10https://github.com/jungomi/

swiss-language-model
11https://huggingface.co/

neuralspace-reverie
12https://huggingface.co/aubmindlab/

bert-base-arabert

2020) and Multi-dialect-Arabic-BERT 13 (Talafha
et al., 2020) for AOC, ADI and NADI datasets.
German BERT is pretrained on the latest German
Wikipedia dump (6GB of raw text files), OpenLe-
galData dump (2.4 GB), and news articles (3.6 GB).
Swiss-German BERT is fine-tuned on the Swiss
German data of the Leipzig Corpora Collection14

and SwissCrawl15 on the top of German BERT. In-
dicTransformers is a BERT model trained with 3
GB of data from the OSCAR corpus16 covering
three Indo-Aryan languages, Hindi, Bengali, and
Telugu. AraBERT is pretrained on Arabic news
articles and two publicly available large Arabic cor-
pora covering 24 Arab countries on the top of a
BERT-based model. Multi-dialect-Arabic-BERT
initializes the weights from Arabic BERT and is
further pretrained on 10M Arabic tweets from
Nuanced Arabic Dialect Identification (NADI)17

shared task.
For all the BERT based experiments, we used

the pretrained models from HuggingFace library18.
We trained each model for four epochs with Adam
optimizer using a learning rate of 2e-5 on the cor-
responding training set using 1 Tesla K80 GPU.
Since all these baselines are BERT based, the de-
fault tokenizer is WordPiece.

5 Results and Comparisons

Since the Kim_CNN model gave the best results
in all the from-scratch settings, we report only its
performance in Table 2, in the test sets with the best
vocab_sizes obtained. The detailed experimental
results of all the models are reported in Appendix
C, Tables C1 and C3.

From Table 2, it can be observed that subword
level tokenizer performs better than their character
and word level counterparts across all four datasets.
Except for ILI and NADI, the Unigram model
yields better results than BPE. Comparing the F1
scores, we noted an improvement of 3.9 points in
GDI, 9.7 points in ILI, 5.2 points in AOC, 10.2
points in ADI and 3.4 points in NADI compared to
the character level tokenizers. Similarly, compar-
ing the subword level tokenizers with word level,

13https://huggingface.co/
bashar-talafha/multi-dialect-bert-base-arabic

14https://wortschatz.uni-leipzig.de/en/
download/

15https://icosys.ch/swisscrawl
16https://oscar-corpus.com/
17https://sites.google.com/view/

second-nadi-shared-task/home
18https://huggingface.co/models
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Dataset Number of
Classes

Vocabulary Size F-score (%)

Char Uni BPE Word Char Uni BPE Word

GDI 4 30 2030 3030 15041 58 61.9 59.7 57
ILI 5 209 709 309 115776 78 84.8 87.7 85
AOC 4 158 8058 4058 171184 68 73.2 72.4 70
ADI 5 52 9052 952 43150 37 47.2 44.2 45

Additional Experiment
NADI 18 445 20045 7045 56163 13.3 16.2 16.7 16

Table 2: Performance of the Kim_CNN model at different tokenization levels. Char: Character-level, Uni: Unigram,
BPE: Byte Pair Encoding, Word: Word-level. Kim_CNN gave the highest performance among the experimented
non-pretrained neural models. The best result in each dataset is bolded.

Dataset Best Model F-score (%)

Pre-trained Kim_CNN Pre-trained Kim_CNN

GDI BERT-base-cased Unigram 61.1 61.9
ILI Indic Transformers BPE 88.1 87.7
AOC AraBERT Unigram 77.1 73.2
ADI AraBERT Unigram 41.1 47.2

Additional Experiment
NADI Multi-dialect-Arabic-BERT BPE 26.1 16.7

Table 3: Comparison of the non-pretrained model with best tokenization level with the top performing baseline
models in each dataset.

the F1 score was observed to increase by 4.9 points
in GDI, 2.7 points in ILI, 3.1 points in AOC, 2.2
points in ADI and 0.7 points in NADI dataset. The
optimal vocab_sizes are also reported, correspond-
ing to vocab_size that gave the maximum F-scores.
The variation with respect to different vocab_sizes
in each dataset for the Kim_CNN with the Unigram
model tokens is shown in Appendix D, Figure D1.

From these results, we conclude that optimized
subword-level tokenization gives better dialect clas-
sification performance across all data sets (different
languages, different levels of consistency) when
working with a CNN architecture trained from
scratch. Similar observations hold for all the non-
transformer neural models in Table C1 in Appendix
C.

5.1 Comparison with Fine-tuned Models

Table 3 shows the comparison between the results
obtained in the trained (from scratch) setting and
the best results obtained in the fine-tuned settings
(with pre-trained models). The models that achieve
the best results on each dataset are presented. The
detailed results for all the models are given in Ap-
pendix C Table C3.

This comparison shows an interesting interaction

between the writing consistency and performance
on the classification task. For the two datasets with
inconsistent writing (GDI and ADI, see Section 3
for details), the best scores are achieved with one
of our models trained from scratch on optimized
subword vocabulary (Kim_CNN with the Unigram
model vocabulary). We note also that the best pre-
trained setting in the case of GDI is BERT-base-
cased and not the German BERT (see Table C3 in
Appendix C for more details). In the case of ADI,
Kim_CNN with the Unigram model tokenization
improves the classification F1 score by 6.1 points
compared to the best performing fine-tuned setting,
which is the language-specific AraBERT model.

On datasets with more consistent writing (ILI
and AOC), we see an opposite pattern: the best
classification score is achieved in the fine-tuned set-
tings using a language-specific pre-trained model
(Indic Transformers and AraBERT respectively).

These results show that finding an appropriate
level of tokenization granularity is especially im-
portant when datasets contain a considerable level
of noise. Using pre-trained models does not bring
the expected benefits unless one can count on a
reasonably consistent writing. This conclusion is
additionally reinforced by the scores obtained on
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Figure 1: Confusion matrices for the best performing fine-tuned models on the ILI, GDI, AOC and ADI datasets

Figure 2: Confusion matrices Kim_CNN models (without pre-training) on the ILI, GDI, AOC and ADI datasets

the NADI dataset, where the fine-tuned classifier
with a language specific pre-trained model achieves
the best result. Even though the overall results are
rather low in this case (likely due to the difficulty of
distinguishing between 18 labels), they are better
with fine-tuning. In this sense the NADI dataset,
which also consists of originally written texts, pat-
terns with ILI and AOC.

We also note the fact that BPE tokenizer gave bet-
ter results than the Unigram model on 2/3 datasets
with consistent writing. This observation is in line
with previous research pointing out the sensitivity
of BPE to noise in the data.

5.2 Per-class Comparison

To understand better the differences between
Kim_CNN and the competing fine-tuned classi-
fiers (results in Table 3), we plot two confusion
matrices: Figure 1 shows the best performance
with pre-trained models and Figure 2 shows the
best performance with Kim_CNN. 19

The matrices look very similar in all the cases
except ADI. In this case, the fine-tuned classifier
seems to have learned two classes well, while the
success of Kim_CNN are more spread across dif-
ferent classes. The matrices for the AOC data set

19We do not report the visualizations for NADI results here.

show that one class is much easier to identify for
both approaches than the other classes. The GDI
case shows one particularly confusing distinction
(BE for Bern vs. LU for Luzern), which is almost
equally hard for both approaches to distinguish.
Finally, the class (MAG for Magahi) seems to be
the most difficult for both approaches on the ILI
dataset.

6 Conclusion

We have shown in this paper that optimizing sub-
word vocabulary size is beneficial to text classifi-
cation tasks, such as dialect classification, when
the datasets contain relatively inconsistent writing
(transcribed speech). With an optimized vocabulary
as input, a CNN model trained from scratch out-
performs fine-tuned models on such datasets. On
the other hand, fine-tuning large language-specific
pretrained models seems to be the best approach
when datasets are relatively consistent (originally
written, even if not edited). In this case, vocabulary
size does not seem to matter much. Regarding the
question of which kind of neural architecture is
best to use without pretraining, our results point to
the CNN architectures, which seem to capture the
relevant surface features effectively.

Established on a relatively diverse sample (three
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language types from two language families), our
findings are especially relevant to multilingual NLP,
where datasets tend to be inconsistent and the use
of pre-trained models tempting.

7 Limitations

One of limitations of our work is the fact that we
have not tried manipulating the tokenizers in BERT
based models, which will be the focus of future
work. In subword level tokenizers, we plan to ex-
plore other tokenizers such as WordPiece.
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Tanja Samardžić, Francis Tyers, Miikka Silfverberg,
Natalia Klyueva, Tung-Le Pan, Chu-Ren Huang,
Radu Tudor Ionescu, et al. 2019. A report on the
third vardial evaluation campaign. Association for
Computational Linguistics.

24

https://doi.org/10.18653/v1/P19-1491
https://doi.org/10.18653/v1/P19-1491
https://doi.org/10.1162/tacl_a_00130
https://doi.org/10.1162/tacl_a_00130
https://doi.org/10.1162/tacl_a_00365
https://doi.org/10.1162/tacl_a_00365
https://aclanthology.org/N09-1024
https://aclanthology.org/N09-1024
https://doi.org/10.1109/ICASSP.2012.6289079
https://doi.org/10.1109/ICASSP.2012.6289079
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://aclanthology.org/C12-1160
https://aclanthology.org/C12-1160
https://doi.org/10.18653/v1/P17-1184
https://doi.org/10.18653/v1/P17-1184


Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text classi-
fication. Advances in neural information processing
systems, 28.

Ayah Zirikly, Bart Desmet, and Mona Diab. 2016. The
gw/lt3 vardial 2016 shared task system for dialects
and similar languages detection. In COLING, pages
33–41. The COLING 2016 Organizing Committee.

25



A Model Hyperparameters

Model Model Parameters Parameter Values

Lin_SA_BiLSTM
LSTM hidden_dim 50
Dense_layer_ dim 50

Number of attention hops 10

Kim_CNN

Number of CNN layers 4
Number of Filters 256

Kernel_size (10,7,5,3) respectively in each CNN layer
Number of FCNN 2

FCNN_dim 1024

Zhang_CNN

Number of CNN layers 6
Number of Filters 256

Kernel_size 7 in first two layers, 3 in other layers
Pool_size 3 in first two layers and last layer (no pooling in other layers)

Number of FCNN 3
FCNN_dim 1024

Table A1: Parameter settings for the experimented neural models

B Subword Vocabulary Ranges

Dataset vocab_size range
(char_vocab_size - 0.4*|V|)

GDI 30-6016
ILI 209-46306
AOC 158-68473
ADI 52-17260
NADI 445-22465

Table B1: Subword vocabulary ranges considered in the experimental set-up for each dataset
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C Detailed Experimental Results with
Neural Models and Comparisons

From Table C3, it can be observed that be-
tween the three neural models experimented at
different tokenization schemes, the subword level
Kim_CNN model outperforms the Zhang_CNN
and Lin_SA_BiLSTM models. Kim_CNN uni-
gram model performs the best in GDI, AOC, and
ADI with 61.9, 73.2, 47.21 % F1 scores, while the
Kim_CNN BPE model presents the maximum per-
formance in the ILI and NADI dataset with 87.79%
and 16.7% F-scores. Compared with BERT based
models, it can be noted that in GDI and ADI
datasets, Kim_CNN performs slightly better than
BERT models. In ILI, the subword level models
surpass the vanilla BERT and mBERT. The NADI
results were obtained from the official evaluation
site 20.

Table C1 reports the performance based on accu-
racy, and F1 macro scores21 and the vocab_sizes at
which the peak performances are obtained (the best
performances are bolded). It can be observed that
in all the datasets except ILI, the best classification
performance is obtained with the Kim_CNN Uni-
gram model. In ILI, Kim_CNN BPE presented
the best performance. During the analysis, we
also observed that in all datasets except ADI, the
vocab_sizes that presented the best performances
were overlapping. The overlapping values are be-
tween 1000-6000 for GDI, 200-600 for ILI, and
700-5000 in AOC.

D Experiments on Vocabulary Sizes for
Subword Tokenziers

Figure D1 depicts the variation of accuracy in
Kim_CNN unigram model with respect to the dif-
ferent vocabulary sizes.

E Details of Experimental Runs

The BERT models trained on 1 Tesla K80 GPU
took about 40-60 minutes training time and an in-
ference time of 10-20 minutes. For the subword
level experiments, the training of different subword
level models took ≈ 50-60 minutes in HPC cluster
and an inference time of 5-10 minutes.

20https://codalab.lisn.upsaclay.fr/
competitions/6514#participate-submit_
results

21Accuracy and Fmicro represent the same value for multi-
class classification
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Dataset Model Subword Tokenizers Acc F1 optimal vocab_size

GDI
Lin_SA_BiLSTM

BPE 28.5 28 830
Unigram 59.18 59.2 4030

Kim_CNN
BPE 59.53 59.73 3030

Unigram 62.4 61.9 2030

Zhang_CNN
BPE 56.25 55.19 4030

Unigram 57.3 56.7 4030

ILI
Lin_SA_BiLSTM

BPE 81.3 79.4 20009
Unigram 81.4 79.8 9009

Kim_CNN
BPE 88.48 87.79 309

Unigram 85.6 84.8 709

Zhang_CNN
BPE 84.94 84.33 309

Unigram 84.2 83.5 409

AOC
Lin_SA_BiLSTM

BPE 55.35 27.77 458
Unigram 77.69 70.66 9058

Kim_CNN
BPE 79.5 72.4 4058

Unigram 79.4 73.2 8058

Zhang_CNN
BPE 75.87 69.34 5058

Unigram 79.4 73.2 8058

ADI
Lin_SA_BiLSTM

BPE 21.3 11.18 852
Unigram 23.79 14.33 852

Kim_CNN
BPE 45.37 44.2 952

Unigram 47.25 47.21 9052

Zhang_CNN
BPE 31.97 30.68 6052

Unigram 32.8 31.2 6052

NADI
Lin_SA_BiLSTM

BPE 32.9 15.3 20045
Unigram 16.1 5.6 845

Kim_CNN
BPE 33.5 16.7 20045

Unigram 31.4 16.2 7045

Zhang_CNN
BPE 29.1 5.1 20045

Unigram 29.2 4.9 9045

Table C1: Model performances (Accuracy and Fmacro%) with BPE and Unigram subword tokenizers and the
optimal vocabulary sizes
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Dataset Model Tokenization Levels F1(%)

GDI Lin_SA_BiLSTM

Character Level 49.4
Subword_BPE 28

Subword_Unigram 59.2
Word Level 58

Kim_CNN

Character Level 56.9
Subword_BPE 59.7

Subword_Unigram 61.9
Word Level 57

Zhang_CNN

Character Level 47
Subword_BPE 55.2

Subword_Unigram 56.7
Word Level 25

ILI Lin_SA_BiLSTM

Character Level 64.4
Subword_BPE 79.4

Subword_Unigram 79.8
Word Level 84.6

Kim_CNN

Character Level 76.9
Subword_BPE 87.8

Subword_Unigram 84.8
Word Level 84.3

Zhang_CNN

Character Level 80
Subword_BPE 84.3

Subword_Unigram 83.5
Word Level 85

AOC Lin_SA_BiLSTM

Character Level 63.3
Subword_BPE 27.8

Subword_Unigram 70.6
Word Level 75.5

Kim_CNN

Character Level 73.3
Subword_BPE 72.4

Subword_Unigram 73.2
Word Level 65.6

Zhang_CNN

Character Level 66.7
Subword_BPE 69.3

Subword_Unigram 73.2
Word Level 66

ADI Lin_SA_BiLSTM

Character Level 13.4
Subword_BPE 11.18

Subword_Unigram 14.33
Word Level 15.6

Kim_CNN

Character Level 36.6
Subword_BPE 44.2

Subword_Unigram 47.2
Word Level 45

Zhang_CNN

Character Level 23
Subword_BPE 30.7

Subword_Unigram 31.2
Word Level 31

NADI Lin_SA_BiLSTM

Character Level 14.5
Subword_BPE 15.3

Subword_Unigram 5.6
Word Level 14

Kim_CNN

Character Level 13.4
Subword_BPE 16.7

Subword_Unigram 16.2
Word Level 16.1

Zhang_CNN

Character Level 7.2
Subword_BPE 5.1

Subword_Unigram 4.9
Word Level 2.6

Table C2: Comparisons(F1%) of the neural models analyzed using different tokenization levels
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Dataset Model F1(%)

GDI

Bert-base-cased 61
mBERT 59

German BERT 60
Swiss-German BERT 60

ILI
Bert-base-cased 80

mBERT 87
IndicTransformers 88

AOC

Bert-base-cased 75
mBERT 76

AraBERT 77
multi-dialect-ArabicBERT 76

ADI

Bert-base-cased 40
mBERT 23

AraBERT 41
multi-dialect-ArabicBERT 40

NADI

Bert-base-cased 4.8
mBERT 4.9

AraBERT 20
multi-dialect-ArabicBERT 26

Table C3: Comparisons(F1%) of the different pre-trained models in each dataset

Figure D1: Variation of performances with respect to vocabulary sizes in Kim_CNN subword level unigram models
across GDI, ILI,AOC and ADI datasets
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Abstract

This paper presents Murreviikko, a dataset of
dialectal Finnish tweets which have been dialec-
tologically annotated and manually normalized
to a standard form. The dataset can be used as a
test set for dialect identification and dialect-to-
standard normalization, for instance. We evalu-
ate the dataset on the normalization task, com-
paring an existing normalization model built on
a spoken dialect corpus and three newly trained
models with different architectures. We find
that there are significant differences in normal-
ization difficulty between the dialects, and that
a character-level statistical machine translation
model performs best on the Murreviikko tweet
dataset.

1 Introduction

Dialectal variation is typical of user-generated con-
tent on social media, alongside other types of vari-
ation such as misspellings and emojis. Such lan-
guage can be challenging for Natural Language
Processing tools that are trained on standard lan-
guage.

We present a dataset of dialectal Finnish tweets
which have been manually annotated by dialect
and normalized to standard Finnish spelling. The
dataset can be used as a test set for further work
in, for instance, dialect identification or dialect-to-
standard normalization.

We further experiment with the latter, testing
four different methods to normalize the tweets auto-
matically: the publicly available RNN-based Murre
normalizer (Partanen et al., 2019), a statistical ma-
chine translation system, a Transformer-based neu-
ral machine translation system, and a normalizer
based on the pre-trained ByT5 model. To give
an example of the task, the original dialectal text
oonko mää nähäny should be replaced with the
standard form olenko minä nähnyt (’have I seen’).

The main contributions of the paper are:

• We collect a tweet dataset spanning three
years.

• We manually annotate the dialects and normal-
ize the tweets to be used in further work.

• We train three new normalization models on
transcribed dialect data with different model
architectures.

• We evaluate the normalization performance
of our three models, as well as an existing
normalization model, on the dataset.

2 Related Work

2.1 Collection of Dialectal Content from
Social Media

There have been a lot of efforts in recent years
to collect dialectal content from social media.
Ljubešić et al. (2016) describe TweetGeo, a tool
to collect data from Twitter with restrictions on
geography, language and features. They use the
tool to collect tweets from the language continuum
of Bosnian, Croatian, Montenegrin, and Serbian.
Likewise, Huang et al. (2016) collect tweets origi-
nating in the United States to study dialectal varia-
tion on social media.

Hovy and Purschke (2018) collect over 16 mil-
lion Jodel posts from German-speaking areas and
use the data for dialect clustering. Barnes et al.
(2021) collect a dataset of Norwegian tweets and
annotate them by language (Bokmål, Nynorsk, di-
alect, and mixed). The dataset is further annotated
with POS tags in Mæhlum et al. (2022).

The MultiLexNorm (van der Goot et al., 2021)
dataset includes data from social media in 12 lan-
guages or varieties and is collected mostly from
Twitter. Even though the collection does not di-
rectly aim for dialectal content, it includes dialectal
variation in addition to, for instance, orthographic
variation.
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Tweets Dialect Standard Swedish English

2020 181 143 37 1 -
2021 203 142 55 3 3
2022 76 59 16 - 1

Total 460 344 108 4 4

Table 1: Distribution of the tweets by year and language.
Dialect and standard refer to Finnish. Five dialectal
tweets from 2020 were deemed abusive and were ex-
cluded from the dataset.

2.2 Normalization

Lexical normalization has been used especially in
the domain of historical texts (e.g., Pettersson et al.,
2014; Bollmann, 2019). The recent MultiLexNorm
shared task addressed the normalization of a multi-
lingual dataset of user-generated content (van der
Goot et al., 2021), and some work has also been
conducted on dialect normalization (Scherrer and
Ljubešić, 2016; Abe et al., 2018; Partanen et al.,
2019).

Methodologically, character-level statistical ma-
chine translation models have been proposed for
normalization tasks (e.g., Pettersson et al., 2014;
Scherrer and Ljubešić, 2016; Hämäläinen et al.,
2018). More recently, neural machine translation
models have been used, either based on recurrent
networks with attention (e.g., Abe et al., 2018; Par-
tanen et al., 2019), or on the Transformer architec-
ture (Tang et al., 2018; Wu et al., 2021; Bawden
et al., 2022). Finally, the best performance in the
MultiLexNorm shared task (Samuel and Straka,
2021) was obtained by fine-tuning byT5, a byte-
level pre-trained model (Xue et al., 2022).

3 Murreviikko

Murreviikko (‘dialect week’) is a Twitter campaign
initiated at the University of Eastern Finland which
aims to promote the use of dialects in Finland on
social media. The campaign has run for three years
(2020, 2021, 2022) and lasts for one week in Octo-
ber.

3.1 Data Collection from Twitter

We collected tweets that included the keyword mur-
reviikko or #murreviikko via the Twitter API. Our
data comes from all three years (2020–2022). The
yearly and language-wise distribution of the tweets
is presented in Table 1. Future augmentation of the
dataset is possible if the campaign is continued.

3.2 Dialectal Annotation

The collected tweets were first annotated with
the language they include (dialectal Finnish, stan-
dard Finnish, Swedish or English; see Table 1).1

After this initial stage, the dialectal tweets were
checked for abusive content and five such tweets
were removed from the dataset, leaving 344 dialec-
tal tweets in total.

The dialectal Finnish tweets were annotated on
two levels: following the two-way division of
Finnish dialects (Eastern–Western) and the seven-
way division traditionally used in Finnish dialectol-
ogy, based on Kettunen (1940). An eighth dialect
area is often distinguished between South-West and
Häme2, called transitional Southwestern dialects.
Since it shares many features with South-West and
Häme, it would be hard to discern it from these in
a single tweet. It is thus left out of this study. The
dialect areas are presented in Figure 1.

The traditional division is based mostly on mor-
phological and phonological features. The annota-
tion of the tweets is based on these same features.
The features include, for instance, several diph-
thong changes and different gemination cases, as
well as case markers, elision, consonant gradation
variation, and personal pronouns. For most cases
the annotation is straightforward based on these fea-
tures. Tweets that are not recognizable or include
mixed features are deemed to their own class.

The traditional division does not account for the
capital Helsinki due to its history as a Swedish-
speaking city. There are however nine tweets writ-
ten in Helsinki slang (a mainly Häme dialect with
a wealth of Swedish loanwords). Another dialect
group (Helsinki) was thus added to the annotation
to accommodate these tweets.

Table 2 presents the dialectal distributions of the
tweets, which mostly follows the population den-
sities of the areas, except for the city of Helsinki,
which is seriously underrepresented. The Savo
dialect is also overrepresented, which might be ex-
plained by the fact that the University of Eastern
Finland, where the campaign is initiated, is located
in Savo and the official tweets of the campaign are
written in that dialect.

1The annotation and normalization is performed by the
author, who holds a PhD in Finnish with a special focus on
language variation.

2Häme is sometimes referred to with its Swedish name
Tavastia.
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Figure 1: The seven dialect areas of Finnish, the East-
West border (blue line) and the capital Helsinki. The
dialect areas presented reflect the situation before World
War II, when data was collected comprehensively (Ket-
tunen, 1940). Modern-day dialects are mostly spoken
inside the current borders of Finland, presented in black.
The Northern Ostrobothnia in the map also includes
Central Osthrobothnia which shares the dialect. The
Northernmost areas are Sámi-speaking.

West SW 74
HÄ 58
SO 17
NO 33
FN 14
HE 9
NA 12

Total 217

East SA 95
SE 14
NA 1

Total 110

Unknown/Mixed 17

Table 2: Distribution of the tweets dialect-wise. The ab-
breviations are the same as in Figure 1 and HE=Helsinki.
NA refers to tweets which contain dialectal language
but are not distinguishable due to conflicting or scarce
dialectal features. There might also be cases where
the two-way division is distinguishable, but more fine-
grained annotation is not possible.

3.3 Normalization

The dialectal tweets were manually normalized,
following mostly the same principles as in the Sam-
ples of Spoken Finnish corpus (see Section 4.1). In
essence, the tweets are normalized to a phonologi-
cal and morphological standard, but word order is
not altered, nor grammar rules of standard Finnish
followed otherwise.

To give some examples of the phonological
and morphological normalization, open or reduced
diphthongs are returned to the standard alternative
(nuari > nuori ’young’, koera > koira ’dog’), weak
grade alternatives of t are substituted with the stan-
dard d (tehrä > tehdä ’to do’) and inessive case
endings are presented with the standard -ssa or -ssä
(talos > talossa ’in a house’).

The principle has been to not distance the nor-
malizations too far from the original dialects with
insertions or word substitutions. An example of the
principle is that possessive suffixes (minun kirjani,
’my book-my’) are not added if they are not present
in the original tweet (mun kirja, ’my book’), even
though they are a part of standard Finnish. Like-
wise, dialect words are not corrected to the standard
alternative, even if such words would exist, but in-
stead normalized phonetically and morphologically
(seki diggaa fisuist > sekin diggaa fisuista instead
of hänkin pitää kaloista ’s/he likes fish also’).

The tweets include emojis, URLs, user mentions
and hashtags. For the normalization experiments,
emojis and URLs are removed from both the origi-
nal and normalized side, user mentions are replaced
with @@, and hashtags are normalized with the
same rules as plain text.

The original text and normalization are aligned
on tweet level. The dataset is accessible in com-
pliance with the rules of the Twitter API, and the
European Union’s Digital Single Market directive
(2019/790). This means that the tweet IDs, dialect
annotations and corresponding normalizations are
publicly available on Github.3 The original tweets
can be shared non-publicly for scientific use.

4 Normalization Experiments

4.1 Training Data

We use the Samples of Spoken Finnish (Institute for
the Languages of Finland, 2021), hereafter SKN,
for training. The corpus consists of 99 transcribed

3The public data is available at https://github.com/
Helsinki-NLP/murreviikko. Licence: CC-BY-SA 4.0.
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interviews from the 1960s that represent the di-
alects of Finnish comprehensively.4 There are 50
Finnish-speaking locations in the corpus, with two
speakers always representing a location (with one
exception). The speakers are old and rural men and
women, who have been born in the end of the 19th
century (thus 70 to 90 years old at the time of the
interview). The utterances of each interview have
been randomly sampled and split to training (80%),
development (10%) and test sets (10%).

The SKN corpus includes two transcription lay-
ers: one with very high precision, and a simplified
version. Both rely on the Uralic Phonetic Alpha-
bet (UPA), but the simplified transcriptions use
almost exclusively standard Finnish characters and
no diacritics. We use this version for training our
own models. In contrast, the detailed transcriptions
have been used to train the Murre normalizer (Par-
tanen et al., 2019), which we will also experiment
with. The transcriptions have been normalized to a
phonetic standard manually by linguists. The prin-
ciples of the normalization procedure are explained
in the corpus, and they have been used as a guide-
line for the normalization of the tweet dataset (see
Section 3.3).

Even though the simplified transcriptions use
the same alphabet as the tweets, there are differ-
ences in, for instance, sandhi phenomena, which
are marked in the transcriptions (tehdäs se) ’to do
it’, but often not in written dialectal Finnish (tehdä
se). Likewise, the lexis used in old, rural interviews
is naturally very different from the one used in the
tweets. These are both issues that could affect the
performance of the trained models.

Since the dialect transcriptions do not include
any characters typical of social media, we add a set
of 130 Finnish tweets to the training set. The tweets
are collected from the OOD test set for Finnish Uni-
versal Dependencies5, and added as such on both
the original side and the normalized side. Such a
small dataset makes the models aware of the special
characters, but does not affect the normalization
quality. The key figures of this dataset, along with
those in the test set, are presented in Table 3.

4.2 Methods and Tools

We treat normalization as a character transduction
problem. This means that we split the sequences
into individual characters and treat the characters

4http://urn.fi/urn:nbn:fi:lb-2021112221, Licence: CC-BY.
5https://github.com/UniversalDependencies/UD_Finnish-

OOD/, Licence: CC-BY-SA 4.0

Sequences Words Words/Seq Chars/Seq

Murreviikko 344 8269 24.04 175.25
SKN+UDtweets 38,982 699,902 17.96 92.52

Table 3: Key figures of the datasets. Sequences refer
to tweets on Murreviikko and UDtweets and utterances
on SKN. Words/Seq = mean sequence length in words.
Chars/Seq = mean sequence length in characters.

as tokens, as has been standard practice in normal-
ization tasks before (e.g., Scherrer and Ljubešić,
2016; Wu et al., 2021).

We experiment with four models:6

• Murre. The publicly available Murre normal-
izer7 is based on a recurrent neural network
(RNN) architecture and trained on the detailed
transcriptions of the SKN corpus (Partanen
et al., 2019). The Murre normalizer splits the
data into non-overlapping trigrams and returns
them to sentences in the output.

• SMT. Our statistical normalizer uses the
Moses SMT toolkit (Koehn et al., 2007) with
a character 10-gram KenLM language model
trained on the training set. We do not use
an additional language model on the target
side. We use eflomal (Östling and Tiedemann,
2016) for character alignment. The model
weights are tuned with minimum error rate
training (MERT), with word error rate as the
objective. Note that since we are working on
characters, the word error rate is essentially
character error rate.

• NMT. Our neural model follows standard
Transformer architecture (Vaswani et al.,
2017). It has 6 Transformer layers in the
encoder and the decoder, with 8 heads each.
There are 512 embedding and hidden layer
dimensions. We use a batch size of 5000 to-
kens with an accumulate gradient of 4, and
an initial learning rate of 4. The dropout is
set to 0.1. We use position representation clip-
ping with a value of 4 (Shaw et al., 2018).
We train for 50,000 steps with checkpoints
every 1000 steps. The model is trained with
the OpenNMT-py toolkit (Klein et al., 2017).

6The training time and the number of parameters for each
model are presented in Appendix A in Table 9.

7https://github.com/mikahama/murre, Licence: CC-BY-
NC-ND 4.0
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• ByT5. ByT5 (Xue et al., 2022) is a multilin-
gual pre-trained sequence-to-sequence model
which encodes all text as UTF-8 byte se-
quences (instead of subword tokenization),
and uses the Transformer architecture. The
model is pretrained on a masked language
modeling task, where the model is asked to
predict the content of a masked span. The
data for pre-training is the multilingual m4C
corpus (Xue et al., 2021), with 1.35% of the
data being in Finnish. We use the byt5-base
model and fine-tune it with our training data
for 5 epochs, with maximum training se-
quence length of 512 bytes and a batch size of
4 sequences.

Our models are trained on sentence-level,
whereas the tweets are left as they are and could
thus include several sentences.

4.3 Evaluation

We evaluate the models on two metrics: charac-
ter n-gram F-score (chrF2) and character error rate
(CER). The former is typically used when evaluat-
ing machine translation models, and it calculates
the F-score over character n-grams (Popović, 2015).
CER is the Levenshtein distance between the model
prediction and the correct target, normalized by the
length of the target.8

We compare the systems to a leave-as-is (LAI)
baseline, which evaluates the original sentences as
they are, i.e., what would the scores be if the source
was left untouched. For our own models, we also
report the corresponding performance on a test set
of the SKN corpus. This is not calculated with
the Murre normalizer, since it is likely that some
sentences in our test set were part of the training
data for the model.

5 Results and Discussion

The chrF2 scores for the complete datasets are
presented in Table 4. The statistical model per-
forms best on the tweets (Murreviikko), with ByT5
achieving a very similar score. On the original di-
alect data (SKN) however, the best performance is
obtained with the ByT5 model. The NMT model
performs well on the original data, but does not
generalize to the tweet dataset, as it barely outper-

8We calculate chrF2 with the sacrebleu tool (Post, 2018),
available at https://github.com/mjpost/sacrebleu, and
CER with https://github.com/nsmartinez/WERpp.

Model Murreviikko SKN

LAI 71.2 61.8

Murre 78.5 −
SMT 84.4 93.4
NMT 74.3 95.5
ByT5 83.6 95.8

Table 4: Character n-gram F-scores for complete
datasets (↑).

Partanen et al. (2019) 5.73
SMT 7.95
NMT 5.32
ByT5 6.47

Table 5: Comparison of our models and Partanen et al.
(2019) on the SKN corpus on word error rate (↓).

forms the baseline. Likewise, the Murre normalizer
does not produce a comparable score.

Partanen et al. (2019) present their results on
the SKN dialect corpus on word error rate, which
means the results presented in Table 4 are not di-
rectly comparable. To see how our models’ perfor-
mance relates to theirs, we present the word error
rates of the models in Table 5, along with the score
from Partanen et al. (2019). We calculated the word
error rate with the same implementation as in the
original work.9

Table 5 shows that our NMT model and the
Murre normalizer (Partanen et al., 2019) offer very
similar performance. The ByT5 model, which
achieved the best chrF2 score, performs slightly
worse when measured on word error rate. The
models trained for this work are thus functioning
on par with previous work for the dialect normal-
ization task, but the performance does not translate
to the tweet dataset.

To further analyze the difficulty of the tweet
normalization task, we scrutinize the normalization
performance on the different dialect groups to see
if some dialects are inherently harder to normalize,
or if some models fail on some dialects. The chrF2
scores broken down by dialect are presented in
Table 6.

The baselines reflect that the South-Eastern (LAI
67.3) and especially South-Western dialects (LAI
59.3) are further from standard Finnish than the
other dialects. Both dialects include for instance eli-

9https://github.com/nsmartinez/WERpp.
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Model SW HÄ SO NO FN HE SA SE NA

LAI 59.3 71.7 73.1 74.9 75.6 73.9 74.2 67.3 83.7

Murre 75.1 78.8 79.1 81.1 77.2 70.4 80.4 78.3 79.6
SMT 77.3 85.4 86.5 87.5 85.6 73.2 87.2 84.7 88.8
NMT 62.9 75.8 76.7 78.1 77.1 73.6 77.8 68.9 83.5
ByT5 71.7 85.9 85.8 87.6 84.5 83.4 86.9 83.7 91.0

Table 6: Character n-gram F-scores dialect-wise (↑). SW = South-West, HÄ = Häme, SO = Southern Osthrobothnia,
NO = Northern Osthrobothnia, FN = Far North, HE = Helsinki slang, SA = Savo, SE = South-East, NA = Not
discernible.

Model Murreviikko SW HÄ SO NO FN HE SA SE NA SKN

LAI 11.58 17.13 11.42 9.93 9.65 9.65 10.12 10.22 13.18 6.29 14.25

Murre 11.09 13.50 12.18 9.96 9.36 10.95 13.01 9.72 10.31 10.21 −
SMT 7.64 11.13 7.43 6.91 6.16 7.37 11.23 6.20 7.16 5.52 3.93
NMT 10.92 16.3 10.39 9.09 8.93 9.35 10.31 9.46 12.63 6.79 1.84
ByT5 7.72 13.49 6.58 11.06 4.99 6.71 6.50 5.86 6.19 4.18 2.37

Table 7: Character error rates for the complete datasets and dialect-wise. (↓).

sion and influence from other languages (Swedish
and Estonian for the South-Western dialects, and
other Finnic languages and Russian for the South-
Eastern dialects). The rest of the dialect groups
(disregarding NA) tend to have very similar base-
lines.

Regarding model performance, the Helsinki
slang (HE) offers an interesting challenge. All mod-
els except ByT5 perform worse than the baseline.
This is somewhat to be expected, as the training
data does not include the slang. ByT5 on the other
hand has been trained on web data by Common
Crawl (Xue et al., 2021), which could include text
written in the Helsinki slang. It could also be that
the Swedish training data is helpful for the normal-
ization task, since Helsinki slang is characterized
by Swedish loanwords.

The difficulty of the South-Western dialects is re-
flected in the model scores, with all models achiev-
ing F-scores below 80. Given this is the second
largest dialect group in the dataset, it also affects
the overall performance quite significantly.

The character error rates for the complete
datasets and dialects separately are presented in
Table 7. The results follow mostly the same lines
as the chrF2 scores presented in Table 4 and Ta-
ble 6, but ByT5 achieves a better score on most
dialects. However, it struggles with Southern Os-
trobothnian and South-Western dialects so much
that the statistical model achieves the best overall

score on the whole dataset. Likewise for SKN, the
NMT model performs better than ByT5 when eval-
uating on character error rate, whereas for chrF2
ByT5 achieved a better score.

5.1 Error Analysis

Table 8 presents an example sentence from a tweet
with the predictions of each model. The example
highlights common errors the models make. As
South-Western dialects proved to be the hardest to
normalize, the example is chosen from this dialect.

Murre fails to insert the hashtag and punctuation
altogether. It has not seen the # in training (unlike
our own models which were trained with the small
tweet dataset added), and thus can not produce it.
Likewise, it normalizes the f to v which is some-
times necessary in dialectal Finnish, but does not
work well with the tweets which include a lot of
loanwords from Swedish (such as the one in the
example, fundera ’to think’) and English.

However, Murre normalizes the morphological
elements well, for instance managing to insert the
correct adessive case ending -lla in viikolla, which
is not achieved with any other model, as well as
the ablative case ending -ltä in sieltä. Further fine-
tuning of the model with modern text might thus
produce comparable results.

The statistical model produces the hashtag and
punctuation correctly, and also makes several cor-
rect substitutions and insertions (e.g., päättys >
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Source #Murreviikko päättys viime viikol, mut täsä muutmi fundeerauksi siält.
Target #Murreviikko päättyi viime viikolla, mutta tässä muutamia fundeerauksia sieltä.

Murre Murreviikko päättyi viime viikolla mutta tässä muutmin vundeerauksi sieltä
SMT #Murreviikko päättyi viime viikol, mutta tässä muutami fundeerauksia sielt.
NMT #Murreviikko päättys viime viikol, mut täsä muutmi fundeerauksi sieltä
ByT5 #Murreviikko päättyi viime viikol, mutta tässä muutmi fundeerauksi sielt.

Gloss ‘#Dialectweek ended last week, but here are some thoughts on it.’

Table 8: An example sentence from a tweet, with the source and correct target on top, and the corresponding
normalizations of each model below. An English gloss is provided on the bottom. Errors of each model are presented
in bold.

päättyi, mut > mutta, täsä > tässä, fundeerauksi >
fundeerauksia), but fails to insert word-final char-
acters in viikol, muutami, sielt.

The Transformer-based NMT consistently un-
dernormalizes, producing predictions very close
to the original source. The only difference in the
example is the correctly normalized siält > sieltä.
The prediction is also missing the final punctuation
mark.

ByT5 has been originally trained on web crawled
data, which enables the model to produce sensible
output on the tweets. The errors are very similar to
the ones produced by SMT, such as failing to insert
word-final characters.

6 Conclusions

In this paper, we present a dataset of dialectal
Finnish tweets which have been manually anno-
tated by dialect and normalized to a standard form.
The dataset will be made accessible to the scientific
community for further testing and fine-tuning of
models in the fields of dialect-to-standard normal-
ization and dialect identification, for instance.

We furthermore evaluate four automatic normal-
ization methods, which have been trained with tran-
scribed spoken dialect data. Three of the mod-
els have been purpose-built for this paper, while
a fourth model has been made publicly available
(Partanen et al., 2019).

Character-level statistical machine translation
provides the best normalization quality of the eval-
uated models on the Murreviikko-dataset, with the
pre-trained and fine-tuned ByT5 model achieving
very similar scores. Meanwhile, the ByT5 and a
Transformer-based neural model perform best on
the test set of the dialect transcriptions (SKN). The
NMT model fails to transfer the performance to
the tweets, however, consistently undernormaliz-

ing and barely outperforming the baseline. The
RNN-based Murre normalizer struggles with the
special characters typical of social media, while
providing a reasonable performance on dialectal
morphological features.

Dialect-wise, the South-Western dialects provide
the lowest baseline and worst scores for the models.
In the context of this work, it is thus the hardest
to normalize from the traditional Finnish dialects.
Helsinki slang, traditionally not seen as one of the
dialects, is also difficult for the models but this is
mostly due to a lack of training data.

Limitations

The size of the dataset is modest, and it is not
possible to sensibly split it to train, development
and test sets, for instance. We thus endorse it as a
test set for future work.

We have not executed exhaustive hyperparame-
ter tuning for our normalization experiments. It is
likely that, for example, the neural machine transla-
tion model could perform better with further tuning
and development. Likewise, we focus on character-
level normalization and do not experiment with
byte-pair encoding, found to enhance performance
in recent normalization tasks (e.g., Bawden et al.,
2022).
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A Experimental Details

We trained the NMT model and ByT5 on a single
NVIDIA V100 GPU. The CSMT model is trained
on a Xeon Gold 6230 CPU. Table 9 presents the
training time and number of parameters for the
training data.

Model Runtime (hh:mm) Parameters

SMT 72:00 —
NMT 16:26 25.4 M
ByT5 9:56 581 M

Table 9: Training runtime and number of parameters for
the training data.
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Abstract
One of the challenges with finetuning pre-
trained language models (PLMs) is that their
tokenizer is optimized for the language(s) it
was pretrained on, but brittle when it comes to
previously unseen variations in the data. This
can for instance be observed when finetuning
PLMs on one language and evaluating them on
data in a closely related language variety with
no standardized orthography. Despite the high
linguistic similarity, tokenization no longer cor-
responds to meaningful representations of the
target data, leading to low performance in, e.g.,
part-of-speech tagging.

In this work, we finetune PLMs on seven lan-
guages from three different families and an-
alyze their zero-shot performance on closely
related, non-standardized varieties. We con-
sider different measures for the divergence in
the tokenization of the source and target data,
and the way they can be adjusted by manipulat-
ing the tokenization during the finetuning step.
Overall, we find that the similarity between
the percentage of words that get split into sub-
words in the source and target data (the split
word ratio difference) is the strongest predictor
for model performance on target data.

1 Introduction

Transformer-based pre-trained language models
(PLMs) enable successful cross-lingual transfer
for many natural language processing tasks. How-
ever, the impact of tokenization and its interplay
with transferability across languages, especially
under-resourced variants with no orthography, has
obtained limited focus so far. Tokenization splits
words into subwords, but not necessarily in a mean-
ingful way. An example with a current PLM is
illustrated for Alsatian German in Figure 1a. This
problem is especially pronounced for vernacular
languages and dialects, where words tend to be
split at a much higher rate than the standard. This
has been observed on, e.g., informally written Al-
gerian Arabic (Touileb and Barnes, 2021). As poor

a. M’r redd alemànnischi Mundàrte .
M, ’, r red, ##d al, ##em, ##à, Mund, .

##nn, ##isch, ##i ##à, ##rte

b. Wir sprechen alemannische Mundarten .
Wir sprechen al, #emann, Mund, ##arten .

##ische

c. W(r sprechen alemaInische Mundarten .
W, (, r sprechen al, ##ema, ##In, Mund, ##arten .

##ische

Figure 1: “We speak Alemannic dialects”, tokenized by
GBERT. Compared to Standard German (b.), the quality
of the Alsatian German (a.) tokenization is poor, making
cross-lingual transfer hard. Noise injection (c.) often
improves transfer from standard to poorly tokenized
non-standardized varieties.

subword tokenization can lead to suboptimal lan-
guage representations and impoverished transfer, it
becomes important to understand if the effect holds
at a larger scale. We are particularly interested in
challenging setups in which, despite high language
similarity, comparatively low transfer performance
is obtained.

A recent study proposes an elegant and lean so-
lution to address this ‘tokenization gap,’ without
requiring expensive PLM re-training: to manip-
ulate tokenization of PLMs post-hoc (Aepli and
Sennrich, 2022), i.e., during finetuning by injecting
character-level noise (Figure 1c). Noise injection
has been shown to successfully aid cross-lingual
transfer and is an appealing solution, as it is cheap
and widely applicable. In this work, we first pro-
vide a reproduction study and then broaden it by
a systematic investigation of the extent to which
noise injection helps. We also show how it influ-
ences the subword tokenization of the source data
vis-à-vis the target data. We hypothesize that, while
not emulating dialect text, injecting noise into stan-
dard language data can raise the tokenization rate
to a similar level, which aids transfer.

The importance of token overlap between source
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and target is an on-going debate (to which we con-
tribute): Prior research has found that subword
token overlap between the finetuning and target
language improves transfer (Wu and Dredze, 2019;
Pires et al., 2019), although it might neither be the
most important factor (K et al., 2020; Muller et al.,
2022) nor a necessary condition for cross-lingual
transfer to work (Pires et al., 2019; Conneau et al.,
2020b).

To enable research in this direction, we con-
tribute a novel benchmark. We collected under-
resourced language variants covering seven part-
of-speech (POS) tagging transfer scenarios within
three language families. This collection enables
also future work to study cross-lingual and cross-
dialect transfer.

Our contributions are:

• We investigate the noise injection method by
Aepli and Sennrich (2022) with respect to
the ideal noise injection rate for different lan-
guages and PLMs.

• To the best of our knowledge, this is the broad-
est study that focuses specifically on trans-
fer to closely related, non-standardized lan-
guage varieties with languages from multiple
linguistic families. We convert several dialect
datasets into a shared tagset (UPOS) and share
the conversion scripts.

• We compare the effect of noise injection on
the subword tokenization differences between
the source and target data, and the effect of
these differences on the model performance,
and find that the proportions of (un)split words
are a better predictor than the ratio of seen
subword tokens.

2 Method

We make our code, including scripts for repro-
ducing the benchmark, available at github.com/
mainlp/noisydialect.

2.1 Injecting Character-Level Noise
We follow the approach by Aepli and Sennrich
(2022) to add noise to the finetuning datasets.
Given a noise level 0 ≤ n ≤ 1 and a finetun-
ing dataset F with a grapheme inventory I,1 we
inject noise into each sentence S ∈ F as follows:

1Unlike Aepli and Sennrich (2022), we also include non-
alphabetic characters in I, as some of the orthographic differ-
ences are punctuation-based (see Figure 1).

we randomly select n|S| words,2 and for each of
these words, we randomly perform one of the three
following actions:

• delete one randomly chosen character

• replace one randomly chosen character with a
random character ∈ I

• insert one random character ∈ I into a ran-
dom slot within the word.

Aepli and Sennrich (2022) investigate transfer-
ring POS tagging models to five target languages
(Swiss German, Faroese, Old French, Livvi and
Karelian) and compare set-ups with no noise (n =
0) to adding noise with n = 0.15. They find that,
when the source and target languages are closely
related, the configuration with noise consistently
performs better. We additionally experiment with
adding noise at higher levels: to 35 %, 55 %, 75 %
and 95 % of each sentence’s tokens.

2.2 Comparing Datasets via Subword
Tokenization

We consider several simple measures of comparing
the subword tokenization of the source data with
that of the target data:

• Split word ratio difference: The (absolute) dif-
ference between the ratios of words that were
split into subword tokens in the source and
target data. (We additionally considered the
average number of subword tokens per word,
but found that that measure yielded very simi-
lar results to the split word ratio difference.)

• Seen subwords and seen words: The ratios of
the target subword tokens and target words,3

respectively, that are also in the source data.
(We also included type-based versions of these
measures, but found that they behaved simi-
larly to their token-based counterparts.)

• Type–token ratio (TTR) ratio: The subword-
level type-token ratio of the target data divided
by that of the source data. This is similar to
the TTR-based measures used by Lin et al.
(2019) and Muller et al. (2022).

2Excluding words that only contain numerals or punctua-
tion marks.

3We consider words here as the annotated units provided
by the datasets.
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3 Experimental Set-up

3.1 Data
We analyze transfer between eight source and 18
target datasets in the following language varieties
(see Appendix A for details):

• Modern Standard Arabic (MSA) (Hajič et al.,
2009) → Egyptian, Levantine, Gulf and
Maghrebi Arabic (Darwish et al., 2018)

• German (Borges Völker et al., 2019) → Swiss
German (Hollenstein and Aepli, 2014), Alsa-
tian German (Bernhard et al., 2019)

• German (Borges Völker et al., 2019), Dutch
(Bouma and van Noord, 2017) → Low Saxon
(Siewert et al., 2021)

• Norwegian (Nynorsk) (Velldal et al., 2017),
Norwegian (Bokmål) (Øvrelid and Hohle,
2016) → West, East and North Norwegian
(Øvrelid et al., 2018)

• French (Guillaume et al., 2019) → Picard
(Martin et al., 2018)

• French (Guillaume et al., 2019), Spanish
(Taulé et al., 2008) → Occitan (Bras et al.,
2018)

• Finnish (Pyysalo et al., 2015) → six Finnish
dialect groups (University of Turku and Insti-
tute for the Languages of Finland)

This list includes varieties from three language
families (Afro-Asiatic, Finno-Ugric and Indo-
European), written in two types of writing systems
(alphabetical and abjad). It also covers a range
of different degrees of linguistic relatedness (e.g.,
the Norwegian dialects are much more closely re-
lated to each other and to the standardized vari-
eties than can be said of the Arabic group) and text
genres (including tweets, Wikipedia articles, and
professionally transcribed interviews). While or-
thographies for some of our target languages (e.g.,
Low Saxon) have been proposed, none of these
languages have a sole orthography that is used by
virtually all speakers.

Many of these corpora are from the Universal
Dependencies (UD) project (Zeman et al., 2022), or
annotated according to UD’s POS tagging scheme
(UPOS). For some language varieties, we first make
the data compatible with UPOS: We convert the
tagsets used for the Arabic dialects and the Finnish

dialects to UPOS (Appendix B). To process the
Occitan data, we separate contractions (ADP+DET),
similarly to the way these cases are handled in other
Romance UD treebanks.4 For the Norwegian di-
alects, we merge parallel data from the original cor-
pus (dialect vs. orthographic transcriptions) with
the orthography-only treebank to get a treebank
with dialect transcriptions.5

3.2 PLMs
We use two multilingual PLMs: mBERT (Devlin
et al., 2019) and XLM-R (Conneau et al., 2020a).
Additionally, we include one monolingual model
per source language. Both multilingual PLMs in-
cluded all of our source languages in their pretrain-
ing data, and mBERT also contains two of our
target languages (Low Saxon and Occitan). Details
on the PLMs we used can be found in Appendix C.

We use base-size, cased versions of all mod-
els, and finetune the PLMs on the default training
data subsets. We perform a simple grid search to
choose one set of hyperparameters to be used for
all experiments. This grid search was performed
on the German (and Swiss German), Arabic (and
Egyptian), and Finnish (and Savonian Finnish) data,
using XLM-R and the respective monolingual mod-
els. Table 5 in Appendix C contains details on the
hyperparameters.

4 Results and Discussion

All results we report are averaged over five different
random initializations. Table 1 shows the accuracy
scores of the inferred POS tags. We observe similar
trends for the macro-averaged F1 score as well.

Zero-shot transfer. Performance on the unseen
test languages/dialects is much lower than on the
test partitions of the corpora on which the models
were finetuned. This is expected, as there are not
only orthographic and stylistic differences between
the corpora, but also some grammatical differences
between the language varieties.

The extent to which performance drops is
language-dependent: For instance, the best results
for the Finnish dialects are 12–17 percentage points
below the best results for the Finnish standard lan-
guage (XLM-R), whereas the best results for the

4E.g., universaldependencies.org/fr/
tokenization.html

5The resulting scripts are available at
github.com/mainlp/{convert-qcri-4dialects,
convert-la-murre, convert-restaure-occitan,
UD_Norwegian-NynorskLIA_dialect}.
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Source Target Monolingual PLM mBERT XLM-R

Noise: 0 15 35 55 75 95 0 15 35 55 75 95 0 15 35 55 75 95

German Alsatian G. 44 71 76 77 78 77 58 76 78 78 77 76 46 71 76 78 77 77

German Swiss German 55 78 80 80 79 78 62 78 78 79 78 77 56 77 79 79 79 78

German German 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98

German Low Saxon* 18 35 48 51 58 60 36 61 66 68 67 67 26 44 58 71 71 71

Dutch Low Saxon* 52 62 63 64 64 63 73 75 75 75 73 72 63 71 73 73 73 72

Dutch Dutch 98 97 97 95 93 83 97 97 97 96 95 92 98 98 97 96 96 94

Bokmål East N. 35 60 67 65 62 60 57 60 58 57 56 54 66 63 63 62 61 59

Bokmål North N. 36 63 69 67 65 62 61 61 61 60 60 58 70 66 66 65 64 62

Bokmål West N. 33 59 66 63 61 59 58 57 56 55 54 53 67 62 61 60 59 57

Nynorsk East N. 64 69 67 65 62 59 59 59 56 56 55 53 67 66 64 62 60 57

Nynorsk North N. 67 72 69 68 65 63 62 61 59 60 59 57 71 68 67 66 64 62

Nynorsk West N. 65 69 66 64 63 60 58 58 56 56 56 54 68 64 63 61 60 58

Bokmål Bokmål 99 98 98 97 96 91 98 98 97 97 96 92 99 98 98 98 97 93

Nynorsk Nynorsk 98 98 97 97 95 90 97 97 96 96 94 90 98 97 97 96 95 92

French Picard 48 52 52 52 51 48 68 73 74 73 73 72 67 74 76 76 75 75

French French 89 88 86 83 78 66 98 98 97 97 96 93 98 98 98 98 97 94

French Occitan* 41 44 45 45 45 44 86 87 86 85 85 83 77 81 83 83 82 82

Spanish Occitan* 62 69 70 69 69 69 83 84 83 82 81 79 72 79 78 79 78 77

Spanish Spanish 99 99 97 97 96 89 99 99 98 96 96 91 99 99 98 98 97 93

MSA Egyptian A. 67 70 66 62 57 50 59 61 60 58 54 47 64 66 65 62 57 50

MSA Gulf Arabic 66 69 65 61 56 49 65 65 62 60 55 49 66 66 65 61 57 49

MSA Levantine A. 64 65 62 58 53 47 56 57 55 53 50 45 59 61 60 57 53 46

MSA Maghrebi A. 51 54 53 50 46 42 50 51 49 48 46 42 51 53 52 50 47 42

MSA MSA 94 93 89 83 78 67 96 95 91 85 79 69 96 95 91 86 80 70

Finnish Ostroboth. F. 81 80 79 77 78 75 78 78 76 74 73 70 81 85 86 86 86 84

Finnish SE Finnish 81 79 77 75 76 73 75 75 73 70 69 66 81 84 84 84 84 82

Finnish SW Finnish 75 73 72 71 71 70 68 68 67 64 63 61 76 80 80 81 81 79

Finnish SW trans. area 79 78 77 76 76 74 72 72 70 68 67 65 79 84 84 85 84 83

Finnish Savonian F. 82 80 78 76 76 73 77 79 76 73 72 69 81 84 85 85 85 83

Finnish Tavastian F. 81 80 79 78 78 75 76 77 76 73 72 69 81 85 86 86 86 84

Finnish Finnish 98 98 98 97 96 94 96 96 96 95 94 93 98 97 97 97 96 94

Table 1: Accuracy scores (in %) by language combination, language model and noise level. Scores are averaged
over five initializations. Target languages marked with an asterisk* appear in the training data for mBERT. Rows in
italics contain scores on the test splits of the datasets used for finetuning. The best accuracy for each language pair
and PLM combination is underlined.
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Norwegian dialects are 26–29 percentage points be-
low the standard language accuracy (Nynorsk with
NorBERT). When we have multiple target dialects
for one source language, the target scores tend to
be similar to one another across noise levels and
PLM choices.

PLM choice matters for low-resource languages.
While the models are for the most part indistin-
guishable in their performance on the source lan-
guages, the performance on the target languages
can vary substantially. For instance, XLM-R out-
performs mBERT and FinBERT on the Finnish
dialect data. Similarly, both multilingual models
perform much better than the monolingual mod-
els on the Low Saxon, Picard and Occitan data,
and the reverse is true for the Arabic dialects. Nei-
ther the performance on the source languages nor
the transfer performance with n = 0 reveal which
model performs best on the target data when the
ideal amount of noise is added.

Effect of noise level on accuracy. The optimal
noise level depends on the language pair and on
the PLM – there is no universal best noise level
choice. In many (but not all) cases, the accuracy
rises drastically when increasing the noise level
from 0 % to 15 %, and the (positive or negative) dif-
ferences between subsequent noise levels are less
pronounced. The noise level of 15 % used by Aepli
and Sennrich (2022) is thus a reasonable choice,
although not always optimal. In some cases, the
accuracy might be much greater at a different noise
level (e.g., in the German→Low German XLM-R
set-up the maximum gain compared to using no
noise is +42 percentage points; +27 compared to
15 % noise). In other cases, adding any noise at all
decreases the performance – most drastically in the
case of Bokmål→West Norwegian with XLM-R,
where the accuracy drops by 5 percentage points
when using 15 % noise instead of no noise at all.
However, the general trend is that accuracy as a
function of noise has a single global maximum and
no local maxima – there is a clear optimum level
of noise in almost all cases.6

Performance on the standard language test splits
from the corpora used for finetuning always de-

6The minor exceptions to this are FinBERT’s performance
on the Ostrobothnian and South-East Finnish data and XLM-
R’s predictions for the Spanish→Occitan transfer (see Table 1).
In all of these cases, a second increase occurs after the maxi-
mum accuracy has already been reached and stays below this
maximum.

Figure 2: Transfer from MSA to Egyptian Arabic
with AraBERT (left) and mBERT (right).
Top: Accuracy scores per language model and noise
level (five initializations per set-up; the numbers in the
scatterplot indicate the mean accuracy per set-up).
Bottom: Split word ratios per language model and noise
level for the source data (dots) and the target data (dark
blue lines) (five initializations per set-up). The colours
indicate the (absolute) difference between the split word
ratio of the training and target data (darker = smaller
difference).

creases when noise is introduced. Whether this is
detrimental depends on the language: the accuracy
on the German test set only drops very slightly (less
than one percentage point) whereas the quality of
the tag predictions for MSA deteriorates consider-
ably, independently of the model used.

Effect of noise level on split word ratio differ-
ence. The words in the target data tend to be split
into subword tokens more often than is the case for
the source data.7 Increasing the noise level during
finetuning results in the source data being split into
more subword tokens (see the rising sequences of
dots in the lower part of Figure 2). In all set-ups,
the split word ratio of the source data is higher than
that of the target data when n ≥ 0.75.

7The exceptions to this are the tokenization of the Finnish
dialects by the multilingual models and the tokenization of
the Arabic dialects with AraBERT. The latter is likely due to
AraBERT including a pre-tokenization step that splits words
into stems and affixes (Antoun et al., 2020), but MSA and non-
standard varieties of Arabic having morphological differences.
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Src Target Monoling. mBERT XLM-R

ρ p ρ p ρ p

Ger. Als. G. −0.84 0.00 −0.58 0.00 −0.68 0.00

Ger. Swiss G. −0.82 0.00 −0.74 0.00 −0.31 0.10

Ger. German −0.69 0.00 −0.74 0.00 −0.70 0.00

Ger. L. Saxon −0.75 0.00 0.37 0.05 0.44 0.02

Dutch L. Saxon −0.84 0.00 −0.71 0.00 −0.50 0.01

Dutch Dutch −0.89 0.00 −0.88 0.00 −0.91 0.00

Bokm. East N. −0.72 0.00 −0.75 0.00 −0.62 0.00

Bokm. North N. −0.69 0.00 −0.70 0.00 −0.68 0.00

Bokm. West N. −0.75 0.00 −0.85 0.00 −0.72 0.00

Nynor. East N. −0.70 0.00 −0.88 0.00 −0.94 0.00

Nynor. North N. −0.68 0.00 −0.79 0.00 −0.94 0.00

Nynor. West N. −0.64 0.00 −0.85 0.00 −0.95 0.00

Bokm. Bokm. −0.95 0.00 −0.96 0.00 −0.96 0.00

Nynor. Nynor. −0.97 0.00 −0.98 0.00 −0.98 0.00

French Picard −0.45 0.01 −0.82 0.00 −0.86 0.00

French French −0.99 0.00 −0.90 0.00 −0.97 0.00

French Occitan −0.76 0.00 −0.45 0.01 −0.40 0.03

Spa. Occitan −0.64 0.00 −0.38 0.04 −0.71 0.00

Spa. Spanish −0.95 0.00 −0.95 0.00 −0.97 0.00

MSA Egy. A. −0.88 0.00 −0.91 0.00 −0.90 0.00

MSA Gulf A. −0.89 0.00 −0.95 0.00 −0.89 0.00

MSA Lev. A. −0.91 0.00 −0.87 0.00 −0.83 0.00

MSA Mag. A. −0.72 0.00 −0.70 0.00 −0.82 0.00

MSA MSA −0.96 0.00 −0.96 0.00 −0.96 0.00

Fin. Ost. F. −0.46 0.01 −0.90 0.00 0.30 0.11

Fin. SE F. −0.71 0.00 −0.93 0.00 0.21 0.27

Fin. SW F. −0.09 0.63 −0.94 0.00 0.29 0.12

Fin. SW tr. −0.40 0.03 −0.94 0.00 0.27 0.15

Fin. Sav. F. −0.68 0.00 −0.89 0.00 0.24 0.20

Fin. Tav. F. −0.71 0.00 −0.89 0.00 0.34 0.07

Fin. Finnish −0.95 0.00 −0.96 0.00 −0.96 0.00

Table 2: Correlation between split word ratio differ-
ence and accuracy. Spearman’s ρ with p-values for all
noise levels and random initializations per language pair
and PLM. Negative correlations are highlighted in blue,
positive ones in yellow. P-values of 0.05 and above have
a grey background.

Effect of split word ratio difference on accuracy.
Out of the subword tokenization measures intro-
duced in Section 2.2, the split word ratio difference
correlates most consistently with the performance:
the smaller the difference is (i.e., the more similar
the ratios are), the higher the accuracy tends to be
(Table 2). Figure 2 shows an example; note that the
correlation is stronger for the model on the right-
hand side (mBERT) than for the model on the left
(AraBERT).

The correlation is strong enough that, if one re-
ally wants to avoid including the noise level in a
hyperparameter search, only carrying out the cheap
calculations needed for the split word ratio differ-
ence and choosing the noise level with the lowest

difference can be a proxy. Nevertheless, the cor-
relation is not perfect and this method does not
necessarily pick the best noise level.

4.1 Additional Findings

The role of seen (sub)words. Adding noise to
the source data initially increases the word and
subword token overlap with the target data for all
cross-lingual/cross-dialectal set-ups, regardless of
model choice. As the noise level increases, this
trend ultimately reverses, although the source and
target data still have a greater (sub)word overlap at
n = 0.95 than at n = 0.

The seen word ratio and seen subword ratio are
much poorer predictors for the model performance
than the split word ratio difference is. They are
much less consistent and correlate positively with
accuracy for many set-ups but negatively for many
others, and the correlations tend to have larger p-
values (see Tables 6 and 7 in Appendix D for de-
tails). While prior works have come to conflicting
conclusions regarding the importance of subword
token overlap for transfer between more distantly
related (or unrelated) languages (Wu and Dredze,
2019; Pires et al., 2019; K et al., 2020; Conneau
et al., 2020b; Muller et al., 2022), we find that it is
a very poor predictor for the transfer between very
closely related languages when injecting character-
level noise. One possibility for this is that the
seen target subwords contained in the noisy source
data might not necessarily belong to the same POS
classes.

The role of TTR ratio. For most set-ups, the
TTR ratio initially decreases before ultimately in-
creasing, with no local minima. In all of our experi-
ments, the TTR ratio either always stays above one
(the target data’s TTR remains higher than that of
the source data) or always below one (the source
data’s TTR stays higher than that of the target data;
this is only the case for the cross-dialected Finnish
set-ups) – adding noise does not result in bringing
the TTRs to a similar level. The TTR ratio corre-
lates positively with accuracy for some set-ups and
negatively with others (see Table 8 in Appendix D).
This overall very weak predictive capacity of the
TTR ratio is similar to what Muller et al. (2022)
find for named entity recognition and in line with
Lin et al.’s (2019) results for POS tagging – their
TTR-based measure is only a useful performance
predictor when used in conjunction with other mea-
sures.

45



5 Conclusion

We have confirmed the usefulness of the noise in-
jection method by Aepli and Sennrich (2022) for
model transfer between closely related languages.
To that end, we have converted additional dialec-
tal datasets to the UPOS standard and make the
conversion code available to other researchers. Fur-
thermore, we have shown that the ideal amount of
noise that should be injected at finetuning time de-
pends on the languages and PLMs used. We have
also investigated the role that subword tokenization
plays in this and found that the split word ratio
difference – the (absolute) difference between the
proportion of words split into subword tokens in
the source and target data – is a reliable, albeit im-
perfect, predictor of the performance of the transfer
model.

Limitations

We include data from three linguistic families, as
we were not able to find additional accessible high-
quality dialect datasets manually annotated with
POS tags for more linguistic families. This general
lack of annotated resources is also why we were
only able to focus on one NLP task. The tagsets
for the Arabic and Finnish varieties were converted
to UPOS by a linguist who is not a specialist of
Arabic or Finnish.

We only consider one way of modifying the to-
kenization. In future research, it would be inter-
esting to also consider BPE dropout (Provilkov
et al., 2020), which Aepli and Sennrich (2022)
show to have an effect on transfer between related
languages that is somewhat similar to that of noise
injection. It would also be of interest to investigate
token-free models like ByT5 (Xue et al., 2022) or
CharacterBERT (El Boukkouri et al., 2020), the lat-
ter of which has proven useful for processing data
in a non-standard variety of Arabic (Riabi et al.,
2021).
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Jan Hajič, Otakar Smrž, Petr Zemánek, Petr Pajas,
Jan Šnaidauf, Emanuel Beška, Jakub Kracmar, and
Kamila Hassanová. 2009. Prague Arabic depen-
dency treebank 1.0. LINDAT/CLARIAH-CZ digital
library at the Institute of Formal and Applied Linguis-
tics (ÚFAL), Faculty of Mathematics and Physics,
Charles University.

Katri Haverinen, Jenna Nyblom, Timo Viljanen,
Veronika Laippala, Samuel Kohonen, Anna Missilä,
Stina Ojala, Tapio Salakoski, and Filip Ginter. 2014.
Building the essential resources for Finnish: the
Turku Dependency Treebank. Language Resources
and Evaluation, 48:493–531. Open access.

Nora Hollenstein and Noëmi Aepli. 2014. Compilation
of a Swiss German dialect corpus and its application
to PoS tagging. In Proceedings of the First Workshop
on Applying NLP Tools to Similar Languages, Vari-
eties and Dialects, pages 85–94, Dublin, Ireland. As-
sociation for Computational Linguistics and Dublin
City University.

Ernst Håkon Jahr. 1996. Dialektane i indre Troms:
Bardu og Målselv. In Ernst Håkon Jahr and Olav
Skare, editors, Nordnorske dialektar, pages 180–184.
Novus forlag, Oslo.

Karthikeyan K, Zihan Wang, Stephen Mayhew, and Dan
Roth. 2020. Cross-lingual ability of multilingual
BERT: an empirical study. In 8th International Con-
ference on Learning Representations (ICLR 2020).

Andrey Kutuzov, Jeremy Barnes, Erik Velldal, Lilja
Øvrelid, and Stephan Oepen. 2021. Large-scale con-
textualised language modelling for Norwegian. In
Proceedings of the 23rd Nordic Conference on Com-
putational Linguistics (NoDaLiDa), pages 30–40,
Reykjavik, Iceland (Online). Linköping University
Electronic Press, Sweden.

Yu-Hsiang Lin, Chian-Yu Chen, Jean Lee, Zirui Li,
Yuyan Zhang, Mengzhou Xia, Shruti Rijhwani, Junx-
ian He, Zhisong Zhang, Xuezhe Ma, Antonios Anas-
tasopoulos, Patrick Littell, and Graham Neubig. 2019.
Choosing transfer languages for cross-lingual learn-
ing. In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics, pages
3125–3135, Florence, Italy. Association for Compu-
tational Linguistics.

47

https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.536
https://doi.org/10.18653/v1/2020.acl-main.536
https://doi.org/10.18653/v1/2020.acl-main.536
http://www.lrec-conf.org/proceedings/lrec2014/pdf/335_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2014/pdf/335_Paper.pdf
https://aclanthology.org/L18-1015
https://aclanthology.org/L18-1015
https://arxiv.org/abs/1912.09582
https://arxiv.org/abs/1912.09582
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2020.coling-main.609
https://doi.org/10.18653/v1/2020.coling-main.609
https://doi.org/10.18653/v1/2020.coling-main.609
https://doi.org/10.5281/zenodo.7643704
http://www.lrec-conf.org/proceedings/lrec2014/pdf/860_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2014/pdf/860_Paper.pdf
https://hal.inria.fr/hal-02267418
https://hal.inria.fr/hal-02267418
https://hal.inria.fr/hal-02267418
http://hdl.handle.net/11858/00-097C-0000-0001-4872-3
http://hdl.handle.net/11858/00-097C-0000-0001-4872-3
https://doi.org/10.1007/s10579-013-9244-1
https://doi.org/10.1007/s10579-013-9244-1
https://doi.org/10.3115/v1/W14-5310
https://doi.org/10.3115/v1/W14-5310
https://doi.org/10.3115/v1/W14-5310
https://openreview.net/forum?id=HJeT3yrtDr
https://openreview.net/forum?id=HJeT3yrtDr
https://aclanthology.org/2021.nodalida-main.4
https://aclanthology.org/2021.nodalida-main.4
https://doi.org/10.18653/v1/P19-1301
https://doi.org/10.18653/v1/P19-1301


Fanny Martin, Christophe Rey, and Philippe Reynés.
2018. Annotated corpus for Picard. Version 4.0.

Louis Martin, Benjamin Muller, Pedro Javier Or-
tiz Suárez, Yoann Dupont, Laurent Romary, Éric
de la Clergerie, Djamé Seddah, and Benoît Sagot.
2020. CamemBERT: a tasty French language model.
In Proceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics, pages 7203–
7219, Online. Association for Computational Lin-
guistics.

Benjamin Muller, Deepanshu Gupta, Siddharth Patward-
han, Jean-Philippe Fauconnier, David Vandyke, and
Sachin Agarwal. 2022. Languages you know influ-
ence those you learn: Impact of language characteris-
tics on multi-lingual text-to-text transfer. Computing
Research Repository, arXiv:2212.01757.

Lilja Øvrelid and Petter Hohle. 2016. Universal Depen-
dencies for Norwegian. In Proceedings of the Tenth
International Conference on Language Resources
and Evaluation (LREC’16), pages 1579–1585, Por-
torož, Slovenia. European Language Resources As-
sociation (ELRA).

Lilja Øvrelid, Andre Kåsen, Kristin Hagen, Anders
Nøklestad, Per Erik Solberg, and Janne Bondi Jo-
hannessen. 2018. The LIA treebank of spoken Nor-
wegian dialects. In Proceedings of the Eleventh In-
ternational Conference on Language Resources and
Evaluation (LREC 2018), Miyazaki, Japan. European
Language Resources Association (ELRA).

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. PyTorch:
An imperative style, high-performance deep learning
library. In Advances in Neural Information Process-
ing Systems 32 (NeurIPS 2019). Curran Associates,
Inc.

Telmo Pires, Eva Schlinger, and Dan Garrette. 2019.
How multilingual is multilingual BERT? In Proceed-
ings of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 4996–5001, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Ivan Provilkov, Dmitrii Emelianenko, and Elena Voita.
2020. BPE-dropout: Simple and effective subword
regularization. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 1882–1892, Online. Association for
Computational Linguistics.

Sampo Pyysalo, Jenna Kanerva, Anna Missilä, Veronika
Laippala, and Filip Ginter. 2015. Universal Depen-
dencies for Finnish. In Proceedings of NoDaLiDa
2015, pages 163–172. NEALT.

Arij Riabi, Benoît Sagot, and Djamé Seddah. 2021.
Can character-based language models improve down-
stream task performances in low-resource and noisy
language scenarios? In Proceedings of the Seventh
Workshop on Noisy User-generated Text (W-NUT
2021), pages 423–436, Online. Association for Com-
putational Linguistics.

Karin C. Ryding. 2005. A Reference Grammar for Mod-
ern Standard Arabic. Cambridge University Press,
Cambridge, UK.

Manuela Sanguinetti, Cristina Bosco, Lauren Cas-
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lihan Cesur, Savas Cetin, Özlem Çetinoğlu, Fabri-
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Jason Phelan, Jussi Piitulainen, Rodrigo Pintucci,
Tommi A Pirinen, Emily Pitler, Magdalena Plamada,
Barbara Plank, Thierry Poibeau, Larisa Ponomareva,
Martin Popel, Lauma Pretkalnin, a, Sophie Prévost,
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los Ramisch, Fam Rashel, Mohammad Sadegh Ra-
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Sawanakunanon, Shefali Saxena, Kevin Scannell,
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Seeker, Mojgan Seraji, Syeda Shahzadi, Mo Shen,
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Muh Shohibussirri, Maria Shvedova, Janine Siewert,
Einar Freyr Sigurðsson, João Ricardo Silva, Aline Sil-
veira, Natalia Silveira, Maria Simi, Radu Simionescu,
Katalin Simkó, Mária Šimková, Haukur Barri Sí-
monarson, Kiril Simov, Dmitri Sitchinava, Maria

Skachedubova, Aaron Smith, Isabela Soares-Bastos,
Barbara Sonnenhauser, Shafi Sourov, Carolyn Spa-
dine, Rachele Sprugnoli, Vivian Stamou, Steinþór
Steingrímsson, Antonio Stella, Abishek Stephen,
Milan Straka, Emmett Strickland, Jana Strnadová,
Alane Suhr, Yogi Lesmana Sulestio, Umut Suluba-
cak, Shingo Suzuki, Daniel Swanson, Zsolt Szántó,
Chihiro Taguchi, Dima Taji, Yuta Takahashi, Fabio
Tamburini, Mary Ann C. Tan, Takaaki Tanaka, Dipta
Tanaya, Mirko Tavoni, Samson Tella, Isabelle Tel-
lier, Marinella Testori, Guillaume Thomas, Sara
Tonelli, Liisi Torga, Marsida Toska, Trond Trosterud,
Anna Trukhina, Reut Tsarfaty, Utku Türk, Francis
Tyers, Sveinbjörn Þórðarson, Vilhjálmur Þorsteins-
son, Sumire Uematsu, Roman Untilov, Zdeňka Ure-
šová, Larraitz Uria, Hans Uszkoreit, Andrius Utka,
Elena Vagnoni, Sowmya Vajjala, Rob van der Goot,
Martine Vanhove, Daniel van Niekerk, Gertjan van
Noord, Viktor Varga, Uliana Vedenina, Giulia Ven-
turi, Eric Villemonte de la Clergerie, Veronika
Vincze, Natalia Vlasova, Aya Wakasa, Joel C. Wal-
lenberg, Lars Wallin, Abigail Walsh, Jing Xian Wang,
Jonathan North Washington, Maximilan Wendt,
Paul Widmer, Shira Wigderson, Sri Hartati Wi-
jono, Vanessa Berwanger Wille, Seyi Williams, Mats
Wirén, Christian Wittern, Tsegay Woldemariam,
Tak-sum Wong, Alina Wróblewska, Mary Yako,
Kayo Yamashita, Naoki Yamazaki, Chunxiao Yan,
Koichi Yasuoka, Marat M. Yavrumyan, Arife Betül
Yenice, Olcay Taner Yıldız, Zhuoran Yu, Arlisa Yu-
liawati, Zdeněk Žabokrtský, Shorouq Zahra, Amir
Zeldes, He Zhou, Hanzhi Zhu, Anna Zhuravleva, and
Rayan Ziane. 2022. Universal Dependencies 2.11.
LINDAT/CLARIAH-CZ digital library at the Insti-
tute of Formal and Applied Linguistics (ÚFAL), Fac-
ulty of Mathematics and Physics, Charles University.

A Dataset Details

These are the datasets we use in this study:

• Modern Standard Arabic: UD Arabic PADT
(Hajič et al., 2009) – CC BY-NC-SA 3.0
– github.com/UniversalDependencies/
UD_Arabic-PADT

• Egyptian, Levantine, Gulf and Maghrebi Ara-
bic: QCRI Dialectal Arabic Resources (Dar-
wish et al., 2018) – Apache License 2.0 –
alt.qcri.org/resources/da_resources

• German: UD German HDT (Borges Völker
et al., 2019; Foth et al., 2014) – CC BY-SA 4.0
– github.com/UniversalDependencies/
UD_German-HDT

• Swiss German: NOAH v 3.0 (UPOS-
tagged subset) (Hollenstein and Aepli, 2014;
Aepli and Sennrich, 2022) – CC BY 4.0 –
github.com/noe-eva/NOAH-Corpus
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• Alsatian German: Annotated Corpus for the
Alsatian Dialects (Bernhard et al., 2019, 2018)
– CC BY-SA 4.0 – zenodo.org/record/
2536041. Like Swiss German, Alsatian Ger-
man is a variety of Alemannic German. Note
that while both NOAH and the Alsatian cor-
pus contain parts of the Alemannic Wikipedia,
the corpora do not overlap.

• Dutch: UD Dutch Alpino (Bouma and van
Noord, 2017; van der Beek et al., 2002) –
CC BY-SA 4.0 – github.com/Universal
Dependencies/UD_Dutch-Alpino

• Low Saxon: UD Low Saxon LSDC
(Siewert et al., 2021) – CC BY-SA 4.0 –
github.com/UniversalDependencies/
UD_Low_Saxon-LSDC

• Norwegian (Nynorsk): UD Norwegian
Nynorsk (Velldal et al., 2017; Sol-
berg et al., 2014) – CC BY-SA 4.0 –
github.com/UniversalDependencies/
UD_Norwegian-Nynorsk

• Norwegian (Bokmål): UD Norwegian
Bokmaal (Øvrelid and Hohle, 2016; Sol-
berg et al., 2014) – CC BY-SA 4.0 –
github.com/UniversalDependencies/
UD_Norwegian-Bokmaal

• West, East and North Norwegian: dialect
transcriptions: LIA Norwegian—Corpus
of historical dialect recordings (Øvre-
lid et al., 2018) – CC BY-NC-SA 4.0
– tekstlab.uio.no/LIA/norsk; tree-
bank: UD Norwegian NynorskLIA
(Øvrelid et al., 2018) – CC BY-SA 4.0
– github.com/UniversalDependencies/
UD_Norwegian-NynorskLIA. The Trønder
data (Lierne/Nordli) from the same dataset
are omitted because their sample size is much
smaller than those of the other dialect groups.
We group the remaining locations as follows:
East Norwegian (Ål, Bardu,8 Eidsberg, Gol),
West Norwegian (Austevoll, Farsund/Lista,
Giske), North Norwegian (Flakstad, Vardø).

• French: UD French GSD (Guillaume et al.,
2019) – CC BY-SA 4.0 – github.com/
UniversalDependencies/UD_French-GSD

8The history of the dialects spoken in and around Bardu is
complex, as it is a contact point of East and North Norwegian.
For more information, see Jahr (1996).

• Picard: Annotated Corpus for Picard (Martin
et al., 2018; Bernhard et al., 2018) – CC BY-
SA 4.0 – zenodo.org/record/1485988

• Spanish: UD Spanish AnCora
(Taulé et al., 2008) – CC BY 4.0 –
github.com/UniversalDependencies/
UD_Spanish-AnCora

• Occitan: Annotated Corpus for Occitan (Bras
et al., 2018; Bernhard et al., 2018) – CC BY-
SA 4.0 – zenodo.org/record/1182949

• Finnish: UD Finnish TDT (Pyysalo et al.,
2015; Haverinen et al., 2014) – CC BY-SA 4.0
– github.com/UniversalDependencies/
UD_Finnish-TDT

• Finnish dialects: The Finnish Dialect Corpus
of the Syntax Archive, Downloadable VRT
Version (University of Turku and Institute for
the Languages of Finland) – CC-BY-ND 4.0
– urn.fi/urn:nbn:fi:lb-2019092001. We
use the dialect regions that are indicated in the
corpus: South-Western, South-Eastern, Tavas-
tian, Ostrobothnian, and Savonian dialects, as
well as dialects from the transition region be-
tween the South-Western area and Tavastia.

B Tagset Conversion

B.1 QCRI Dialectal Arabic Resources
To convert the POS tags of the dialectal Arabic
dataset, we use the corpus documentation (Darwish
et al., 2018), the documentation of the Farasa tagset
(Darwish et al., 2014) (on which the corpus’s tagset
is based), the documentation for Arabic treebanks
in general and UD Arabic PADT in particular,9,
grammars of standard and non-standard Arabic
(Ryding, 2005; Brustad, 2000), and Sanguinetti
et al.’s (2022) tagging recommendations for user-
generated content. Table 3 shows how we con-
verted the tags to UPOS. The PART tag is converted
to UPOS PART unless the associated word form
is one of the subordinating conjunctions tagged as
such (SCONJ) in UD Arabic PADT. Tokens tagged
with CASE/NSUFF or PROG_PART are fused with
preceding ADJ/NOUN or VERB tokens, when pos-
sible. When they appear on their own, they are
tagged with X. Additional tags from the extended
Farasa tagset that are not used in the treebank are:
ABBREV, JUS, VSUFF.

9universaldependencies.org/ar/index.html;
universaldependencies.org/treebanks/ar_padt
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UPOS Farasa (extended)

ADJ (DET+)ADJ(+CASE/NSUFF)
ADP PREP

ADV ADV

AUX FUT_PART

CCONJ CONJ

DET DET

NOUN (DET+)NOUN(+CASE/NSUFF)
NUM NUM

PART PART,* NEG_PART

PROPN MENTION

PRON PRON

PUNCT PUNC

SCONJ PART*
SYM EMOT, URL

VERB (PROG_PART+)V

X FOREIGN, HASH, CASE*
NSUFF,* PROG_PART*

Table 3: POS tag conversion for the non-standard
Arabic varieties. The treatment of tags marked with an
asterisk* is explained in the text.

B.2 Finnish Dialect Corpus of the Syntax
Archive

The conversion of the Finnish tags is based on doc-
umentation for the Finnish Dialect Corpus,10 on the
UPOS documentation,11 and on the documentation
of the UD Finnish TDT corpus.12 Table 4 shows
the correspondences between the two tagsets. UD
Finnish TDT does not use DET or PART. Two tags
needed to be further disambiguated: v (used for
auxiliaries and full verbs) and q (used for interrog-
ative words). For these entries, we use the lemma
to decide which POS a given word belongs to.

C Language Models

We use the following PLMs:

• mBERT (Devlin et al., 2019)13 –
Apache 2.0 – huggingface.co/bert-
base-multilingual-cased. mBERT’s
pretraining data include all of the source

10kielipankki.fi/aineistot/la-murre/la-murre-
annotaatiot; blogs.helsinki.fi/fennistic-info/
files/2020/12/2.-Sananmuodot-morfologia-morfo
syntaksi.pdf

11universaldependencies.org/u/pos/all.html
12universaldependencies.org/treebanks/fi_tdt
13The article details the architecture. Information on the

multilingual version can be found at github.com/google-
research/bert/blob/master/multilingual.md

UPOS Finnish Dialect Corpus

ADJ a, a:pron, a:pron:dem, a:pron:int,
a:pron:rel, num:ord, num:ord_pron, q*

ADP p:post, p:pre
ADV adv, adv:pron, adv:pron:dem,

adv:pron:int, adv:pron:rel, adv:q, p:adv
AUX v*, neg
CCONJ cnj:coord
DET –
INTJ intj
NOUN n
NUM num:card, num:murto
PART –
PROPN n:prop, n:prop:pname
PRON pron, pron:dem, pron:int, pron:pers,

pron:pers12, pron:ref, pron:rel, q*
PUNCT punct
SCONJ cnj:rel, cnj:sub
SYM –
VERB v*
X muu

Table 4: POS tag conversion for the Finnish Dialect
Corpus. Tags marked with an asterisk* are disam-
biguated with the help of lexical information.

languages from our study. It also includes
Low Saxon and Occitan.

• XLM-R (Conneau et al., 2020a) – MIT licence
– huggingface.co/xlm-roberta-base.
XLM-R’s pretraining data also include all of
the source languages from our study. The
documentation does not specify whether the
Norwegian pretraining data are written in
Bokmål, Nynorsk, or both. XLM-R was not
trained on any of our target languages.

• Arabic: AraBERT v. 2 (Antoun et al.,
2020) – custom licence14 – huggingface.co/
aubmindlab/bert-base-arabertv2

• German: GBERT (Chan et al., 2020) –
MIT licence – huggingface.co/deepset/
gbert-base

• Dutch: BERTje (de Vries et al., 2019)
– Apache 2.0 – github.com/wietsedv/
bertje

14github.com/aub-mind/arabert/blob/master/
arabert/LICENSE
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• Norwegian (both Bokmål and Nynorsk): Nor-
BERT v. 2 (Kutuzov et al., 2021) – CC0 1.0 –
huggingface.co/ltgoslo/norbert2.

• French: CamemBERT (Martin et al., 2020) –
MIT licence – camembert-model.fr

• Spanish: BETO (Cañete et al., 2020) –
CC BY 4.0 – huggingface.co/dccuchile/
bert-base-spanish-wwm-cased

• Finnish: FinBERT v. 1.0 (Virtanen et al.,
2019) – CC BY 4.0 – github.com/
TurkuNLP/FinBERT

We also use the Transformers (Wolf et al., 2020)
and PyTorch Lightning (Falcon and The PyTorch
Lightning team, 2022; Paszke et al., 2019) libraries
for Python. We use the following hyperparameters
for finetuning the models:

Parameter Grid search Used

Batch size 16, 32 32
Learning rate 3e-5, 2e-5 2e-5
Epochs 1, 2, 3 2
Classifier dropout (0.1) 0.1

Table 5: Hyperparameters used during the grid
search and for the final experiments.

D Additional Correlations

Src Target Monoling. mBERT XLM-R

ρ p ρ p ρ p

Ger. Als. G. 0.34 0.03 0.62 0.00 0.69 0.00

Ger. Swiss G. 0.78 0.00 0.79 0.00 0.64 0.00

Ger. L. Saxon 0.40 0.01 0.73 0.00 0.86 0.00

Dutch L. Saxon 0.75 0.00 −0.25 0.19 0.68 0.00

Bokm. East N. 0.30 0.11 −0.64 0.00 −0.79 0.00

Bokm. North N. 0.29 0.11 −0.51 0.01 −0.72 0.00

Bokm. West N. 0.22 0.25 −0.76 0.00 −0.80 0.00

Nynor. East N. −0.36 0.05 −0.64 0.00 −0.82 0.00

Nynor. North N. −0.42 0.02 −0.56 0.00 −0.80 0.00

Nynor. West N. −0.62 0.00 −0.71 0.00 −0.81 0.00

French Picard 0.82 0.00 0.24 0.21 0.52 0.00

French Occitan 0.66 0.00 −0.79 0.00 0.48 0.01

Spa. Occitan 0.69 0.00 −0.87 0.00 0.15 0.44

MSA Egy. A. −0.36 0.05 0.27 0.14 0.57 0.00

MSA Gulf A. −0.56 0.00 −0.41 0.02 −0.02 0.94

MSA Lev. A. −0.58 0.00 −0.30 0.11 0.33 0.11

MSA Mag. A. −0.23 0.22 −0.26 0.17 0.27 0.20

Fin. Ost. F. 0.01 0.98 −0.79 0.00 0.44 0.01

Fin. SE F. −0.07 0.71 −0.73 0.00 0.40 0.03

Fin. SW F. −0.37 0.05 −0.84 0.00 0.35 0.06

Fin. SW tr. −0.12 0.52 −0.83 0.00 0.37 0.05

Fin. Sav. F. 0.01 0.95 −0.77 0.00 0.47 0.01

Fin. Tav. F. −0.06 0.75 −0.73 0.00 0.57 0.00

Table 6: Correlation between seen subword ratio and
accuracy. Spearman’s ρ with p-values for all noise
levels and random initializations per language pair and
PLM. Negative correlations are highlighted in blue, pos-
itive ones in yellow. P-values of 0.05 and above have a
grey background.
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Src Target Monoling. mBERT XLM-R

ρ p ρ p ρ p

Ger. Als. G. 0.89 0.00 0.77 0.00 0.85 0.00

Ger. Swiss G. 0.81 0.00 0.76 0.00 0.84 0.00

Ger. L. Saxon 0.86 0.00 0.72 0.00 0.88 0.00

Dutch L. Saxon 0.74 0.00 0.26 0.16 0.79 0.00

Bokm. East N. 0.30 0.11 −0.66 0.00 −0.70 0.00

Bokm. North N. 0.37 0.04 −0.65 0.00 −0.59 0.00

Bokm. West N. 0.23 0.21 −0.81 0.00 −0.68 0.00

Nynor. East N. −0.48 0.01 −0.76 0.00 −0.86 0.00

Nynor. North N. −0.52 0.00 −0.61 0.00 −0.77 0.00

Nynor. West N. −0.59 0.00 −0.62 0.00 −0.79 0.00

French Picard 0.51 0.00 0.62 0.00 0.79 0.00

French Occitan 0.82 0.00 −0.50 0.00 0.77 0.00

Spa. Occitan 0.51 0.00 −0.53 0.00 0.44 0.01

MSA Egy. A. 0.17 0.38 0.39 0.03 0.29 0.12

MSA Gulf A. 0.01 0.96 0.04 0.85 −0.27 0.19

MSA Lev. A. 0.07 0.72 0.12 0.54 −0.08 0.69

MSA Mag. A. 0.30 0.11 0.02 0.93 −0.03 0.90

Fin. Ost. F. 0.23 0.22 0.41 0.02 0.62 0.00

Fin. SE F. −0.11 0.55 0.01 0.94 0.76 0.00

Fin. SW F. −0.34 0.06 −0.15 0.42 0.69 0.00

Fin. SW tr. 0.36 0.05 0.49 0.01 0.44 0.01

Fin. Sav. F. 0.16 0.41 0.28 0.13 0.75 0.00

Fin. Tav. F. 0.24 0.20 0.50 0.01 0.61 0.00

Table 7: Correlation between seen word ratio and ac-
curacy. Spearman’s ρ with p-values for all noise levels
and random initializations per language pair and PLM.
Negative correlations are highlighted in blue, positive
ones in yellow. P-values of 0.05 and above have a grey
background.

Src Target Monoling. mBERT XLM-R

ρ p ρ p ρ p

Ger. Als. G. 0.87 0.00 0.37 0.05 0.53 0.00

Ger. Swiss G. 0.67 0.00 0.11 0.57 0.21 0.26

Ger. L. Saxon 0.90 0.00 0.62 0.00 0.69 0.00

Dutch L. Saxon 0.53 0.00 −0.50 0.00 0.15 0.44

Bokm. East N. 0.16 0.41 −0.80 0.00 −0.49 0.01

Bokm. North N. 0.15 0.44 −0.67 0.00 −0.45 0.01

Bokm. West N. 0.13 0.49 −0.73 0.00 −0.56 0.00

Nynor. East N. −0.83 0.00 −0.65 0.00 −0.10 0.62

Nynor. North N. −0.85 0.00 −0.47 0.01 −0.05 0.80

Nynor. West N. −0.92 0.00 −0.61 0.00 −0.06 0.74

French Picard −0.14 0.45 0.15 0.42 0.33 0.07

French Occitan 0.45 0.01 −0.83 0.00 0.39 0.03

Spa. Occitan 0.36 0.05 −0.95 0.00 −0.41 0.03

MSA Egy. A. −0.38 0.04 −0.77 0.00 −0.82 0.00

MSA Gulf A. −0.37 0.05 −0.95 0.00 −0.89 0.00

MSA Lev. A. −0.31 0.10 −0.91 0.00 −0.84 0.00

MSA Mag. A. −0.63 0.00 −0.87 0.00 −0.73 0.00

Fin. Ost. F. −0.87 0.00 −0.75 0.00 −0.03 0.87

Fin. SE F. −0.87 0.00 −0.76 0.00 −0.17 0.38

Fin. SW F. −0.81 0.00 −0.71 0.00 −0.08 0.69

Fin. SW tr. −0.81 0.00 −0.69 0.00 −0.10 0.60

Fin. Sav. F. −0.87 0.00 −0.77 0.00 −0.09 0.63

Fin. Tav. F. −0.87 0.00 −0.80 0.00 0.02 0.90

Table 8: Correlation between TTR ratio and accu-
racy. Spearman’s ρ with p-values for all noise levels
and random initializations per language pair and PLM.
Negative correlations are highlighted in blue, positive
ones in yellow. P-values of 0.05 and above have a grey
background. The TTR ratio stayed below 1 for all cross-
dialectal Finnish set-ups (regardless of PLM choice) and
above 1 for all others.

54



Tenth Workshop on NLP for Similar Languages, Varieties and Dialects (VarDial 2023), pages 55–66
May 5, 2023 ©2023 Association for Computational Linguistics

Temporal Domain Adaptation for Historical Irish

Oksana Dereza and Theodorus Fransen and John P. McCrae
University of Galway

Insight Centre for Data Analytics
firstname.lastname@insight-centre.org

Abstract

The digitisation of historical texts has provided
new horizons for NLP research, but such data
also presents a set of challenges, including
scarcity and inconsistency. The lack of edi-
torial standard during digitisation exacerbates
these difficulties.

This study explores the potential for temporal
domain adaptation in Early Modern Irish and
pre-reform Modern Irish data. We describe
two experiments carried out on the book sub-
corpus of the Historical Irish Corpus, which
includes Early Modern Irish and pre-reform
Modern Irish texts from 1581 to 1926. We also
propose a simple orthographic normalisation
method for historical Irish that reduces the type-
token ratio by 21.43% on average in our data.

The results demonstrate that the use of out-
of-domain data significantly improves a lan-
guage model’s performance. Providing a model
with additional input from another historical
stage of the language improves its quality by
12.49% on average on non-normalised texts and
by 27.02% on average on normalised (demu-
tated) texts. Most notably, using only out-of-
domain data for both pre-training and training
stages allowed for up to 86.81% of the base-
line model quality on non-normalised texts and
up to 95.68% on normalised texts without any
target domain data.

Additionally, we investigate the effect of tem-
poral distance between the training and test
data. The hypothesis that there is a positive
correlation between performance and temporal
proximity of training and test data has been val-
idated, which manifests best in normalised data.
Expanding this approach even further back, to
Middle and Old Irish, and testing it on other
languages is a further research direction.

1 Introduction

With the increasing digitisation of historical texts,
more data becomes available for analysis along-
side contemporary documents. However, such data

poses a set of challenges for any NLP task as it
tends to be both scarce and inconsistent. Apart
from natural artefacts of language evolution, such
as spelling variation and grammatical changes,
working with historical languages is complicated
by the lack of a linguistic / editorial standard when
this data is being digitised (Piotrowski, 2012; Jenset
and McGillivray, 2017; Bollmann, 2019). It is es-
pecially true for Early Irish, as Doyle et al. (2018,
2019) and Dereza et al. (2023) have pointed out.

In this work, we explore the possibility of tem-
poral domain adaptation1 on Early Modern Irish
and pre-reform Modern Irish data. Although these
are not the oldest stages of the Irish language, they
are less resourced and more versatile than Mod-
ern Irish, which is itself a minority language. We
conduct a set of experiments on the use of out-of-
domain data, both later and earlier than the target
time period, for pre-training embedding models to
improve the quality of a language model at the said
period. We also investigate the effect that tempo-
ral distance between embedding training data and
test data has in such a setting. Finally, we propose
a simple and efficient normalisation method for
historical Irish.

2 Related Work

The surge of interest in distributional semantics
has lately reached historical linguistics. A recently
emerged concept of diachronic, or dynamic (Bam-
ler and Mandt, 2017; Rudolph and Blei, 2018; Yao
et al., 2018; Hofmann et al., 2020), embeddings
transforms the task of language modelling into the
task of modelling language change, which most
papers in this field focus on (Kulkarni et al., 2015;
Frermann and Lapata, 2016; Hamilton et al., 2016;

1We use the term ‘temporal domain adaptation’ to describe
transfer learning between two different stages of the same
language. We believe that this is an instance of domain adap-
tation, where the main difference between source and target
domains is associated with the time when the texts were pro-
duced, hence ‘temporal’.
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Dubossarsky et al., 2017; Rosenfeld and Erk, 2018;
Tahmasebi, 2018; Boukhaled et al., 2019; Rod-
ina et al., 2019; Brandl and Lassner, 2019; Hu
et al., 2022). In 2018, three comprehensive sur-
veys of detecting and measuring semantic shifts
with word embeddings came out (Kutuzov et al.,
2018; Tahmasebi et al., 2018; Tang, 2018). In 2020,
one of the SemEval shared tasks was dedicated
to unsupervised lexical semantic change detection
(Schlechtweg et al., 2020). At least two PhD theses
on the topic, “Distributional word embeddings in
modelling diachronic semantic change” (Kutuzov,
2020) and “Models of diachronic semantic change
using word embeddings” (Montariol, 2021), have
been defended in the last few years.

Less attention has been paid to addressing the
challenges historical languages pose for training
a robust embedding model, such as high spelling
variation or substantial grammatical change over
time. A good example of such a work is a paper
by Montariol and Allauzen (2019), who discuss
the effectiveness of different algorithms for em-
bedding training in diachronic low-resource sce-
narios and propose improvements to initialisation
schemes and loss regularisation to deal with data
scarcity. Di Carlo et al. (2019) are suggesting to
use atemporal compass vectors as heuristics while
training diachronic word embeddings on scarce
data.

On the other hand, the use of closely related
languages or language varieties to improve word
embeddings and language models in a low-resource
setting has been a subject of active discussion. For
example, Currey et al. (2016) model a low-resource
scenario on Spanish data, using Italian and Por-
tuguese as donor languages for training a statis-
tical machine translation model. Abulimiti and
Schultz (2020) work in real low-resource condi-
tions, successfully using Turkish data to improve
a language model for Uyghur. Kuriyozov et al.
(2020) make another successful attempt at leverag-
ing better-resource Turkic languages to improve the
quality of the embeddings for related low-resource
languages. Ma et al. (2020) achieve a better per-
formance on the low-resource Tibetan language
by training cross-lingual Chinese-Tibetan embed-
dings. Generally, transfer learning is a popular
approach in neural machine translation when it
comes to the lack of data, as described in Zoph
et al. (2016); Nguyen and Chiang (2017); Kocmi
and Bojar (2018); Maimaiti et al. (2019); Chen and

Abdul-Mageed (2022). However, the cross-lingual
transfer aimed at overcoming data scarcity is not
limited to related languages (Adams et al., 2017;
Agić et al., 2016). The problem of low-resource
scenarios is also discussed in an extensive survey of
the cross-lingual embedding models (Ruder et al.,
2018).

A few works consider the transfer between differ-
ent historical stages of the same language as a case
of domain adaptation (Yang and Eisenstein, 2015;
Huang and Paul, 2019; Manjavacas and Fonteyn,
2022), and we adopt this terminology. Manjava-
cas and Fonteyn (2022) compare adapting and
pre-training large language models for historical
English, concluding that pre-training on domain-
specific (i.e. historical) data is preferable despite
being costly and dependent on the amount of train-
ing data.

However, the effect on a language model’s per-
formance produced by initialising it with temporar-
ily distant pre-trained embeddings and by using the
out-of-domain temporal data at the training stage
has not been evaluated yet, to the best of our knowl-
edge. Moreover, the Irish data has never been used
in the research on diachronic word embeddings and
temporal domain adaptation before.

3 Data

The data for the experiment is a collection of Early
Modern Irish and Modern Irish texts spanning over
350 years, from the late 16th to early 20th century.

Irish belongs to the Celtic branch of the Indo-
European language family. Like other Celtic lan-
guages, it is notable for initial mutations: sound
changes at the beginning of a word happening in
certain grammatical environments, which are re-
flected in spelling. These are combined with a rich
nominal and verbal inflection at the end of a word.
The four types of initial mutations in modern Irish
and their effect on spelling is shown in Table 1.

Before becoming a grammatical feature of the
language, mutations happened as historical pho-
netic processes.2 For instance, a mutation called
lenition in the intervocalic position turned Old Irish
cride ["kjrjiðje] ‘heart’ into Middle Irish croid(h)e /
cridhe / craid(h)e ["k(j)r(j)iGj@] / ["k(j)r(j)ij@], which
later became Modern Irish croí [kRGi:].3

2We apologise for this necessary simplification of histori-
cal Irish phonology to our Celticist readers.

3Our IPA transcriptions of Middle Irish forms are purely
hypothetical. Not enough is known about spoken Middle Irish
to say with any authority how things were pronounced, as
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Letter Lenition Eclipsis t-prothesis h-prothesis

b bh mb - -
c ch gc - -
d dh nd - -
f fh bhf - -
g gh ng - -
p ph bp - -
t th dt - -
m mh - - -
s sh - ts -

vowels - n-V t-V hV

Table 1: Initial mutations in modern Irish.

3.1 Early and Pre-Reform Modern Irish
Early Modern Irish is a term used to describe a vast
period in the history of the Irish language between
Middle and pre-reform Modern Irish. It spans from
the 13th to the 18th century (McManus, 1994) and
is marked by multiple religious works (both orig-
inal and translated), epic tales (both native and
adapted from continental material), bardic poetry
and historical writing, such as genealogical tracts.

Modern declension and conjugation systems
were formed during this period, which makes Early
Modern Irish relatively close to what Irish is today,
and even closer to what it was before the spelling
reform in 1947 and the introduction of the official
standard, An Caighdeán Oifigiúil, in 1958 (Rannóg
an Aistriúcháin, 1958), which is being regularly
revised and updated (Tithe an Oireachtais, 2017).

However, both Early Modern Irish and pre-
reform Modern Irish texts show considerable
spelling variation and unstable grammatical
changes, which makes them challenging for NLP
tasks (Scannell, 2022).

3.2 Historical Irish Corpus
The data used in the experiments originates in a
book subcorpus of the Historical Irish Corpus, or
Corpas Stairiúil na Gaeilge (hereafter CSnaG), cre-
ated by the Royal Irish Academy (Acadamh Ríoga
na hÉireann; Uí Dhonnchadha et al., 2014). It in-
cludes texts from 1581 to 1926 and amounts to
13, 599, 882 tokens. It covers a wide variety of
genres, such as bardic poetry, native Irish stories,
translations and adaptations of continental epic and
romance, annals, genealogies, grammatical and

the writing standard of the period was very archaic. Scribes
were following the rules of Old Irish, leaving us with only
occasional errors and innovations to conjecture the language
they were speaking.

medical tracts, diaries, and religious writing. Each
text is dated (both creation and publication dates
are provided), and the majority of the texts are
author-attributed. The data is available in differ-
ent formats (plain text, TEI, ePub) along with the
metadata on the CSnaG website.4

For our purposes, the data was continuously split
into 10 parts, 99 texts each, except for the last
one, which only includes 97 texts. The motivation
for splitting the corpus by the number of texts as
opposed to the number of tokens comes from the
necessity to keep whole texts within a particular
corpus subset to avoid the time, author, and genre
interference. Cutting a text into several chunks
would have created an overlap between the corpus
parts and affected the results of the experiments.
Table 2 shows the time frame of each corpus subset
along with its size.

3.3 Preprocessing

The texts were split into sentences by the end-of-
sentence punctuation marks; then, all sentence-
level punctuation was removed and the texts were
lowercased. No stemming, lemmatisation or part-
of-speech tagging was applied.

In addition to that, a normalised (hereafter ‘de-
mutated’) dataset was created where mutations
were removed regardless of their type and posi-
tion in the word. As a result of such normalisation,
ngrádhmhar became grádmar, t-ollmhughadh be-
came ollmugad, and so on. Mutations are one of
the main sources of spelling variation, especially in
the diachronic setting. Although we do lose some
grammatical information and sometimes create lex-
ical ambiguities by removing them at the begin-
ning of a word, this change is not critically damag-
ing and is comparable to lemmatisation. Scannell
(2020) discusses demutation in modern Irish and
the types of errors it can lead to in great detail.

Removing historical mutations that occur in the
middle and at the end of a word may, in turn, lead
to the conflation of dialectal and standard spellings
(standard d(h)éanfadh vs. dialectal d(h)éanfad), as
well as of unrelated words (óige ‘youth’ and óighe,
‘Gen. sg. Virgin [Mary]’). However, homonymy ex-
ists in non-normalised Irish texts too: for instance,
óige not only means ‘youth’, but can also be a part
of the analytical comparative and superlative forms
of óg ‘young’. A slight increase in homonymy

4http://corpas.ria.ie/index.php?fsg_
function=1
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Part Years Tokens
Mutated Demutated

Improvement, %
Types TTR Types TTR

0 1581− 1640 1 669 581 54 748 32.79 42 411 25.40 22.53
1 1640− 1690 1 524 344 49 658 32.58 39 434 25.87 20.59
2 1691− 1728 775 412 28 967 37.36 23 425 30.21 19.13
3 1729− 1771 875 635 33 038 37.73 26 367 30.11 20.19
4 1771− 1817 688 900 28 708 41.67 22 995 33.38 19.90
5 1817− 1836 1 094 053 36 048 32.95 28 361 25.92 21.32
6 1836− 1875 634 692 21 981 34.63 17 468 27.52 20.53
7 1876− 1908 1 562 576 33 833 21.65 26 185 16.76 22.61
8 1908− 1919 2 294 943 38 548 16.80 29 132 12.69 24.43
9 1919− 1926 2 479 746 46 117 18.60 35 501 14.32 23.02

Table 2: Reducing vocabulary size by removing mutations. TTR scores are calculated as TTR = types
tokens × 1000

according to Schlechtweg et al. (2020).

Language Period TTR

English 1880− 1860 13.38
German 1800− 1899 14.25
Swedish 1790− 1830 47.88
Latin −200− 0 38.24
CSnaG (original) 1581− 1926 45.50
CSnaG (demutated) 1581− 1926 33.15

Table 3: TTR scores of Early Modern Irish and pre-
reform Modern Irish compared to other historical lan-
guages.

seems to be a justified tradeoff for a significant re-
duction of vocabulary size unless one is specifically
interested in dialectal variation, pronunciation and
spelling change, or rhyme patterns in bardic poetry.

Removing mutations from data reduces vocabu-
lary size and type-token ratio (TTR) by 21.43% on
average (see Table 2). Moreover, it helps to bridge
the gap between Old Irish, where mutations were
not marked in writing, and more modern stages of
the language. To put these results into context, let
us compare TTR scores calculated on the whole
CSnaG, containing Early Modern Irish and pre-
reform Modern Irish texts, with similar results for
historical English, German, Swedish, and Latin
provided by Schlechtweg et al. (2020), in Table 3.

Lower TTR has a positive effect on NLP models’
performance: in our case, it leads to a notable drop
in the perplexity of a language model. Table 4
shows the percent of improvement on demutated
texts in comparison to the original ones in each
of the experiments, described in more detail in
Section 5.1.

Part Baseline EX1.1 EX1.2 EX1.3 EX1.4 EX1.5

0 11.25 10.35 14.39 16.62 13.32 19.17
1 8.88 7.97 10.98 13.62 11.20 10.09
2 4.77 3.85 8.30 13.25 8.36 11.96
3 8.27 6.19 10.72 16.95 11.01 12.44
4 8.64 6.77 13.00 19.33 13.55 17.11
5 9.46 9.91 12.70 11.51 11.56 16.37
6 3.85 5.36 10.30 33.02 7.43 20.08
7 9.39 9.60 11.33 16.25 10.38 8.78
8 8.88 9.52 10.68 32.57 10.25 9.97
9 9.52 10.24 11.87 13.88 10.49 26.01

AVG 8.29 7.98 11.43 18.70 10.76 15.20

Table 4: The % of a language model’s quality improve-
ment (the decrease in perplexity) achieved by simple
orthographic normalisation consisting in the removal of
synchronic and historical mutations.

4 Methodology

4.1 Embedding Model

We use a FastText (Bojanowski et al., 2017) em-
bedding model that takes subword information into
account, which is preferable due to the nature of his-
torical language data. Due to a high degree of vari-
ation, which is explained both by the morphologi-
cal complexity of historical languages and by the
lack of standardisation, going down to the subword
level is crucial for reducing the vocabulary and
effectively dealing with out-of-vocabulary words
at the same time. A similar approach is adopted
in other works on low-resource data (Kuriyozov
et al., 2020; Ma et al., 2020). During our initial
set of experiments on non-normalised diachronic
Early Irish data, embedding models learned mostly
paradigmatic and derivational morphological rela-
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tions, as well as spelling variation. Some semantic
relations were also captured but to a lesser extent
(Dereza et al., 2023).

For both experiments described in this paper, all
embedding models were trained with the following
parameters: embedding size = 100, context win-
dow = 10, and minimal count = 2 regardless of
vocabulary size. The embedding size is motivated
by the experimental results demonstrating that a
smaller embedding dimension reduces the model’s
sensitivity to noise when the data is scarce (Stewart
et al., 2017). The low minimal word count is aimed
at preserving as much information at each time step
as possible.

4.2 Evaluation Scenario
Extrinsic evaluation of embeddings (Schnabel et al.,
2015; Bakarov, 2018; Torregrossa et al., 2021)
through language modelling seems preferable since
it is language-independent and scalable. In addi-
tion to that, it does not require manual preparatory
work such as dataset creation, unlike other popu-
lar downstream tasks, such as bilingual dictionary
induction, part-of-speech tagging, or any kind of
classification. Hypothetically, using pre-trained
embeddings must lower the perplexity score of a
language model, even if these were trained on a
different period of the language in question.

Perplexity is a standard metric to evaluate lan-
guage models, which can be defined as the inverse
probability of the test set normalised by the number
of words. The lower it is, the better.

PPL(X) = exp

{
−1

t

t∑

i

log pθ (xi | x<i)

}

4.3 Language Model
The configuration of our language model is delib-
erately simple so that it would allow seeing the
contribution that the pre-trained embeddings make
to its performance more clearly. It is an LSTM
(Hochreiter and Schmidhuber, 1997) with one hid-
den layer trained until convergence with the Adam
optimiser using the early stopping technique, start-
ing with the learning rate = 0.001. The minimum
word count was set to 2 to match the pre-trained
embedding models. The number of neurons on the
hidden layer was calculated depending on corpus
vocabulary size as nhidden = V × 0.01 regardless
of whether pre-trained embedding models were
used or not, and of their vocabulary size. The coef-
ficient was devised empirically based on available

computational resources. The pre-trained embed-
dings were not fixed during the language model
training to allow for domain adaptation. More in-
formation on vocabulary sizes for each experiment
can be found in Tables 9 and 8 in Appendix A.

5 Experimental Results

Figure 1: Experiment I: the % of a language model’s
quality improvement / deterioration in comparison to the
baseline, original texts without orthographic normalisa-
tion.

Figure 2: Experiment I: the % of a language model’s
quality improvement / deterioration in comparison to
the baseline, orthographically normalised (demutated)
texts.

5.1 Experiment I

Experiment I consisted of 5 tasks summarised in
Table 5. Each of these tasks was aimed at answer-
ing a particular question about pre-training, such as

“Does the use of an embedding model pre-trained
on related data without the target [temporal] do-
main help to lower the perplexity of a language
model at timestamp ti?”. The perplexity of a lan-
guage model trained on a target temporal domain
data ti (i.e. one of the corpus parts № 0-9) without
pre-training was taken as a baseline.
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№ LM train data LM test /
valid data Pre-training Research Question

1.0 ti ti — Baseline

1.1 ti ti ti

Does pre-training on the target temporal domain ti
help to lower the perplexity of a language model for
the timestamp ti?

1.2 ti ti T
Does using a bigger pre-trained embedding model,
containing more than the target domain, help to
lower the perplexity of an LM for the timestamp ti?

1.3 T ti T

Does the use of out-of-domain data along with
in-domain data at both the pre-training and the
LM training stages help to lower the perplexity
of an LM for the timestamp ti?

1.4 ti ti T−i

Does the use of an embedding model pre-trained on
related data without the target domain ti help to
lower the perplexity of an LM for the timestamp ti?

1.5 T−i ti T−i

If we do not have any in-domain data for training,
does the use of related data at both the pre-training
and the LM training stages help to lower the perplexity
of an LM for the timestamp ti?

Table 5: A overview of Experiment I: ti refers to a single corpus part from 0 to 9, T stands for the whole corpus,
and T−i is the whole corpus excluding a single corpus part from 0 to 9.

Part EX1.1 EX1.2 EX1.3 EX1.4 EX1.5

0 +9.35 +6.98 +4.43 +1.34 –68.82
1 +11.45 +10.70 +16.49 +3.50 –51.84
2 +8.77 +5.44 +10.40 +2.82 –24.85
3 +14.13 +11.82 +20.67 +7.15 –14.43
4 +15.14 +10.23 +16.49 +6.08 –13.19
5 +9.37 +7.20 +23.27 +5.32 –42.44
6 +7.57 +3.84 –7.69 +4.18 –54.89
7 +9.44 +7.35 +23.03 +5.40 –23.81
8 +7.39 +6.66 –2.80 +5.28 –17.82
9 +8.18 +7.51 +20.64 +4.51 –38.96

AVG +10.08 +7.77 +12.49 +4.56 –35.10

Table 6: Experiment I: the % of a language model’s
quality improvement / deterioration in comparison to
the baseline; original texts without orthographic normal-
isation.

Every corpus part covering a particular period
in the history of the Irish language, as shown in
Table 2, was split into training (80%), validation
(10%), and test (10%) subsets. Validation and test
subsets have not been seen by the language model
at any stage, including pretraining (i.e. word em-
beddings were trained only on the training subset
of each corpus part).

Part EX1.1 EX1.2 EX1.3 EX1.4 EX1.5

0 +8.25 +10.90 +11.16 +3.76 –65.76
1 +10.36 +13.32 +22.90 +6.21 –51.19
2 +7.72 +9.49 +21.19 +6.85 –18.72
3 +1.60 +14.89 +33.27 +10.46 –10.35
4 +12.83 +15.75 +31.92 +12.10 –4.32
5 +9.92 +11.19 +26.13 +7.82 –37.68
6 +9.29 +11.30 +32.50 +8.19 –45.73
7 +9.69 +9.69 +33.10 +6.57 –24.32
8 +8.15 +8.81 +31.34 +6.89 –16.83
9 +9.04 +10.38 +26.74 +5.64 –25.35

AVG +9.68 +11.57 +27.02 +7.45 –30.02

Table 7: Experiment I: the % of a language model’s
quality improvement / deterioration in comparison to
the baseline; orthographically normalised (demutated)
texts.

The results of this experiment are reported in
Tables 6 and 7, where each number shows an im-
provement (marked with a +) or a drop (marked
with a −) in the performance of a language model
compared to the baseline. For example, in Experi-
ment 1.3, the use of additional out-of-domain data
both at the pre-training and training stages results in
a 11.16% improvement (i.e. the language model’s
perplexity drops by 11.16%) in comparison to the
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baseline on the corpus part № 0 with orthographic
normalisation. In other words, adding the texts
from 1640 − 1926 to those from 1581 − 1640 at
both the pre-training and training stages improves
the results of the model on the 1581 − 1640 test
data by 11.16%. Generally, Experiment 1.3 demon-
strates that providing a model with additional input
improves its quality by 12.49% on average on non-
normalised texts and by 27.02% on average on
normalised texts.

Similarly, in Experiment 1.5, pre-training and
training a language model on the whole normalised
corpus excluding part № 0 and testing its per-
formance on part № 0 makes the resulting score
65.76% worse (i.e. the language model’s perplex-
ity rises by 65.76%). Still, it is not as discouraging
as it may seem: it means that we are still able to
obtain 34.24% of the baseline model quality even
if we do not have the target data from 1581− 1640
in our training corpus at all. This number is even
higher for later stages of the language, where us-
ing related data for training allows to achieve up
to 86.81% of the baseline model quality on non-
normalised texts and up to 95.68% on normalised
texts.

As expected, both pre-training on the same data
and using additional out-of-domain data only at the
pre-training stage leads to the improvement of a
language model’s performance despite the shallow
architecture of a language model. Naturally, lan-
guage models trained on earlier texts or on texts
with genre-specific language are more sensitive
to the absence of in-domain data. For example,
parts 5 and 6 include a substantial amount of po-
etry, which often exhibits a richer, more archaic
vocabulary compared to prose.

Figures 1 and 2 provide a graphical overview of
the effect that the pre-training data makes on the
performance of a language model in comparison to
the baseline. Raw sentencewise perplexity scores
for the experiment are given in Tables 10 and 11 in
Appendix B.

5.2 Experiment II

The second experiment was aimed at observing
the effect of the temporal distance between the
pre-training and the training/test data. It consisted
in the training of language models on each of the
10 corpus subsets initializing them with embed-
dings pre-trained on each of these corpus parts in
all possible combinations. We hypothesised that

smaller temporal distances would result in better
performance than bigger ones. Our hypothesis
has proven correct, as shown in Figures 3 and 4.
This correlation is most pronounced when evaluat-
ing orthographically normalised (demutated) texts.
Naturally, language models fed with embeddings
pre-trained on the same data yield the best results.
Table 12 in the Appendix C provides the results of
this experiment run on non-normalised texts, where
all mutations are preserved, and Table 13 presents
similar results for demutated texts. Columns cor-
respond to embedding models, and rows are cor-
pus parts they were tested on. For the reader’s
convenience, we cite normalised inverse perplex-
ity instead of the original sentence-wise perplexity
scores. It shows how well a model performed in
comparison to the best result, where 100% is the
best result.

NIP =
best_score

score
× 100

Figure 3: The effect of temporal distance between
the pre-training (embedding) data and the language
model training and test data; original texts without or-
thographic normalisation.

Figure 4: The effect of temporal distance between the
pre-training (embedding) data and the language model
training and test data; orthographically normalised (de-
mutated) texts.
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6 Conclusion

The results cited above testify that using out-of-
domain temporal data in the pre-training and train-
ing of a language model for a historical language
can significantly improve its performance. This
is extremely valuable in low-resource scenarios,
where we may only have a few texts dating back to
a particular period, which would not be enough
to train a robust language model. Providing a
model with additional input improves its quality
by 12.49% on average on non-normalised texts and
by 27.02% on average on normalised texts even if
this information is retrieved from data covering a
different — no matter later or earlier — period in
the history of a language. Most importantly, using
only out-of-domain data at both pre-training and
training stages allows for achieving up to 86.81%
of the baseline model quality on non-normalised
texts and up to 95.68% on normalised texts without
any target domain data.

Our hypothesis that there is a positive correlation
between the performance of language models and
the temporal proximity of training and test data
has been validated. This effect manifests best in
orthographically normalised texts. Expanding this
approach even further back, to Middle and Old
Irish, and testing it on other languages is a further
research direction.

Finally, we proposed a simple yet very effective
orthographic normalisation method for historical
Irish that reduced the type-token ratio by 21.43%
on average in our data and allowed for up to 33.02%
drop in a language model’s perplexity.
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Željko Agić, Anders Johannsen, Barbara Plank, Héc-
tor Martínez Alonso, Natalie Schluter, and Anders
Søgaard. 2016. Multilingual projection for parsing
truly low-resource languages. Transactions of the As-
sociation for Computational Linguistics, 4:301–312.

Amir Bakarov. 2018. A survey of word em-
beddings evaluation methods. arXiv preprint
arXiv:1801.09536.

Robert Bamler and Stephan Mandt. 2017. Dynamic
word embeddings. In International conference on
Machine learning, pages 380–389. PMLR.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the associa-
tion for computational linguistics, 5:135–146.

Marcel Bollmann. 2019. A Large-Scale Comparison of
Historical Text Normalization Systems. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Lin-
guistics, pages 3885–3898.

Mohamed Boukhaled, Benjamin Fagard, and Thierry
Poibeau. 2019. Modelling the semantic change dy-
namics using diachronic word embedding. In 11th
International Conference on Agents and Artificial
Intelligence (NLPinAI Special Session).

Stephanie Brandl and David Lassner. 2019. Times are
changing: Investigating the pace of language change
in diachronic word embeddings. In Proceedings of
the 1st International Workshop on Computational
Approaches to Historical Language Change, pages
146–150.

Wei-Rui Chen and Muhammad Abdul-Mageed. 2022.
Improving neural machine translation of indigenous
languages with multilingual transfer learning. arXiv
preprint arXiv:2205.06993.

Anna Currey, Alina Karakanta, and Jon Dehdari. 2016.
Using related languages to enhance statistical lan-
guage models. In Proceedings of the NAACL Student
Research Workshop, pages 116–123.

62

http://corpas.ria.ie/
http://corpas.ria.ie/
https://doi.org/10.18653/v1/N19-1389
https://doi.org/10.18653/v1/N19-1389


Oksana Dereza, Theodorus Fransen, and John P. Mc-
Crae. 2023. Do not trust the experts: How the lack
of standard complicates NLP for historical Irish. In
Proceedings of the 3d Workshop on Insights from
Negative Results in NLP, EACL 2023. Upcoming.

Valerio Di Carlo, Federico Bianchi, and Matteo Pal-
monari. 2019. Training temporal word embeddings
with a compass. In Proceedings of the AAAI con-
ference on artificial intelligence, volume 33, pages
6326–6334.

Adrian Doyle, John P McCrae, and Clodagh Downey.
2018. Preservation of original orthography in the con-
struction of an Old Irish corpus. Sustaining Knowl-
edge Diversity in the Digital Age, pages 67–70.

Adrian Doyle, John Philip McCrae, and Clodagh
Downey. 2019. A character-level LSTM network
model for tokenizing the Old Irish text of the
Würzburg glosses on the Pauline Epistles. In Pro-
ceedings of the Celtic Language Technology Work-
shop, pages 70–79.

Haim Dubossarsky, Daphna Weinshall, and Eitan Gross-
man. 2017. Outta control: Laws of semantic change
and inherent biases in word representation models.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1136–1145. Association for Computational Linguis-
tics.

Lea Frermann and Mirella Lapata. 2016. A Bayesian
model of diachronic meaning change. Transactions
of the Association for Computational Linguistics,
4:31–45.

William L. Hamilton, Jure Leskovec, and Dan Jurafsky.
2016. Diachronic word embeddings reveal statisti-
cal laws of semantic change. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1489–1501, Berlin, Germany. Association for Com-
putational Linguistics.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735–
1780.

Valentin Hofmann, Janet B Pierrehumbert, and Hinrich
Schütze. 2020. Dynamic contextualized word em-
beddings. In Proceedings of the 59th Annual Meeting
of the Association for Computational Linguistics and
the 11th International Joint Conference on Natural
Language Processing: System Demonstrations.

Hai Hu, Patrícia Amaral, and Sandra Kübler. 2022.
Word embeddings and semantic shifts in historical
Spanish: Methodological considerations. Digital
Scholarship in the Humanities, 37(2):441–461.

Xiaolei Huang and Michael Paul. 2019. Neural tem-
porality adaptation for document classification: Di-
achronic word embeddings and domain adaptation
models. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 4113–4123.

Gard B Jenset and Barbara McGillivray. 2017. Quan-
titative historical linguistics: A corpus framework,
volume 26. Oxford University Press.

Tom Kocmi and Ondrej Bojar. 2018. Trivial transfer
learning for low-resource neural machine translation.
WMT 2018, page 244.

Vivek Kulkarni, Rami Al-Rfou, Bryan Perozzi, and
Steven Skiena. 2015. Statistically significant de-
tection of linguistic change. In Proceedings of the
24th International Conference on World Wide Web,
WWW’15, pages 625–635, Republic and Canton of
Geneva, Switzerland.

Elmurod Kuriyozov, Yerai Doval, and Carlos Gómez-
Rodríguez. 2020. Cross-lingual word embeddings
for Turkic languages. In Proceedings of the Twelfth
Language Resources and Evaluation Conference.

Andrey Kutuzov. 2020. Distributional word embed-
dings in modeling diachronic semantic change. [PhD
thesis].

Andrey Kutuzov, Lilja Øvrelid, Terrence Szymanski,
and Erik Velldal. 2018. Diachronic word embeddings
and semantic shifts: a survey. In Proceedings of
the 27th International Conference on Computational
Linguistics, COLING 2018.

Wei Ma, Hongzhi Yu, Kun Zhao, Deshun Zhao, and
Jun Yang. 2020. Tibetan-Chinese cross-lingual word
embeddings based on MUSE. In Journal of Physics:
Conference Series, volume 1453, page 012043. IOP
Publishing.

Mieradilijiang Maimaiti, Yang Liu, Huanbo Luan, and
Maosong Sun. 2019. Multi-round transfer learning
for low-resource NMT using multiple high-resource
languages. ACM Transactions on Asian and Low-
Resource Language Information Processing (TAL-
LIP), 18(4):1–26.

Enrique Manjavacas and Lauren Fonteyn. 2022. Adapt-
ing vs. pre-training language models for historical
languages. Journal of Data Mining & Digital Hu-
manities, pages 1–19.

Damian McManus. 1994. An Nua-Ghaeilge Chla-
saiceach. In K. McCone; D. McManus; C. Ó Háinle;
N. Williams; L. Breatnach, editor, Stair na Gaeilge:
in ómós do Pádraig Ó Fiannachta, pages 335–44.
Maynooth: Department of Old Irish, St. Patrick’s
College.

Syrielle Montariol. 2021. Models of diachronic seman-
tic change using word embeddings. Ph.D. thesis,
Université Paris-Saclay.

Syrielle Montariol and Alexandre Allauzen. 2019. Em-
pirical study of diachronic word embeddings for
scarce data. In Proceedings of the International Con-
ference on Recent Advances in Natural Language
Processing (RANLP 2019), pages 795–803, Varna,
Bulgaria. INCOMA Ltd.

63

https://doi.org/10.18653/v1/P16-1141
https://doi.org/10.18653/v1/P16-1141


Toan Q Nguyen and David Chiang. 2017. Transfer
learning across low-resource, related languages for
neural machine translation. In Proceedings of the
Eighth International Joint Conference on Natural
Language Processing (Volume 2: Short Papers),
pages 296–301.

Michael Piotrowski. 2012. Natural language processing
for historical texts, volume 5 of Synthesis lectures on
human language technologies. Morgan & Claypool
Publishers.

Rannóg an Aistriúcháin. 1958. Gramadach na Gaeilge
agus litriú na Gaeilge: An caighdeán oifigiúil. Baile
Átha Cliath/Dublin: Oifig an tSoláthair.

Julia Rodina, Daria Bakshandaeva, Vadim Fomin, An-
drei Kutuzov, Samia Touileb, and Erik Velldal. 2019.
Measuring diachronic evolution of evaluative adjec-
tives with word embeddings: the case for English,
Norwegian, and Russian. Association for Computa-
tional Linguistics.

Alex Rosenfeld and Katrin Erk. 2018. Deep neural
models of semantic shift. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers),
pages 474–484.

Sebastian Ruder, Ivan Vulić, and Anders Søgaard. 2018.
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A Vocabulary Sizes

Part
EX1.1 EX1.2 EX1.3 EX1.4 EX1.5

Original Normalised Original Normalised Original Normalised Original Normalised Original Normalised

0 60,042 47,688 60,042 47,688 210,537 161,958 60,042 47,688 183,439 141,804
1 53,202 43,103 53,202 43,103 209,507 161,323 53,202 43,103 187,557 144,540
2 30,847 25,358 30,847 25,358 206,508 159,109 30,847 25,358 197,197 151,883
3 36,141 29,205 36,141 29,205 207,025 159,467 36,141 29,205 195,729 150,838
4 31,829 25,796 31,829 25,796 206,679 159,233 31,829 25,796 196,818 151,708
5 39,330 31,268 39,330 31,268 207,517 159,726 39,330 31,268 194,385 150,004
6 24,738 19,962 24,738 19,962 205,936 158,630 24,738 19,962 198,647 153,164
7 39,286 30,811 39,286 30,811 207,110 159,570 39,286 30,811 194,832 150,355
8 44,870 34,039 44,870 34,039 207,301 159,558 44,870 34,039 190,256 150,169
9 53,400 41,417 53,400 41,417 208,567 160,595 53,400 41,417 189,740 146,577

Table 8: Corpus vocabulary sizes. The data used in the Experiment II is the same as in the Experiment 1.1

Part
EX1.1 EX1.2 EX1.3 EX1.4 EX1.5

Original Normalised Original Normalised Original Normalised Original Normalised Original Normalised

0 51,302 41,268

204,290 157,402 204,290 157,402

175,325 135,366 175,325 135,366
1 45,554 37,176 181,140 139,403 181,140 139,403
2 26,497 21,909 194,791 150,019 194,791 150,019
3 30,872 25,175 192,775 148,533 192,775 148,533
4 27,073 22,064 194,493 149,911 194,493 149,911
5 33,609 26,931 190,620 147,236 190,620 147,236
6 21,274 17,298 196,621 151,648 196,621 151,648
7 34,108 26,901 191,514 147,827 191,514 147,827
8 39,220 30,063 190,256 147,416 147,416 147,416
9 46,447 36,260 183,939 142,114 142,114 142,114

Table 9: Vocabulary sizes of the pre-trained embedding models. The models used in the Experiment II are the same
as in the Experiment 1.1

B Experiment I

Part Baseline EX1.1 EX1.2 EX1.3 EX1.4 EX1.5

0 336.35 307.58 314.40 322.07 331.90 1078.61
1 337.98 303.26 305.32 290.13 326.54 701.80
2 361.98 332.79 343.32 327.89 352.05 481.70
3 412.06 361.04 368.50 341.49 384.55 481.53
4 542.83 471.44 492.45 465.98 511.74 625.31
5 351.83 321.69 328.19 285.42 334.07 611.22
6 266.43 247.67 256.58 288.62 255.75 590.64
7 230.54 210.66 214.76 187.38 218.73 302.57
8 180.49 168.07 169.22 185.69 171.44 219.63
9 222.64 205.81 207.08 184.55 213.03 364.72

AVG 324.31 293.00 299.98 287.92 309.98 545.77

Table 10: Experiment I: sentencewise perplexity scores;
original texts without orthographic normalisation.

Part Baseline EX1.1 EX1.2 EX1.3 EX1.4 EX1.5

0 298.50 275.75 269.15 268.53 287.69 871.87
1 307.98 279.08 271.79 250.60 289.96 630.99
2 344.70 319.99 314.81 284.44 322.61 424.11
3 377.99 338.7 329.01 283.62 342.20 421.61
4 495.91 439.51 428.44 375.91 442.40 518.32
5 318.56 289.82 286.51 252.56 295.45 511.15
6 256.16 234.39 230.16 193.33 236.76 472.01
7 208.89 190.44 190.43 156.94 196.02 276.00
8 164.46 152.07 151.14 125.22 153.86 197.73
9 201.44 184.74 182.50 158.94 190.68 269.85

AVG 297.46 270.45 265.39 235.01 275.76 459.36

Table 11: Experiment I: sentencewise perplexity scores;
orthographically normalised (demutated) texts.
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C Experiment II

Part 0 1 2 3 4 5 6 7 8 9

0 100.00 90.65 87.59 87.59 87.02 88.18 86.70 87.19 85.53 87.39
1 91.44 100.00 89.05 89.67 87.48 88.62 87.68 87.94 88.11 88.66
2 93.94 95.00 100.00 93.48 92.71 93.23 90.60 91.41 92.19 91.64
3 88.87 90.26 91.12 100.00 89.81 90.83 88.74 89.54 90.35 91.88
4 90.23 88.13 90.59 89.67 100.00 90.81 90.58 89.01 90.79 91.83
5 90.03 89.45 90.87 92.39 90.18 100.00 90.20 89.57 90.86 90.90
6 92.20 90.30 92.49 94.43 92.24 94.43 100.00 91.15 92.18 92.51
7 89.91 89.19 89.96 91.53 90.83 92.08 89.16 100.00 94.55 93.94
8 91.71 91.43 91.30 92.47 92.15 92.86 92.18 95.40 100.00 96.34
9 89.65 89.43 89.67 90.61 89.63 91.00 89.87 93.62 94.80 100.00

Table 12: Experiment II. Original texts, normalised inverse perplexity scores in %, where 100% is the best score.
Columns correspond to embedding models, and rows are corpus parts they were tested on.

Part 0 1 2 3 4 5 6 7 8 9

0 100.00 91.30 89.21 89.24 89.07 89.96 88.44 88.43 89.01 89.55
1 92.42 100.00 91.17 90.88 89.64 90.26 89.01 89.47 89.95 90.20
2 96.14 95.76 100.00 94.55 93.82 95.09 92.22 93.55 95.18 94.68
3 91.19 91.77 92.01 100.00 91.43 92.72 91.44 90.99 92.59 93.42
4 91.69 92.22 91.83 94.29 100.00 92.73 89.88 94.46 92.27 94.28
5 90.94 91.51 90.67 92.79 90.34 100.00 90.62 91.71 92.78 92.22
6 94.25 93.02 95.48 97.06 94.70 96.25 100.00 95.13 95.96 95.90
7 91.64 91.52 91.17 92.25 92.36 92.27 91.10 100.00 96.48 95.82
8 91.31 91.25 91.16 92.46 91.31 92.38 90.49 95.25 100.00 96.38
9 89.68 89.56 89.67 90.67 90.13 90.67 89.91 92.69 94.83 100.00

Table 13: Experiment II. Demutated texts, normalised inverse perplexity scores in %, where 100% is the best score.
Columns correspond to embedding models, and rows are corpus parts they were tested on.
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Abstract

This paper measures variation in embedding
spaces which have been trained on different re-
gional varieties of English while controlling for
instability in the embeddings. While previous
work has shown that it is possible to distinguish
between similar varieties of a language, this
paper experiments with two follow-up ques-
tions: First, does the variety represented in the
training data systematically influence the re-
sulting embedding space after training? This
paper shows that differences in embeddings
across varieties are significantly higher than
baseline instability. Second, is such dialect-
based variation spread equally throughout the
lexicon? This paper shows that specific parts of
the lexicon are particularly subject to variation.
Taken together, these experiments confirm that
embedding spaces are significantly influenced
by the dialect represented in the training data.
This finding implies that there is semantic vari-
ation across dialects, in addition to previously-
studied lexical and syntactic variation.

1 Dialects and Embedding Spaces

This paper investigates the degree to which em-
bedding spaces are subject to variation accord-
ing to the regional dialect or variety that is rep-
resented by the training data. The experiments
train character-based skip-gram embeddings on gi-
gaword corpora representing four regional dialects
of English (North America, Europe, Africa, and
South Asia). While there is a robust tradition of
discriminative modelling of dialects and varieties
within NLP (Zampieri et al., 2017, 2018, 2019;
Gaman et al., 2020; Chakravarthi et al., 2021; Aepli
et al., 2022), there has been much less work on the
influence which the dialectal composition of the
training data (upstream) has on embedding spaces
after training (downstream).

The basic idea in this paper is to train five itera-
tions of character-based skip-gram embeddings on
dialect-specific corpora in order to measure both

variation (across dialects) and instability (within
dialects); this is visualized in Figure 1. In order to
find out whether specific parts of the lexicon are
especially influenced by the dialect represented in
the training data, the lexicon used for comparing
embedding spaces is annotated for frequency, con-
creteness, part-of-speech, semantic domain, and
age-of-acquisition.

If the specific dialect represented in the train-
ing corpus has no influence on embedding spaces,
then variation across regions will be the same as
variation within regions. In other words, we must
control for instability (operationalized as variation
across embeddings from the same dialect) to avoid
false positives. However, if the dialect represented
in the training data does have an influence on em-
bedding spaces after training, then there will be a
clear distinction between variation across dialects
and instability within dialects.

The contribution of this paper is to show (i)
that dialectal variation in character-based embed-
ding spaces is significantly stronger than the noise
caused by background instability and (ii) that this
variation remains concentrated in certain parts of
the lexicon. To accomplish this, we model the im-
pact of dialect-specific training corpora on embed-
dings by controlling for background instability and
organizing the experiments around the lexical at-
tributes of frequency, concreteness, part-of-speech,
semantic domain, and age-of-acquisition.

We begin by reviewing related work on dialec-
tal variation and embedding stability (Section 2),
before describing the main experimental questions
(Section 3), the data (Section 4), and the methods
(Section 5). We then compare variation within and
between dialect-specific embeddings (Section 6)
before modelling the influence of lexical factors on
such dialectal variation (Section 7). Taken together,
these experiments confirm that regional dialect or
variety has a significant influence on embedding
spaces that far exceeds baseline instability.
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Figure 1: Overview of Comparison Methodology: Variation between dialects is estimated by sampling ten unique
pairs of embeddings, where each embedding represents a shuffled version of a dialect-specific corpus. The baseline
instability is estimated by sampling ten unique pairs of embeddings from different shuffled versions of a single
dialect-specific corpus. Non-geographic factors like time period and random seed are held constant.

2 Related Work

This section discusses previous work in which mod-
els trained on data from different varieties (up-
stream) become significantly different after training
(downstream). It also presents previous work on
instability in embedding spaces.

Geography and Dialects. The creation of large
geo-referenced corpora has made it possible to
model variation across dialects, where unique lo-
cations represent unique dialect regions. Previ-
ous work has described geo-referenced corpora de-
rived from web pages and social media (Davies
and Fuchs, 2015; Dunn, 2020). Other work has
evaluated the degree to which such corpora rep-
resent dialectal patterns found using more tradi-
tional methods (Cook and Brinton, 2017; Grieve
et al., 2019), and the degree to which these cor-
pora capture population movements triggered by
events like the COVID-19 pandemic (Dunn et al.,
2020). Further work has shown that geographic
corpora from distinct sources largely agree on their
representation of national dialects (Dunn, 2021).
Building on these corpora, recent work has mod-
elled both lexical variation (Wieling et al., 2011;
Donoso and Sánchez, 2017; Rahimi et al., 2017)
and syntactic variation (Dunn, 2018, 2019b; Dunn
and Wong, 2022) in English as well as in other
languages (Dunn, 2019a).

To what degree does dialectal variation influ-
ence semantic representations like skip-gram em-
beddings in addition to lexical and syntactic fea-

tures? Previous work has shown that there is a
significant difference between generic web-based
embeddings and web-based embeddings trained us-
ing corpora sampled to represent actual population
distributions; this difference was observed across
50 languages (Dunn and Adams, 2020). While
these previous results lead us to expect dialectal
variation across embeddings, there are two remain-
ing questions: First, to what degree is this vari-
ation caused by dialectal differences as opposed
to random instability? Second, is dialectal vari-
ation spread equally across the lexicon, equally
influencing nouns and verbs, abstract and concrete,
frequent and infrequent words?

Instability in Embeddings. A related line of
work focuses on sources of instability in embed-
ding spaces. It has been shown that many em-
beddings are subject to random fluctuation across
different cycles of shuffling and retraining (Hell-
rich et al., 2019). Such instability has been in-
vestigated using word similarities (Antoniak and
Mimno, 2018), showing that smaller corpora are
subject to greater instability. In this line of work,
two embeddings are compared by measuring the
overlap in nearest neighbors for a target vocabu-
lary. It has been shown, for example, that even
high-frequency words can be unstable (Wendlandt
et al., 2018) and that instability is related to prop-
erties of a language like the amount of inflectional
morphology (Burdick et al., 2021). Other work has
focused on the impact of time on embeddings, with
variation leading to change (Cassani et al., 2021).
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Circle Region Country N. Words, Web N. Words, Tweets

Inner-Circle North American
Canada 250 mil 250 mil
United States 250 mil 250 mil

Inner-Circle European
Ireland 250 mil 250 mil
United Kingdom 250 mil 250 mil

Outer-Circle African

Nigeria 262 mil 100 mil
Kenya 1 mil 100 mil
Gabon 100 mil 100 mil
Uganda 37 mil 100 mil
Mali 100 mil 100 mil

Outer-Circle South Asian
India 250 mil 250 mil
Pakistan 250 mil 250 mil

Table 1: Source of Data by Region, Country, and Register

Other recent work has shown that register varia-
tion (Biber, 2012) has a significant impact on em-
bedding similarity across a diverse range of lan-
guages (Dunn et al., 2022). This general approach
to comparing embedding spaces focuses on aligned
vocabulary (using nearest neighbors) rather than
aligned embeddings because of instability in such
alignment methods themselves (Gonen et al., 2020).
As shown by this previous work, the comparison
of nearest neighbors provides a robust method for
detecting variation across embedding spaces.

This work on instability in embeddings is im-
portant because we need to distinguish between
(i) variation across dialects and (ii) random fluc-
tuations in embedding representations themselves.
In other words, given the finding that embeddings
trained on corpora representing different dialects
are significantly different, how much of this is noise
caused by random instability?

3 Experimental Questions

This paper focuses on two questions: First, are
there significant differences in embeddings trained
from corpora representing different dialects when
accounting for baseline instability in the embed-
dings? Second, if so, are these dialectal differences
specific to a certain part of the vocabulary, such as
words belonging to a specific semantic domain?

The basic idea here is to compile four giga-
word corpora representing English as used in North
America, Europe, Africa, and South Asia. These
areas represent different dialect regions. For ex-
ample, while there are smaller differences between
American English and Canadian English, these two
dialects are more similar to one another than to
other national dialects like Irish English. For ex-

ample, work on syntactic variation has shown that
American and Canadian English, at least in digital
contexts, are closely related while UK and Irish
English form a separate closely related pair (Dunn,
2019a). Based on the distribution of errors within a
confusion matrix, other work has shown that Indian
and Pakistani English are likewise more similar to
one another than to other dialects (Dunn, 2018).

The dialects included represent both inner-
circle and outer-circle varieties. The concept of
inner-circle vs outer-circle is based on the his-
torical stages of European colonization (Kachru,
1982). This distinction within the World Englishes
paradigm is meant to capture the perceived prestige
differences of these dialects rather than to make
a distinction between dialects and varieties as lin-
guistic objects. For example, inner-circle popula-
tions tend to have a higher socio-economic status
and better access to digital technologies, leading
to their status as prestige varieties. Both groups
can be considered dialects. In some cases speak-
ers of outer-circle varieties could be considered
second-language learners; however, regardless of
a distinction between native and non-native speak-
ers, the production found in outer-circle varieties
remains robust and predictable over time. Thus, we
treat both inner-circle and outer-circle varieties as
dialects of equal standing but maintain the termi-
nology from the World Englishes paradigm in order
to provide a bridge to work in sociolinguistics.

We first train embeddings on each dialect-
specific corpus and then measure variation across
a lexicon that is annotated for concreteness, age-
of-acquisition, semantic domain, part-of-speech,
and frequency. We train five sets of embeddings
for each dialect-specific corpus, each based on a
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random reshuffling of the corpus. This allows us to
measure the difference between variation (across
dialects) and baseline instability (within dialects).

We work with skip-gram embeddings (SGNS:
Mikolov et al. 2013) as implemented in the fastText
framework (Bojanowski et al., 2017). In particular,
we use the skip-gram variant with negative sam-
pling (n = 50) trained for 20 epochs with a learn-
ing rate of 0.05 and 100 dimensions. The character
n-gram sizes range from 3 to 6, with a maximum
of 2 million n-gram buckets allowed. Because pre-
vious work has shown that different random seeds
can cause instability (Gonen et al., 2020), we con-
trol for such instability by using the same random
seed for each set of embeddings. Thus, variation
caused by random seed and by training parameters
is taken into account in this experimental set-up.

Several considerations support the use of non-
contextual skip-gram embeddings for these exper-
iments. In the first case, the focus here is on se-
mantic variation rather than lexical or syntactic
structures and the long-distance co-occurrences
captured by the skip-gram task are taken as bet-
ter representations for such semantic variation. In
the second case, the inclusion of low-resource di-
alects like African English means that the amount
of training data available is limited and insufficient
for training robust contextual embeddings. Given
the dual goals of focusing on semantics while also
including low-resource dialects, skip-grams pro-
vide the most practical type of embedding for an-
swering these particular experimental questions.

4 Data

The data used here represents different geographic
locations which, in turn, represent different dialects.
The data itself is drawn from two registers, web
pages and tweets, both derived from the Corpus of
Global Language Use (Dunn, 2020). The experi-
ments train character-based embeddings for these
four different regional dialects, as shown in Table
1. Each corpus contains 1 billion words, equally
divided between registers (web pages and tweets).
Thus, for example, the inner-circle North Ameri-
can corpus contains 500 million words of tweets,
equally divided between Canada and the United
States. The African web corpus has additional con-
straints because there is less data per country. As
shown in Table 1 this corpus combines five coun-
tries into a single regional data set. The even split
between web pages and tweets is maintained.

5 Methods

For each regional variety of English, we train em-
beddings using the fastText framework with the
parameter settings described above. Previous work
has shown that this family of embeddings can be
unstable; in this context, instability means that the
same training corpus could result in multiple sets of
nearest neighbors over different iterations (Hellrich
et al., 2019). We control for this by randomly shuf-
fling each corpus and retraining the embeddings
five times. Because all comparisons are between
two sets of embeddings, we thus obtain ten ob-
servations (unique comparisons) to represent each
condition, as visualized in Figure 1. We use the
same random seed and the same parameters across
all sets of embeddings to control for other sources
of variation.

Vocabulary Features. The vocabulary for the
embedding space is derived from semantic and psy-
cholinguistic resources that provide categorizations
for specific lexical items. This source of vocabu-
lary allows us to compare stability and variation
across different sub-sets of the lexicon.

Concreteness N. POS N.
1.0 to 2.0 2,426 Adjective 4,130
2.0 to 3.0 5,619 Adverb 189
3.0 to 4.0 4,167 Name 139
4.0 to 5.0 4,599 Noun 9,827
- - Verb 2,322
- - Other 205
Total 16,812 Total 16,812

Table 2: Distribution of Vocabulary Items Across Con-
creteness Categories and Parts-of-Speech

The first source of lexical annotations is a
participant-based study of concreteness (Brysbaert
et al., 2014). This source provides concreteness
ratings between 1 and 5 for each lexical item, with
higher values reflecting more concrete and lower
values reflecting more abstract judgements from
participants. This source also provides the most
common part-of-speech for each lexical item. The
distribution of the vocabulary across concreteness
ratings and parts-of-speech is shown in Table 2. An
example of an abstract word (1.0 to 2.0) is belief ;
less abstract (2.0 to 3.0) is famished; more concrete
(3.0 to 4.0) is galaxy; and most concrete (4.0 to
5.0) is fire. Within parts-of-speech, most words are
categorized as adjectives, adverbs, nouns, or verbs.

Because different vocabulary items are generally
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Category N. Conc AoA
General & Abstract 2,384 2.4 10.5
Body & Individual 1,268 3.8 9.8
Arts & Crafts 114 3.8 9.8
Emotion 765 2.3 9.9
Food & Farming 586 4.2 8.6
Government & Public 761 2.9 10.9
Housing & Home 336 4.2 8.7
Money & Commerce 531 3.2 10.5
Entertainment 459 3.9 8.7
Life & Living Things 594 4.3 8.3
Movement & Travel 897 3.5 9.1
Numbers & Measures 795 2.8 9.7
Materials & Objects 1,806 3.7 9.0
Education 118 3.3 9.8
Communication 943 3.2 9.9
Social Actions 1,959 2.7 10.2
Time 474 2.7 9.2
World & Environ. 298 3.9 8.6
Psychological 1,255 2.4 9.8
Science & Tech 161 3.3 11.4
Names & Grammar 307 2.9 7.5
Total 16,812 3.1 9.7

Table 3: Distribution of Vocabulary Items Across
Semantic Domains with Concreteness and Age-of-
Acquisition Information for Each Domain

learned at different stages of language acquisition,
we also include age-of-acquisition ratings for the
vocabulary (Kuperman et al., 2012). These rat-
ings are collected via MechanicalTurk but validated
against ground-truth age-of-acquisition ratings col-
lected in a laboratory setting. For instance, words
like mom, water, and yes are reported to be learned
during a child’s second year. But words like con-
strain, confound, and thyme are reported to only
be learned at the age of twelve. If more socially-
conditioned words are subject to more variation,
we might expect, then, that vocabulary learned
later in life is subject to more variation as a re-
sult. Note that both sets of participant-based ratings
(age-of-acquisition and concreteness) depend on
inner-circle participants. Thus, these experiments
are focused on variation in embedding spaces rather
than variation in participant-based lexical features.

The next source of lexical annotations is the
UCREL Semantic Analysis system (Piao et al.,
2015) which provides a high-level semantic do-
main for each vocabulary item. For example, there
are 586 items belonging to the domain FOOD AND

Word Stability Overlap
NA EU AF SA

shag 0.53 0.00 0.00 0.03
daft 0.59 0.00 0.00 0.13

posh 0.66 0.00 0.00 0.05
proprietor 0.52 0.10 0.06 0.12

queue 0.63 0.10 0.08 0.08
abolish 0.80 0.22 0.23 0.28
bicker 0.61 0.22 0.03 0.20

isolationist 0.79 0.32 0.17 0.30
justice 0.82 0.32 0.24 0.22

reminisce 0.79 0.42 0.02 0.39
weeping 0.78 0.42 0.38 0.38

dictatorship 0.88 0.68 0.48 0.53
totalitarian 0.88 0.69 0.42 0.51

ten 0.93 0.77 0.57 0.69
twelve 0.94 0.77 0.62 0.70

Table 4: Examples With Different Levels of Overlap,
North America Compared to All Other Varieties

FARMING and 761 to the domain GOVERNMENT

AND PUBLIC. The inventory of semantic domains
is shown in Table 3 along with the average con-
creteness and average age-of-acquisition for each.
There is a clear relationship between semantic do-
main and concreteness: for example, the domain
that includes PSYCHOLOGICAL STATES is highly
abstract at 2.4 while the domain that includes FOOD

AND FARMING is highly concrete at 4.2. In the
same way, some semantic domains are acquired
early (like NAMES AND GRAMMAR at 7.5 years
of age) and others much later (like SCIENCE AND

TECHNOLOGY at 11.4 years of age).
In addition to these participant-based and

semantic-based annotations, each lexical item also
belongs to a frequency strata. This is calculated us-
ing the entire corpus across all regions and reported
in occurrences per 1 million words.

Calculating Overlap. The stability and similar-
ity of word representations are calculated using the
overlap of nearest neighbors (Burdick et al., 2021).
Given two sets of embeddings (i.e., North Amer-
ica and Europe) we iterate over each word in the
lexicon. First, we retrieve the k nearest neighbors
using cosine similarity. Second, we calculate the
overlap between the two sets of nearest neighbors.
For example, if all ten out of ten words appear in
both embeddings as nearest neighbors, the overlap
is 100%. If only five words out of ten appear as
neighbors, the overlap is 50% (five shared words
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Figure 2: Distribution of Overlap Values Across Settings of k, for Europe-Europe and Europe-America Comparisons

out of 10 possible shared words). This provides
a word-specific measure of overlap. This method
aligns the vocabulary space rather than aligning the
embedding spaces; this approach is taken because
alignment methods have previously been shown
to be unstable (Gonen et al., 2020) and thus less
suitable for identifying variation across dialects.

A selection of example levels of overlap is shown
in Table 4, with the North American embeddings
compared with all other dialects. The smallest
amount of overlap is shown for words like daft
and posh which are used in different senses across
these dialects. Culture-specific words like isola-
tionist and justice provide a mid-level of overlap,
with a similar sense but different references across
dialects. Finally, a further cultural influence is
shown for political words like dictatorship, which

are more similar in inner-circle dialects than in
outer-circle dialects. These examples show the
range of overlap levels that are observed.

We measure overlap with values for k of 5, 10,
25, and 50. The distribution of overlap values is
shown in Figure 2 for the European and North
American model (on the right) and for the Euro-
pean and European model (on the left). Thus, the
distributions on the right are across dialects and
those on the left are within the same dialect. The
impact of k is shown in the plots, with k = 5 at
top and k = 50 at bottom. Smaller values of k lead
to ragged distributions simply because the number
of possible overlap values is limited. How much
impact does the choice of k have on the results?
We can see that higher values lead to finer estimates
of the distribution of overlap, but overall the val-
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Figure 3: Distribution of Within-Dialect vs Between-Dialect Overlap Values for Europe

ues are much the same once k is above 10. For
example, there is a significant Pearson correlation
between overlap values at k = 25 and k = 50
(0.937 on the right and 0.879 on the left, in both
cases with p < 0.001). We use k = 50 for the rest
of the analysis, but the choice of k (above 10) has
minimal impact on the results. We also see that
the overlap within the same dialect (on the left) is
greater than the overlap between different dialects
(on the right). The figures for all distributions are
available in the supplementary material.1

6 Overlap Within vs Between Dialects

The first experiment evaluates whether the varia-
tion between dialects remains meaningful when
compared with baseline instability within a sin-
gle dialect. The overlap measure described above
compares the similarity between two sets of embed-
dings. We visualize the within vs between dialect
condition in Figure 3 for Europe, with each type
of comparison a separate violin plot. In blue we
see the within-dialect overlap in which we compare
European embeddings to other European embed-
dings. In orange we see between-dialect overlap

1https://jdunn.name/2023/03/27/variation-and-instability-
in-dialect-based-embedding-spaces/

for each of the other three regions. There is a clear
distinction here between variation within the same
dialect (baseline instability) and between different
dialects (actual variation).

While we measured overlap between ten unique
pairs of embeddings for each condition, this figure
shows only the first pair for each. The supplemen-
tary materials contain the figures for all compar-
isons. The conclusion remains the same: the vari-
ation in embeddings across dialects is not simply
a result of instability alone. There is a clear visual
distinction between within-dialect and between-
dialect overlap in all cases. We test for significance
using a paired t-test: for example, are the values
for Europe-Europe comparisons actually different
from the values for Europe-Africa comparisons?
For each comparison, we randomly choose a single
pair of embeddings to test (i.e., so that we compare
Europe and Africa only once). In each case the
difference is significant with p < 0.001.

Thus, there is a visually clear and statistically
significant difference between baseline instability
and variation across dialects. We quantify the mag-
nitude of this difference in Table 5 using a Bayesian
estimate of the mean difference across the entire
vocabulary and all pairs of embeddings. Within-
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EU NA AF SA
EU 74.1% 26.8% 19.7% 21.5%
NA – 74.0% 20.3% 22.0%
AF – – 71.5% 20.7%
SA – – – 72.8%

Table 5: Bayesian Estimates of Overall Overlap Within
and Between Dialects at 95% Confidence Interval,
Across All Comparisons, k = 50

dialect overlap ranges from 71.5% to 74.1%, pro-
viding a baseline for instability. Between-dialect
overlap ranges from 19.7% to 26.8%, showing that
the dialect represented by the training corpus has a
large influence on downstream embeddings.

There is a slight effect for inner-circle and outer-
circle dialects: North America (NA) and Europe
(EU) are more similar to one another than to Africa
(AF) or South Asia (SA). Compared to the dis-
tinction between variation and baseline instability,
however, this effect is relatively minor. The outer-
circle varieties also have slightly lower stability
than the inner-circle varieties.

7 Lexical Factors

We have shown that there is a significant differ-
ence in embedding spaces depending on the dialect
represented in the training data, a difference that
is much greater than baseline instability within di-
alects (as simulated by shuffling and retraining on
the same corpora). This section explores dialectal
variation in embedding spaces further by focusing
on the impact of the lexical factors described in
Section 5. We ask whether this kind of variation is
distributed equally across the lexicon or whether it
is concentrated in particular types of vocabulary.

We model the relationship between lexical at-
tributes and overlap using a linear mixed effects
regression model, with one model for each dialect.
Within each model, the region of comparison is
a fixed effect: for example, we model variation
within the European embeddings using their over-
lap with North America, Africa, and South Asia
as fixed effects. For random effects we include all
lexical attributes. We represent each region using
the average overlap across all ten pairs of embed-
dings, using k = 50 as before. The means of
different regions are independent in the sense that
each vocabulary item is modelled independently
from corpora representing that region.

The coefficients and p-values for each lexical

attribute are shown in Table 6 for all attributes that
are significant for at least one dialect (p < 0.01).
Positive categorical factors are shown above and
negative factors below. Columns show results from
the four dialect-specific models. While some fac-
tors are significant in one dialect but not another,
no attributes have opposite effects across dialects
(i.e., indicate more variation in one dialect but less
variation in another).

Within semantic domains, vocabulary involv-
ing BODY AND INDIVIDUAL (e.g., pain and ache)
are more stable across dialects, as are FOOD AND

FARMING (e.g., celery and sushi) and SCIENCE

AND TECHNOLOGY (e.g., biologist and geolo-
gist). These terms are less socially-conditioned
in the sense that they refer to tangible objects
or to specially-defined fields (like biology) that
transcend cultural boundaries. On the other hand,
vocabulary from semantic domains HOME AND

HOUSING (e.g., guest or pew), MOVEMENT AND

TRAVEL (e.g., turnpike or curbside), and NAMES

AND GRAMMAR (e.g., northwestern or roman) are
subject to more variation. These words are more
socially-conditioned in the sense that they presume
socially-defined concepts: a guest requires a def-
inition of family units and a pew is a part of the
concept CHURCH. Within parts-of-speech, function
words (e.g., of or and) and adverbs (e.g., hardly
and exactly) are much more stable. And named
entities (e.g., Flint) are much less stable. Verbs are
more important to the model than nouns.

Of the three scalar attributes, frequency has a
significant effect but the coefficient is so small it
is negligible. Concreteness is significant in every
region, with more abstract words (e.g., surreal and
sanctimonious) being more stable while more con-
crete words (e.g., cookie and bug) are less stable.
In this case, the specific instances (the referents)
of these more concrete terms are likely to be quite
different across dialects (cookies are different in dif-
ferent places). Age-of-acquisition is significant in
three out of four regions, but it has only a relatively
small effect, with words acquired at a younger age
being more stable. For instance, mother and grand-
mother (learned at age 2) are quite stable while
ethos and polarization (learned at age 15) are sub-
ject to variation. The full regression results and the
stability/variability values for the entire lexicon are
available in the supplementary materials.2

2https://jdunn.name/2023/03/27/variation-and-instability-
in-dialect-based-embedding-spaces/
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Positive Factors Europe N. America Africa South Asia
Subject to Less Variation coef. p coef. p coef. p coef. p

Domain Body, Individual 3.97 0.000 4.36 0.000 3.82 0.000 4.56 0.000
Domain Science, Tech 3.10 0.000 4.19 0.000 2.19 0.000 3.25 0.000
Domain Food, Farming 2.67 0.000 2.98 0.000 1.87 0.000 3.25 0.000
Domain Emotion 1.44 0.000 1.67 0.000 0.58 0.002 1.08 0.000
Domain Arts, Crafts 1.37 0.004 – – – – 1.21 0.008
Domain Govt., Public 1.28 0.000 1.87 0.000 1.57 0.000 1.60 0.000
Domain Entertainment 0.84 0.001 0.75 0.004 – – – –
Domain World, Environ. – – 0.91 0.003 – – 1.22 0.000
Domain Psychological – – 0.65 0.000 – – 0.46 0.005
Domain Social Actions – – 0.49 0.001 – – – –
POS Verb 2.58 0.000 2.48 0.000 2.71 0.000 2.26 0.000
POS Function 12.97 0.000 10.35 0.000 12.14 0.000 10.43 0.000
POS Adverb 8.83 0.000 7.23 0.000 8.47 0.000 6.55 0.000

Negative Factors Europe N. America Africa South Asia
Subject to More Variation coef. p coef. p coef. p coef. p

Domain Communication -0.59 0.002 – – -0.77 0.000 -0.59 0.001
Domain Money, Com. -1.07 0.000 -0.88 0.000 – – -0.67 0.004
Domain Life, Living -1.12 0.000 – – -1.72 0.000 – –
Domain Materials, Objects -1.14 0.000 -0.91 0.000 -1.42 0.000 -0.63 0.000
Domain Movement, Travel -1.94 0.000 -1.50 0.000 -2.14 0.000 -1.28 0.000
Domain Housing, Home -2.19 0.000 -2.38 0.000 -2.39 0.000 -1.54 0.000
Domain Name, Grammar -2.24 0.000 – – -2.10 0.000 – –
POS Names -5.81 0.000 -6.40 0.000 -4.67 0.000 -6.19 0.000
POS Noun – – -0.34 0.001 – – -0.40 0.000

Scalar Factors Europe N. America Africa South Asia
Lower Ratings=Less Variation coef. p coef. p coef. p coef. p
Empirical AoA -0.54 0.000 -0.53 0.000 -0.56 0.000 -0.48 0.000
Empirical Concreteness -1.66 0.000 -1.72 0.000 -1.69 0.000 -1.74 0.000

Table 6: Coefficients and P-Values from a Linear Mixed Effects Regression Model Using the Mean Overlap Across
Dialects as the Dependent Variable. Non-Significant Effects are Not Shown.

8 Discussion and Conclusions

These experiments have shown that embedding
spaces are subject to variation according to the
dialect represented by the training data. This vari-
ation is significantly greater than noise caused by
baseline instability in the embeddings themselves.
This finding confirms the importance of regional
dialects in NLP: while previous work has shown
the impact of dialect on lexical and syntactic rep-
resentations, this paper shows that such variation
also extends to semantic representations.

Previous work has focused on distinguishing be-
tween dialects or on directly modelling variation
over space and time. This paper has taken a dif-
ferent approach by training otherwise comparable
models on corpora representing different dialects,
controlling for other sources of variation like pa-

rameter settings and random seeds. The results
show that the dialects represented in the training
context have significant downstream impacts on
common semantic representations (embeddings).
These findings raise important questions for future
work. First, is the influence of dialect consistent
across languages or is this a result of the colonial
history of a few languages like English? Second,
do contextual embeddings also manifest this type
of variation or is it confined to non-contextual skip-
gram embeddings? Third, would a larger inventory
of dialect-specific embeddings change the distribu-
tion of variation within the lexicon or is this a stable
effect? Regardless of such further questions, these
experiments show that dialect has a downstream
effect on semantic representations, expanding pre-
vious work on lexical and syntactic representations.
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Abstract
The Perso-Arabic scripts are a family of scripts
that are widely adopted and used by various lin-
guistic communities around the globe. Iden-
tifying various languages using such scripts
is crucial to language technologies and chal-
lenging in low-resource setups. As such, this
paper sheds light on the challenges of detect-
ing languages using Perso-Arabic scripts, espe-
cially in bilingual communities where “uncon-
ventional” writing is practiced. To address this,
we use a set of supervised techniques to clas-
sify sentences into their languages. Building
on these, we also propose a hierarchical model
that targets clusters of languages that are more
often confused by the classifiers. Our exper-
iment results indicate the effectiveness of our
solutions.1

1 Introduction

Historically, the territorial expansion of the Arab
conquests led to various long-lasting changes in
the world, particularly from an ethnolinguistic
point of view where the local languages of the time
faced existential challenges (Wasserstein, 2003).
With Arabic being the language of administration
–a Reichssprache– many languages were affected
and adapted in many ways such as writing or vo-
cabulary. Over centuries the Persian language
extended the Arabic script by adding additional
graphemes such as <پ> (<p>, U+067E) and <گ>
(<g>, U+06AF) to conform to the phonology of the
language. Hence, one of the main extended vari-
ants of the Classical Arabic script is the Perso-
Arabic script which has been gradually adopted
by many other languages to our day, mainly in
West, Central and South Asia (Khansir and Moza-
fari, 2014). Some of the languages using a Perso-
Arabic script are Urdu, Kurdish, Pashto, Azeri
Turkish, Sindhi, and Uyghur, along with many oth-
ers that historically used the script such as Ottoman

1Data and models are available at https://github.
com/sinaahmadi/PersoArabicLID

Turkish. This said, there are other scripts that were
directly adopted from the Arabic script without be-
ing affected by the Persian modifications such as
Ajami script used in some African languages like
Swahili and Wolof, Pegon and Jawi scripts used in
Southern Asia and Aljamiado historically used for
some European languages.
Language identification is the task of detecting

the language of a text at various levels such as
document, sentence and sub-sentence. Given the
importance of this task in natural language pro-
cessing (NLP) as in machine translation and infor-
mation retrieval, it has been extensively studied
and is shown to be beneficial to various applica-
tions such as sentiment analysis and machine trans-
lation (Jauhiainen et al., 2019). This task is not
equally challenging for all setups and languages,
as it has been demonstrated that language identifi-
cation for shorter texts or languages that are closely
related, both linguistically and in writing, is more
challenging, e.g. Farsi vs. Dari or varieties of Kur-
dish (Malmasi et al., 2015; Zampieri et al., 2020).
Furthermore, some of the less-resourced lan-

guages spoken in bilingual communities face vari-
ous challenges in writing due to a lack of adminis-
trative or educational support for their native lan-
guage or limited technological tools. These re-
sult in textual content written unconventionally,
i.e. not according to the conventional script or or-
thography of the language but relying on that of
the administratively “dominant” language. For in-
stance, Kashmiri or Kurdish are sometimes written
in the Urdu or Persian scripts, respectively, rather
than using their adopted Perso-Arabic orthogra-
phy. This further complicates the identification of
those languages, causing confusion due to the re-
semblance of scripts and hampers data-driven ap-
proaches due to the paucity of data. Therefore, re-
liable language identification of languages using
Perso-Arabic scripts remains a challenge to this
day, particularly in under-represented languages.
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Language 639-3 WP Script type Diacritics ZWNJ Dominant

Azeri Turkish azb azb Abjad ✓ ✓ Persian
Gilaki glk glk Abjad ✓ ✓ Persian

Mazanderani mzn mzn Abjad ✓ ✓ Persian
Pashto pus ps Abjad ✓ 7 Persian
Gorani hac - Alphabet 7 7 Persian, Arabic, Sorani

Northern Kurdish (Kurmanji) kmr - Alphabet 7 7 Persian, Arabic
Central Kurdish (Sorani) ckb ckb Alphabet 7 7 Persian, Arabic

Southern Kurdish sdh - Alphabet 7 7 Persian, Arabic
Balochi bal - Abjad ✓ 7 Persian, Urdu
Brahui brh - Abjad ✓ 7 Urdu
Kashmiri kas ks Alphabet ✓ 7 Urdu
Sindhi snd sd Abjad ✓ 7 Urdu
Saraiki skr skr Abjad ✓ 7 Urdu
Torwali trw - Abjad ✓ 7 Urdu
Punjabi pnb pnb Abjad ✓ 7 Urdu
Persian fas fa Abjad ✓ ✓ -
Arabic arb ar Abjad ✓ 7 -
Urdu urd ur Abjad ✓ ✓ -
Uyghur uig ug Alphabet 7 7 -

Table 1: Perso-Arabic scripts of the selected languages studied in this paper. Columns 2 and 3 show the codes
of the languages in ISO 639-3 and on their specific Wikipedia (WP), if available. The diacritics and zero-width
non-joiner (ZWNJ) columns refer to the usage of diacritics (Harakat) and ZWNJ as individual characters.

As such, we select several languages that
use Perso-Arabic scripts, summarized in Table 1.
Among these, the majority face challenges related
not only to a scarcity of data but also unconven-
tional writing. Therefore, we define the language
identification task for these languages in two se-
tups where a) the text is written according to the
script or orthography of the language, referred to as
conventional writing, or b) the text contains a cer-
tain degree of anomalies due to usage of the script
or orthography of the administratively-dominant
language. Considering that Perso-Arabic scripts
are mostly used in languages native to Pakistan,
Iran, Afghanistan and Iraq, we also include Urdu,
Persian and Arabic as they are primarily used
as administratively-dominant languages. Further-
more, having a more diverse set of languages can
reveal which languages are more often confused.
Although we also include Uyghur, it should be
noted that it is mainly spoken in a bilingual commu-
nity, i.e. in China, where unconventional writing
is not Perso-Arabic; therefore, we only consider
conventional writing for Uyghur.

Contributions This paper sheds light on lan-
guage identification for languages written in the
Perso-Arabic script or its variants. We describe

collecting data and generating synthetically-noisy
sentences using script mapping (§2). We imple-
ment a few classification techniques and propose a
hierarchical model approach to resolve confusion
between clusters of languages. The proposed ap-
proach outperforms other techniques with a macro-
average F1 that ranges from 0.88 to 0.95 for noisy
settings (§3).

2 Methodology

Given that the selected languages are mostly low-
resourced, collecting data and, more importantly,
identifying text written in a conventional and un-
conventional way is a formidable task. To tackle
this, we focus on collecting data from various
sources on theWeb, notablyWikipedia.2 Then, we
propose an approach to generate synthetic data that
can potentially reflect and model various types of
noise that occur in unconventional writing. To that
end, we use a simple technique that maps charac-
ters from the script of a language to that of another
one, i.e. the dominant language. And finally, we
discuss our efforts to benchmark this task and pro-
pose a hierarchical model that resolves confusion
between similar languages.

2https://www.wikidata.org
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2.1 Data Collection

As Table 1 shows, all languages have their ded-
icated Wikipedia pages using their Perso-Arabic
scripts, except Gorani, Northern and Southern Kur-
dish, Balochi, Brahui and Torwali. Therefore, we
use the Wikipedia dumps as corpora for the avail-
able languages.3 On the other hand, for Northern
and Southern Kurdish, Balochi and Brahui, we col-
lect data by crawling local news websites as listed
in Table A.2. Additionally, we use Uddin and Ud-
din (2019)’s corpus for Torwali, Ahmadi (2020)’s
corpus for Gorani, Esmaili et al. (2013)’s corpus
for Central Kurdish and Tehseen et al. (2022)’s cor-
pus for Punjabi. Regarding Persian, Arabic and
Urdu, we use the Tatoeba datasets.4

Once the data is collected, we carry out text
preprocessing after converting various formats to
raw text, use regular expressions to remove special
characters related to formatting styles and remove
information such as emails, phone numbers, and
website URLs. We also convert numerals to Latin
ones as a mixture of numerals is usually used in
Perso-Arabic texts, namely Persian <۰۱۲۳۴۵۶۷۸۹>
and Arabic <٠١٢٣٤٥٦٧٨٩> numerals along with
the Latin ones. This is to ensure that a diverse set
of numerals are later included in the sentences for
the language identification task. As some of the
selected languages use two scripts, as in Punjabi
written in Gurmukhi and Shahmukhi or Kashmiri
written in Devanagari and Perso-Arabic, we also
applied a few regular expressions to remove script
and code-switched sentences or quoted ones in the
corpora. Given the complexity of detecting such
alternations, we note that script and code-switched
words may still exist in the cleaned corpora.
We finalize text preprocessing by unifying the

Unicode encoding of characters. Inconsistencies
in Unicode encoding are oftentimes due to the us-
age of keyboards with different code bindings and
are previously included in preprocessing for some
languages (Ahmadi, 2019; Doctor et al., 2022). As
an example, <ے> (U+06D2) and <ي> (U+064A)
may be used instead of <ی> (U+06CC) or <ك>
(U+0643) instead of <ک> (U+06A9) in Kurdish.
Depending on the usage of zero-width non-joiner
character (ZWNJ, U+200C), as shown in Table 1,
we also consider its removal in the preprocessing
step.5 Finally, we tokenize the corpora at the sen-

3Dumps of 20 January 2023.
4https://tatoeba.org
5We consult various sources on the Web for information

tence level using regular expressions.
Table A.3 presents the 10most frequent trigrams

in the collected corpora amongwhichmany affixes
and conjunctions are retrieved that can be indica-
tive of a language.

2.2 Script Mapping
Assuming that a noisy text is written using the dom-
inant language’s script or orthography, we map the
Perso-Arabic script of a given language to that of
the dominant language, e.g. Kashmiri script to
Urdu or Central Kurdish script to Persian and Ara-
bic. To do so, we rely on the visual resemblance
and Unicode encoding of the characters as follows:

• If two graphemes exist in the scripts of the
two languages, as in <ھ> (U+06BE) in Sindhi
and Urdu or <ٹ> (U+0679) in Saraiki and
Urdu, we map them together regardless of
their pronunciation in the two languages.

• In absence of an identical grapheme in the
dominant script, the most visually similar
character is mapped to the source charac-
ter. For instance, the most similar character
in Urdu to <ڷ> (U+06B7) in Brahui is <ل>
(U+0644). Similarly, <ۋ> (U+06CB) in Gilaki
is mapped to the similar <و> (U+0648) in Per-
sian. This way, a character can be mapped to
many other characters in the source language.

• Some mappings follow orthographic rules,
particularly for characters that vary depend-
ing on the position in a word. For instance,
vowels in Kurdish appear with an initial
hamza, i.e. <ئـ> (U+0626) as in <ئۆ> /o:/ and
<ئێ> /e:/. We also include such rules.

• Since the numerals are unified in data collec-
tion (§2.1), we also map the Latin numerals
to those of Persian and Arabic randomly.

Depending on the dominant languages, for each
source and dominant language, a script mapping
is manually created. It should be noted that
along with the non-diacritical characters, diacriti-
cal ones are also included if the diacritics, includ-
ing Harakat, are part of the grapheme as in <ڎ>
(U+068E) in Gorani and Sindhi, but not .<اَ> De-
tachable Harakat such as fatha, kasra and damma
are not included in the script mapping. Table A.1
presents the set of characters used in the selected
languages based on their relation with Arabic, Per-
sian, and Urdu as the three major languages using
Perso-Arabic scripts.
about common writing practices in the selected languages, no-
tably https://scriptsource.org.
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2.3 Synthetic Data Generation

Using the script mappings, we mimic unconven-
tional writing by generating synthetic sentences
based on the ‘clean’ ones, i.e. sentences in the col-
lected corpora. This is carried out by randomly
substituting characters in the clean sentence with
an alternative in the target script using our map-
pings. In order to evaluate the impact of noise on
language identification, we synthesize data at var-
ious levels starting from 20% noise up to 100%,
where a certain level of noise is applied based
on the number of possible substitutions. Table 2
shows an example of a clean sentence in Northern
Kurdish and its synthetic noisy equivalents based
on the level of noise.
Therefore, the datasets are categorized as fol-

lows:
1. CLEAN: a dataset containing original sen-

tences from the corpora without injecting any
noise. This is equivalent to 0% of noise in
the data. This includes all the selected lan-
guages along with Urdu, Persian, Arabic, and
Uyghur.

2. NOISY: datasets of sentences having noisy
characters at various levels, starting from
20% of noise and gradually increasing 20%
up to 100%. Regardless of usage, detachable
diacritics are removed when the noise level is
100%, including for Kashmiri for which dia-
critics are strictly used. We combine all data
with all levels of noise in a separate dataset
called ALL. Given that Persian, Urdu, Arabic,
and Uyghur do not face unconventional writ-
ing, they are not included in the noisy data.

3. MERGED: the result of merging CLEAN and ALL
datasets.

The CLEAN and NOISY datasets contain 10,000
sentences per language, except for Brahui, Torwali,
and Balochi, for which only 549, 1371, and 1649
sentences are available in the corpora respectively.
Therefore, we included 500 sentences from those
languages in the test sets and upsample the remain-
ing sentences with a coefficient of four, i.e. dupli-
cating four times the remaining sentences, and con-
sider them as a train set. Similarly, for Kashmiri
and Gorani for which 6340 and 8742 sentences are
respectively available, 2000 sentences are added
to the test set while the remaining sentences are
upsampled to have 8000 sentences in the train set.
To avoid an imbalance of data for dominant lan-

guages for which there is no noise, i.e. Urdu, Per-

Noise % Sentence

Clean
دووەمین پێشانگەها فۆتۆگرافەرێن کورد ل بەلجیکا

Second Kurdish photographers’ exhibition in Belgium

20 دووهمین پێشانكهها فۆتۆكرافهرێن كورد ل بهلجیكا

40 دووه مین بشانكه ها فطكرافه رن كورد ل به لجیكا

60 دووة مين بشانكة ها فوتوكرافة رن كورد ل بة لجيكا

80 دووةمين بيشانكةها فؤتؤكرافةرين كورد ل بةلجيكا

100 دووهمين بيشانكهها فوتوكرافهرين كورد ل بهلجيكا

Table 2: A sentence in Northern Kurdish (Kurmanji)
along with its synthetically-generated noisy ones based
on different levels of noise.

sian, Arabic, along with Uyghur, 10,000 more in-
stances are added from their respective clean cor-
pora. As such, theMERGED dataset contains 20,000
clean and noisy sentences per language.

2.4 Benchmarking
We consider language identification as a proba-
bilistic classification problemwhere each sentence
is predicted to belong to a specific class, i.e. lan-
guage, with a certain probability. We use the 80/20
split of the sentences in the various datasets for the
train and test sets as described in the previous sec-
tions. Both sets are from the same data.
As a baseline system, we use fastText’s pre-

trained language identification model–lid.176
that is trained using data from Wikipedia, Tatoeba
and SETimes for 176 languages, including all the
selected languages except Balochi, Brahui, Gilaki,
Gorani, Northern Kurdish (in Perso-Arabic script),
Southern Kurdish and Torwali. In addition, we
train a model using fastText with word vectors of
size 64, a minimum and maximum length of char-
actern-grams of 2 to 6, 1.0 learning rate, 25 epochs
and a hierarchical softmax loss.
Other than the fastText-related baseline and our

own models, we also report precision, recall, and
F1 scores for benchmarking purposes for state-of-
the-art methods such as Google’s CLD3 (Salcianu
et al., 2020), Franc6 and Langid.py (Lui and
Baldwin, 2012). We also share two other base-
lines trained from scratch with character n-gram
features of sizes 2 to 4 - Multinomial Naive Bayes
model (MNB – non-uniform learned class priors,
no Laplace smoothing), and a Multilayer Percep-
tron (MLP) with maximum iterations of 500, one
hidden layer of size 500 and a batch size of 1000.

6https://github.com/wooorm/franc/
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Multilingual Root Model

SDH

Cluster 1 Classifier

Finer Prediction

CKB KU HAC FA

Cluster 2 Classifier

Finer Prediction

GLK MZN AZB PS UD

Cluster 3 Classifier

Finer Prediction

KAS PA SKR SD

Figure 1: Architecture of our hierarchical model. If the root model predicts Southern Kurdish (SDH), Gorani (HAC),
Northern Kurdish (KMR), or Central Kurdish (CKB), the sample gets sent down to a smaller expert classifier that is
trained to resolve confusion between these four closely-related languages. Likewise for cluster 2 and cluster 3’s
languages. If an unclustered language is predicted by the root model, i.e. none of the branches are available, the
hierarchical model predicts the same label as the root.
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Figure 2: Confusion matrix of the multilingual root model on the training dataset. Row labels indicate our custom
fastText model’s predictions, columns indicate true labels (training dataset), and each cell count indicates the num-
ber of predictions made by the model for a (prediction, true label) pair. From the confusion matrix, we identified
three highly-confused language clusters as reported in Section 2.5.
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2.5 Hierarchical Modeling
The goal behind hierarchical modeling (Figure 1)
is to resolve a model’s confusion between highly-
related languages by training expert classifiers that
specialize in distinguishing between a small set of
languages. We achieve this by inspecting the con-
fusion matrix of the best-performing model (on
training data) and identifying language clusters
that the model shows high confusion in predict-
ing. The custom-trained fastText model described
in the previous section serves as the root classifier
and we identify three clusters, as mentioned below,
from its confusion matrix (Figure 2):
1. Cluster 1 containing Southern Kurdish, Cen-

tral Kurdish, Northern Kurdish and Gorani
2. Cluster 2 containing Persian, Gilaki, Mazan-

derani, Azeri Turkish and Pashto
3. Cluster 3 containing Urdu, Kashmiri, Punjabi,

Sindhi and Saraiki
Each sub-unit in the hierarchical tree is a fast-

Text model trained from scratch on data from the
relevant cluster’s languages with the same param-
eterization as the root model.

3 Results

In Table 3, we report precision, recall, and F1
scores across all datasets, 6 state-of-the-art and
custom-trained baselines, our root fastText model
(Root), and a hierarchical confusion-resolution
model (Hier). We find that our root fastText model
performs well by considerable margins when com-
pared to the pre-trained fastText baseline, Google’s
CLD3, langid.py, Franc, MNB and MLP.

3.1 State-of-the-Art vs. Simple Baselines
None of the three state-of-the-art models (CLD3,
langid.py, Franc) get more than 0.15 F1 score
on our test set across all 19 languages and noise
settings. In fact, they often get acutely low F1
scores (0 ≤ F1 < 0.1) for mixed noise settings
(40% - ALL). This is despite these models’ support
of Urdu, Persian, Arabic, Sindhi, with Franc ad-
ditionally covering Central Kurdish. This demon-
strates the poor quality of language identification
in the state-of-the-art pre-trained models despite
claims of covering hundreds of languages, fur-
ther highlighting that language identification is far
from solved. Compared to these three models, the
MNB and MLP models perform better across all
noise levels (except 20% noise), and even outper-
form fastText’s large pre-trained model lid.176

on 7 out of 8 noise settings, becoming a stronger
baseline than the lid.176 model.

3.2 Hierarchical Modeling with fastText
Coming to our two models, the custom fast-
Text model (Root) and the hierarchical confusion-
resolution model (Hier), it is clear that both mod-
els perform noticeably better compared to any of
the baselines by a huge margin. Since the hier-
archical model is trained on the MERGED dataset
which contains noisy and clean sentences with four
more classes than the clean (0% noise) setting, it
is natural that the Root model performs better in
the clean setting. However, for any realistic noise
level (from 20% toMERGED) the hierarchical model
performs better than the Root model.
To test these subtle improvements, we report sta-

tistical significance results for each noise level ac-
cording to a one-tailed Z-test, comparing the root
model with the hierarchical model, at a signifi-
cance level 0.01. We perform a Z-test because the
number of samples is greater than 30 and the sam-
ple variance can be reliably used as an estimate of
the population variance. The null hypothesis is that
there is no significant difference between the root
and the hierarchicalmodel (µ0 : froot = fhier) and
the alternative hypothesis proposes that the hier-
archical model’s performance is significantly and
strictly greater than the root model (µ1 : froot <
fhier). We compute a one-tailed 99% confidence
interval for the root model’s F1 score froot. As per
the one-tailed Z-test, we can reject the null hypoth-
esis and conclude that the difference between F1
scores is statistically significant if the hierarchical
model’s F1 score fhier is strictly over this interval’s
upper bound. In Table 4, we report the results of
our hypothesis testing and find that the advantage
provided by our hierarchical confusion-resolution
approach is statistically significant at the 99% con-
fidence level for all noise settings. Therefore, we
establish that a confusion-informed hierarchical
approach could be utilized to improve performance
on noisy data without re-training the entire model
and that it translates well to the test set by bringing
statistically significant improvements.

3.3 Language-Specific Performance
In Table 5, we report language-level scores across
noise levels for the best two systems: our custom
fastText model and our confusion-resolution hier-
archical model. Across all languages and noise lev-
els, the hierarchical model only underperforms in
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Noise Metric Hier Root fastText CLD3 langid.py Franc MNB MLP

0%
Precision 0.72 0.91 0.16 0.03 0 0.02 0.43 0.47
Recall 0.70 0.89 0.07 0.05 0 0.02 0.14 0.16
F1 Score 0.72 0.90 0.10 0.04 0 0.02 0.21 0.24

20%
Precision 0.92 0.92 0.30 0.08 0.13 0.13 0.08 0.03
Recall 0.89 0.89 0.32 0.18 0.18 0.18 0.05 0.05
F1 Score 0.91 0.90 0.31 0.11 0.15 0.15 0.06 0.04

40%
Precision 0.91 0.90 0.17 0.04 0 0.01 0.51 0.49
Recall 0.88 0.88 0.07 0.05 0 0 0.09 0.11
F1 Score 0.90 0.89 0.10 0.05 0 0 0.16 0.19

60%
Precision 0.91 0.90 0.17 0.04 0 0 0.45 0.54
Recall 0.88 0.87 0.07 0.05 0 0 0.12 0.09
F1 Score 0.89 0.88 0.09 0.04 0 0 0.20 0.15

80%
Precision 0.90 0.90 0.16 0.03 0 0 0.25 0.33
Recall 0.88 0.87 0.06 0.05 0 0 0.12 0.15
F1 Score 0.89 0.88 0.08 0.04 0 0 0.16 0.21

100%
Precision 0.90 0.90 0.15 0.03 0 0 0.44 0.44
Recall 0.88 0.87 0.06 0.05 0 0 0.08 0.11
F1 Score 0.89 0.88 0.08 0.03 0 0 0.13 0.17

ALL
Precision 0.90 0.89 0.15 0.03 0 0 0.28 0.51
Recall 0.87 0.86 0.06 0.05 0 0 0.16 0.10
F1 Score 0.88 0.88 0.08 0.04 0 0 0.20 0.17

MERGED
Precision 0.95 0.95 0.28 0.06 0.11 0.11 0.15 0.15
Recall 0.94 0.94 0.27 0.16 0.16 0.16 0.08 0.07
F1 Score 0.95 0.94 0.27 0.09 0.13 0.13 0.10 0.10

Table 3: Comparison of all language identification models’ precision, recall, and F1 scores across noise settings.
Our hierarchical (Hier) and Root models perform as the best two models for all noise levels. fastText, Multinomial
Naive Bayes (MNB) and Multilayer Perceptron (MLP) take third place for different noise levels. Precision, recall,
and F1 scores are reported for all methods to provide benchmarks. For two values that are the same up to the
hundredth decimal place, boldfaced entries indicate strictly better performance.

Noise Test Samples ∆ Significant

0 33500 -0.188 7

20 25500 0.005 3

40 25500 0.006 3

60 25500 0.007 3

80 25500 0.007 3

100 25500 0.007 3

ALL 27806 0.007 3

MERGED 69304 0.002 3

Table 4: Improvements (positive ∆) in the F1 scores
of our hierarchical modeling approach compared to the
Root model are statistically significant for all noise lev-
els at significance level = 0.01, i.e. 99% confidence.

5 out of 128 settings. For all others, it performs ei-
ther at par or better than the Root model. The bold-
face entries indicate that the hierarchical model
brings the most improvements in the noisy settings
(20%-ALL) across all three identified clusters. As
expected, for languages that were not part of any
highly-confused cluster, i.e. AR, BAL, TRW, UG and
BRH, the hierarchical and Root model produce the
same predictions, therefore, have the same scores
across noise levels. In Table A.4, we also provide
a few language identification examples at various
noise levels based on the predictions of the pre-
trained fastText model in comparison to our model.
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0% 20% 40% 60% 80% 100% ALL MERGED

M1 M2 M1 M2 M1 M2 M1 M2 M1 M2 M1 M2 M1 M2 M1 M2

Cluster 1
SDH 0.95 0.96 0.95 0.96 0.94 0.95 0.93 0.94 0.93 0.94 0.94 0.94 0.94 0.94 0.95 0.96
CKB 0.95 0.95 0.94 0.94 0.92 0.94 0.91 0.93 0.91 0.93 0.91 0.92 0.92 0.93 0.95 0.95
KU 0.95 0.95 0.93 0.94 0.93 0.93 0.92 0.93 0.93 0.92 0.92 0.92 0.92 0.93 0.95 0.95
HAC 0.94 0.94 0.94 0.94 0.93 0.93 0.92 0.92 0.92 0.92 0.92 0.92 0.91 0.92 0.94 0.94

Cluster 2
FA 0.97 0.98 - - - - - - - - - - - - 0.97 0.98

GLK 0.92 0.94 0.88 0.89 0.88 0.89 0.88 0.9 0.88 0.89 0.88 0.89 0.92 0.92 0.92 0.94
MZN 0.92 0.92 0.85 0.86 0.85 0.86 0.85 0.87 0.85 0.86 0.85 0.87 0.92 0.93 0.92 0.92
AZB 0.91 0.91 0.86 0.87 0.85 0.86 0.86 0.87 0.86 0.87 0.85 0.86 0.9 0.91 0.91 0.91
PS 0.96 0.96 0.94 0.95 0.94 0.95 0.94 0.95 0.94 0.95 0.94 0.94 0.96 0.96 0.96 0.96

Cluster 3
UD 0.96 0.97 - - - - - - - - - - - - 0.96 0.97
KAS 0.94 0.95 0.9 0.91 0.9 0.91 0.9 0.91 0.9 0.91 0.87 0.88 0.91 0.9 0.94 0.95
PA 0.91 0.91 0.87 0.86 0.86 0.86 0.86 0.86 0.85 0.86 0.85 0.85 0.87 0.87 0.91 0.91
SD 0.93 0.94 0.89 0.91 0.88 0.89 0.87 0.89 0.87 0.89 0.87 0.89 0.91 0.91 0.93 0.94
SKR 0.92 0.91 0.85 0.85 0.84 0.85 0.84 0.85 0.85 0.85 0.84 0.85 0.86 0.88 0.92 0.91

AR 0.98 0.98 - - - - - - - - - - - - 0.98 0.98
BAL 0.98 0.98 0.94 0.94 0.94 0.94 0.94 0.94 0.95 0.95 0.95 0.95 0.97 0.97 0.98 0.98
TRW 0.95 0.95 0.87 0.87 0.89 0.89 0.88 0.88 0.88 0.88 0.87 0.87 0.91 0.91 0.95 0.95
UG 0.99 0.99 - - - - - - - - - - - - 0.99 0.99
BRH 0.84 0.84 0.7 0.7 0.67 0.67 0.68 0.68 0.68 0.68 0.65 0.65 0.63 0.63 0.84 0.84

Table 5: Language-level F1 scores for our hierarchical (M1) and Root (M2) models. Our hierarchical model shows
improvement in F1 score for languages in all three clusters (first 3 sections from the top) across noise levels. Dashed
cells show that the language only has a conventional script and therefore was not part of the synthetic data settings.

4 Related Work

Modeling Approaches Language identification
is generally modeled as a multi-class text clas-
sification task and has achieved state-of-the-art
performance with straightforward byte, character
or word-level n-gram features across languages
and language varieties and in limited data set-
tings (Jauhiainen et al., 2017). Model or classi-
fier choice is highly dependent on the source, do-
main and quantity of data per language, with sim-
ple linear classifiers like Support Vector Machines
(Ciobanu et al., 2018; Malmasi and Dras, 2015)
and Multinomial Naive Bayes (King et al., 2014;
Mathur et al., 2017) providing strong baselines
with limited data and compute across domains. If
large amounts of data are available, aggregated
classifiers (Baimukan et al., 2022) and neural mod-
els may be used, but have continued to strug-
gle with similar language varieties and dialects
and have been prone to overfitting (Medvedeva
et al., 2017; Criscuolo and Aluísio, 2017; Eldes-
ouki et al., 2016).
In our paper, we propose a hierarchical ap-

proach to language identification that identifies

commonly-confusable language pairs in noisy set-
tings and resolves such mispredictions with small
classification units. Such a modeling approach can
be used to expand language coverage and improve
the performance of the existing pre-trained mod-
els without retraining large compute-hungry mod-
els. In our case, we noticed statistically significant
improvements for noisy data settings.

Similar Languages and Varieties Language
identification is a well-studied problem, some-
times even considered solved; in reality, most of
the world’s languages are not supported by cur-
rent systems. This lack of representation affects
large-scale data mining efforts and further exac-
erbates data shortage for low-resource languages.
One key bottleneck in improving language cov-
erage in language identification systems is the
ability to distinguish between similar languages,
language varieties, and dialects. As outlined in
this paper, this becomes even more challenging
when a language community adopts the unconven-
tional script of a dominant language. Recently,
there has been studies in distinguishing between
Nordic languages (Haas and Derczynski, 2021),
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Arabic dialects (Nayel et al., 2021; Abdul-Mageed
et al., 2020; Salameh et al., 2018) and regional
Italian and French language varieties (Jauhiainen
et al., 2022; Camposampiero et al., 2022). Haas
and Derczynski (2021), for instance, experiment
with many modeling and featurization approaches
to best distinguish between six Nordic languages:
Danish, Swedish, Norwegian (Nynorsk), Norwe-
gian (Bokmål), Faroese and Icelandic. They find
that skipgram embeddings extracted out of fast-
Text are rich and capable of distinguishing be-
tween closely-related languages. It is worth noting
that while the paper’s approach presented improve-
ments across selected languages, all six selected
Nordic languages have a large amount of training
data (50K+ sentences) and are already supported
by off-the-shelf tools like langid.py. This is in
contrast to our workwhere previously unsupported
languages and varieties are incorporated into lan-
guage identification systems and evaluated.
To distinguish between similar languages and

dialects, more shallow and linear classifiers such
as Naive Bayes and Logistic Regression tend to
outperform neural models like MLP or convolu-
tional neural networks (Chakravarthi et al., 2021;
Aepli et al., 2022; Ceolin, 2021). This is con-
firmed by non-neural classical machine learning
approaches winning a majority of VarDial 2021
and 2022 shared tasks across typologically di-
verse languages such as Dravidian languages, Ro-
manian dialects, Italian and French regional va-
rieties (Jauhiainen et al., 2022; Camposampiero
et al., 2022), and Uralic languages (Chakravarthi
et al., 2021). Neural modeling approaches, due
to limited data in similar languages/varieties, may
also sometimes under-perform non-neural base-
lines as reported in the Uralic Language Identifi-
cation or the Italian Dialect Identification shared
tasks (Chakravarthi et al., 2021; Aepli et al., 2022).

5 Conclusion

We focus our study on languages written in bilin-
gual communities where an unconventional domi-
nant Perso-Arabic script is often utilized in place
of a conventional and more suitable Perso-Arabic
variant writing system. We discuss challenges
unique to this scenario, in both data collection
and language identification, and consequent per-
formance issues in state-of-the-art systems when
faced with data in such unconventional writing sys-
tems. This is highlighted by the 20-point perfor-

mance difference in F1 scores between noisy and
clean/mixed settings. Our proposed hierarchical
approach outperforms a custom-trained fastText
system, simple MNB and MLP and the state-of-
the-art language identification systems ofGoogle’s
CLD3, Franc and langid.py. We find statisti-
cally significant improvements by using a hierar-
chical model after analyzing a root multilingual
model’s confusion matrix.

6 Limitations

Some of the selected languages use more than
one script, as in Punjabi or Kurdish. This affects
the quality of the collected data which is prepro-
cessed automatically. As such, we believe that our
datasets contain a trivial but existing amount of
code-switched text. Moreover, having focused on
the Perso-Arabic scripts, we did not include texts
from other scripts of such languages. Although a
language can be affected by more than one domi-
nant language and the synthetic data is generated
by considering various script mappings, the impact
of individual dominant languages is yet to be ana-
lyzed. To this end, a finer-grained classification
task should be defined per dominant language.
Additionally, variants such as Dari and Farsi

of Persian, and sub-dialects of the selected lan-
guages could be included in this task. In the same
vein, our hierarchical approach can be applied to
other scripts, particularly those that are adopted by
many languages, such as Cyrillic and Latin. Fi-
nally, other techniques can be implemented and
fine-tuned based on our collected data.
Generally, it is expected that the presented mod-

els perform better when trained on more data. We
also believe that our hierarchical model’s improve-
ments over the root model are limited by the size
of our training sets. With more genuine noisy data
available, it is possible that our performance will
improve across all noise setups as well as the clean
data setup.
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A Selected Languages
Graphemes Kurdish Gorani Uyghur Arabic Azeri Gilaki Mazanderani Persian Urdu Kashmiri Punjabi Saraiki Torwali Pashto Sindhi Brahui Balochi

ئ ئ ئ ئ ئ ئ ئ ئ ئ ئ ئ ئ ئ ئ ئ ئ ئ
ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا
ب ب ب ب ب ب ب ب ب ب ب ب ب ب ب ب ب
ت ت ت ت ت ت ت ت ت ت ت ت ت ت ت ت ت
ج ج ج ج ج ج ج ج ج ج ج ج ج ج ج ج ج
د د د د د د د د د د د د د د د د د
ر ر ر ر ر ر ر ر ر ر ر ر ر ر ر ر ر
ز ز ز ز ز ز ز ز ز ز ز ز ز ز ز ز ز
س س س س س س س س س س س س س س س س س
ش ش ش ش ش ش ش ش ش ش ش ش ش ش ش ش ش
ل ل ل ل ل ل ل ل ل ل ل ل ل ل ل ل ل
م م م م م م م م م م م م م م م م م
ن ن ن ن ن ن ن ن ن ن ن ن ن ن ن ن ن
و و و و و و و و و و و و و و و و و
ه ه ه ه ه ه ه ه ه ه ه ه ه ه ه ه ه
ی ی ى ی ی ی ی ی ی ی ی ی ی ی ی ی ی

آ آ آ آ آ آ آ آ آ آ آ آ آ آ
أ أ أ أ أ أ أ أ أ أ أ أ أ أ
إ إ إ إ إ إ إ إ إ إ إ إ إ إ
ؤ ؤ ؤ ؤ ؤ ؤ ؤ ؤ ؤ ؤ ؤ ؤ ؤ ؤ
ث ث ث ث ث ث ث ث ث ث ث ث ث
ذ ذ ذ ذ ذ ذ ذ ذ ذ ذ ذ ذ ذ

ح ح ح ح ح ح ح ح ح ح ح ح ح ح ح
خ خ خ خ خ خ خ خ خ خ خ خ خ خ خ خ

ص ص ص ص ص ص ص ص ص ص ص ص ص
ض ض ض ض ض ض ض ض ض ض ض ض ض
ط ط ط ط ط ط ط ط ط ط ط ط ط
ظ ظ ظ ظ ظ ظ ظ ظ ظ ظ ظ ظ ظ

ع ع ع ع ع ع ع ع ع ع ع ع ع ع ع
غ غ غ غ غ غ غ غ غ غ غ غ غ غ غ غ
ف ف ف ف ف ف ف ف ف ف ف ف ف ف ف ف
ق ق ق ق ق ق ق ق ق ق ق ق ق ق ق ق

ة
ي ي
ك ك

پ پ پ پ پ پ پ پ پ پ پ پ پ پ پ پ
ک ک ک ک ک ک ک ک ک ک ک ک ک ک ک
چ چ چ چ چ چ چ چ چ چ چ چ چ چ چ چ
گ گ گ گ گ گ گ گ گ گ گ گ گ گ گ گ
ژ ژ ژ ژ ژ ژ ژ ژ ژ ژ ژ ژ ژ ژ ژ
ھ ھ ھ ھ ھ ھ ھ ھ ھ ھ ھ

ے ے ے ے ے ے ے ے
ٹ ٹ ٹ ٹ ٹ ٹ ٹ
ں ں ں ں ں ں ں
ڑ ڑ ڑ ڑ ڑ ڑ
ڈ ڈ ڈ ڈ ڈ ڈ ڈ

ڕ ڕ ڭ وْ ˇ ˇ ٲ ࣇ ٻ ځ څ ڀ ڷ ݔ
ە ە ە ؽ ۋ ٳ ݨ ڄ ڇ ځ ٻ ۏ
ڤ ڤ ۇ ۇ ۊ ۄ ن٘ ݙ ݲ ډ ٿ ˇ
ڵ ڵ ۆ ۆ ۆ ڳ څ ړ ٺ
ۆ ۆ ۈ وٗ ݨ ڙ ږ ٽ
ێ ێ ۋ ےٚ ݜ ټ ڄ
ۊ ۉ ې ښ ڇ

ۋ
!

ګ ڃ
یْ ڼ ڊ
یٛ ۀ ڌ
وٙ ي ڍ
ڎ ې ڏ

ۍ ڙ
ڦ
ڪ
ڱ
ڳ
ڻ
ي
۽
۾

Total/Unique 35/7 40/12 34/7 35/0 41/4 40/3 38/1 37/0 43/0 50/6 46/3 48/5 49/8 52/13 58/21 44/1 32/3
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ra
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rs
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rd

u
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ng
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ge
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fic
 

1

Table A.1: The Perso-Arabic scripts used in the selected languages with a comparative overview of the Arabic,
Persian and Urdu scripts. Note that language-specific characters refer to those characters that are unique to a
language and not used in Arabic, Persian or Urdu. This is shown in the last row as well.
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Language Website

Balochi https://sunnionline.us/balochi/
Brahui https://talarbrahui.com
Northern Kurdish https://badinan.org
Southern Kurdish https://shafaq.com/ku

Table A.2: Local news websites from which the collected data are crawled.

KMR CKB SDH HAC UIG ARB AZB GLK MZN FAS URD KAS PNB SKR TRW PUS SND BRH BAL

␣و␣ ␣نی له␣ ␣و␣ ئا␣ ال␣ ای␣ ␣ان ␣ون ␣ست ␣یں چھ␣ ␣دے ␣اں ␣سی ␣د␣ ␣جي ␣نا ␣نت
␣ێن له␣ ␣له به␣ نىڭ أن␣ ␣یر ستا ␣نه می␣ ہے␣ اَ␣ ␣اں ␣دے سی␣ ␣په جي␣ نا␣ ␣اں
␣ان انی ئه␣ ␣نه ␣ىڭ ␣لى یند ای␣ ␣و␣ است می␣ مَن دے␣ ␣یں می␣ په␣ ␣ان ␣ان ␣ان
هه␣ ␣ان وە␣ ␣ان ىنى من␣ ␣ین تان ␣تا را␣ میں چھِ ␣وں ␣وں ␣می او␣ ␣۾␣ اس␣ انت
ئه␣ به␣ ␣ان جه␣ ␣نى الم ␣ده ␣ته و␣ه ␣را ہیں ␣ھِ ␣تے ␣تے مھ␣ ␣او ␣۽␣ ␣ڻی ␣نی
کو␣ ␣ەی ␣و␣ ␣ەی ىلى في␣ او␣ ␣␣ ا␣ه اس␣ کی␣ ␣ہٕ ␣دی ␣دی کی␣ د␣ه جو␣ اٹ␣ ␣که
␣یا ئه␣ ەیل که␣ ␣ان ␣في ␣ان ا␣ه ␣ره به␣ ␣ہے ␣کھ دی␣ دے␣ ␣ھی کې␣ ج␣ن او␣ ان␣
␣ل␣ ەوە ␣یل ␣جه ئى␣ سا␣ ا␣ی ایس ای␣ ␣ند ہ␣ا مَ␣ وچ␣ ␣دا م␣ی ␣له آه␣ ␣آ␣ انی
␣نا ␣و␣ کرد انی ئ␣ى ␣مي ␣و␣ وست ␣له ␣به ہو␣ اَک ␣نے تے␣ تھ␣ د␣ې ␣هن ا␣ن که␣
دا␣ ئ␣ی ␣یگ ئا␣ ىرى ␣من ␣دا ␣سه ␣ته می_ ␣نے َکھ ␣وچ دی␣ بھ␣ ␣کې ␣جو دا␣ ␣ێں

Table A.3: The 10most frequent trigrams in the collected corpora of the selected languages. ␣ and _ represent space
and ZWNJ, respectively. Among the trigrams, many affixes and conjunctions can be seen, such as ␣و␣ (‘and’) in
Northern Kurdish (KMR), ␣که (‘that’) in Gorani (HAC).

Language Noise %
Prediction (@1)

Sentence
lid.176 Our’s

Punjabi 0 Urdu Azeri اور لادینیت واشتراکیت کو جمہوریت کے حسین لبادہ میں پیش کردیا گیا ۔
Saraiki 0 Punjabi Saraiki کہیں وی زبان وادب تے تحقیق زیادہ تر کیفیتی

Sindhi 0 Sindhi Sindhi گھڻا دفعا ھڪ عورت ساٿياڻي جنھن سان ڪوئي افلاطوني

Balochi 0 Urdu Balochi آیانی راہا کہ تئی مھر بوتگ انَت گنجّ گْوار

Azeri 0 Persian Azeri قوزئی و دوغو سوریه موختار ایداره ائتمه سی

Gilaki 0 Persian Gilaki شوراب ایسم ایته روستا ایسه جه راستوپی دهستان

Persian 0 Persian Persian جوانی زمان فرا گرفتن دانایی است. پیری زمان تمرین کردن آن است.

Uyghur 0 Uyghur Uyghur ھەيدەكچىلىك تەرتىپىنى ئاياغلاشتۇرۇش توغرىسىدا كېسىم چىقىرىدۇ

Southern 
Kurdish 0 Sorani Southern 

Kurdish
ڤایرۆس کۆرۆنا لەڕێ دادوەر و پاریزەرەیل دەوام لە دادگاى هەولێر وسان

Kashmiri 20 Urdu Kashmiri سودھا رانی چھِ اکَھ ہنِدوستانُے ادَاکارہ یوس فِلمَن مَنٛز چھِ کامُ کَران.

Kashmiri 100 Urdu Kashmiri سودھا رانی چھ اکھ ہندوستانے اداکارہ یوس فلمن منز چھ کام کران.

Sorani 20 Persian Sorani رێژهی دهرجوانی ئهمسال له سالی پێشتر زیاتره

Sorani 100 Arabic Sorani ريژهي دهرجاني ئهمصال له صالي پيشطر زياطره

Table A.4: A few examples in the selected languages along with the predictions of fastText’s pretrained models
(lid.176) in comparison to those of one of our models trained using fastText on our collected data.
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Abstract

Collecting texts from the web enables a rapid
creation of monolingual and parallel corpora of
unprecedented size. However, unlike manually-
collected corpora, authors and end users do
not know which texts make up the web collec-
tions. In this work, we analyse the content of
seven European parallel web corpora, collected
from national top-level domains, by analysing
the English variety and genre distribution in
them. We develop and provide a lexicon-based
British-American variety classifier, which we
use to identify the English variety. In addition,
we apply a Transformer-based genre classifier
to corpora to analyse genre distribution and
the interplay between genres and English vari-
eties. The results reveal significant differences
among the seven corpora in terms of different
genre distribution and different preference for
English varieties.

1 Introduction

Collecting text corpora in an automatic manner, by
crawling web pages, allows for quick gathering of
large amounts of texts. With this approach, the
MaCoCu1 project (Bañón et al., 2022h) aims to
provide some of the largest freely available mono-
lingual and parallel corpora for more than 10 under-
resourced European languages. However, in con-
trast to manual text collection methods, the dis-
advantage of automatic methods is that both the
corpora creators and the users do not know what
the overall quality of the dataset is, and what type
of texts the collections consist of (Baroni et al.,
2009). The MaCoCu corpora address this issue by
providing rich metadata, including information on
source URLs, paragraph quality, translation direc-
tion, English varieties, and genres. In this paper,
we present two of the text classification methods,
used to automatically enrich massive corpora with
meaningful metadata: English variety classification

1https://macocu.eu/

and automatic genre identification. We show how
they provide a better insight into the differences
between corpora.

There is limited research on the use of British
and American English in the non-native English-
speaking countries. Previous findings show that
these English varieties are preferred to a different
extent in different educational systems (Forsberg
et al., 2019), translation services (Forsyth and Cay-
ley, 2022) and on different national webs (Atwell
et al., 2007). However, to the best of our knowl-
edge, there is no freely available classifier between
American and British English which would allow
easy identification of an English variety in large
corpora, and thus allow for a corpus-based research
of this phenomenon on a larger scale. To this end,
we develop a fast and reliable classifier which is
based on a lexicon of variety-specific spellings and
words. In addition, we also compare the web cor-
pora in terms of genres. Genres are text categories
which are defined considering the author’s purpose,
common function of the text, and the text’s con-
ventional form (Orlikowski and Yates, 1994). Ex-
amples of genres are News, Promotion, Legal, etc.
In addition to providing a valuable insight into the
dataset content, information about the genre of the
document was shown to be beneficial for various
NLP tasks, including POS-tagging (Giesbrecht and
Evert, 2009), machine translation (Van der Wees
et al., 2018) and automatic summarization (Stewart
and Callan, 2009).

The main contributions of our paper are the fol-
lowing:

1. We present a freely available American-
British variety classifier that we make avail-
able as a Python package2. The classifier is
based on a lexicon of variant-specific words
and is thus reliable and fast. In contrast to
deep neural models that are trained on varying

2https://pypi.org/project/abclf/
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texts, deemed to represent different varieties,
the classifier cannot be influenced by any bias
in the training data, such as differences in top-
ics or proper names, and its predictions are ex-
plainable. The classifier can be applied to any
English corpus with texts of sufficient length
and could be used for researching which En-
glish variety is preferred in different national
web domains, official translations, school sys-
tems and so on.

2. We introduce a method of comparing large
web corpora and obtaining additional insight
into their contents based on English variety
and genre information. We apply the En-
glish variety and genre classifier to 7 paral-
lel web corpora harvested from the following
European national webs: Icelandic, Maltese,
Slovene, Croatian, Macedonian, Bulgarian
and Turkish. The results show that English
variety and genre information reveal differ-
ences between these datasets. These insights
provide useful information to corpora creators
and researchers that use the corpora for down-
stream tasks, such as training language mod-
els and machine translation models, as well as
performing corpus linguistic studies on these
corpora.

The paper is organized as follows. We first
present the related work on English variety identi-
fication and automatic genre identification in Sec-
tion 2. In Section 3, we present the web corpora
to which we apply the classifiers, described in Sec-
tion 4. The results in Section 5 show that these
approaches reveal important differences between
the corpora. The paper concludes with Section 6,
where we summarize the main findings and present
future work.

2 Related Work

Diatopic variation, that is, variation among national
varieties of the same language (Zampieri et al.,
2020), can be approached similarly to variation be-
tween different languages. Two main approaches
in language identification of English varieties are
1) corpus-based text classification and 2) lexicon-
based text classification. In corpus-based classifica-
tion, researchers use datasets which have a known
origin of the texts as a reference based on which the
classifiers are trained and evaluated, while lexicon-
based classifiers identify varieties based on a list of

variety-specific words or spelling variants.

Most previous studies on identification of En-
glish varieties were corpus-based (Lui and Cook,
2013; Utomo and Sibaroni, 2019; Cook and Hirst,
2012; Dunn, 2019; Simaki et al., 2017; Rangel
et al., 2017). The advantage of corpus-based clas-
sification is that as the model is trained on actual
text collections, it could show the differences in
the varieties as they appear “in the wild”, and re-
searchers do not need a profound knowledge of
lexical differences between the varieties that lin-
guists are aware of. To obtain reference datasets
that are large enough to be used for training the
model, researchers most often used or constructed
web corpora (Atwell et al., 2007; Lui and Cook,
2013), using the national top-level domains as in-
dicators of the text origin (e.g., .uk for British En-
glish), journalistic corpora (Zampieri et al., 2014),
national corpora (Lui et al., 2014; Utomo and Siba-
roni, 2019), such as the British National Corpus
(BNC) (Consortium et al., 2007) , and/or social
media corpora (Dunn, 2019; Simaki et al., 2017;
Rangel et al., 2017), consisting of texts from Twit-
ter and Facebook, where the variety is assigned to
texts based on the metadata about the post or its
author.

However, one of the major drawbacks of this
approach is that it is assumed that the texts from
a specific top-level domain or posted to social me-
dia from a certain location are written by a native
speaker of this variety, while this is hard or im-
possible to verify. In addition, web, national and
journalistic corpora can contain cross citations and
republications (e.g., a British text that was repub-
lished by an American newspaper website and vice
versa). This was revealed for the DSL corpus col-
lection, used in the Discriminating between Similar
Languages (DSL) shared task 2014, where 25% of
texts were discovered to be likely annotated with
the wrong English variety (Zampieri et al., 2014).
Another drawback of the corpus-based approach is
that training on text collections can introduce vari-
ous bias into the classification task. As no parallel
corpus of English varieties exists, the classification
is based on two or more separate collections of
texts. The datasets which represent each variety do
not differ only in language specificities, but also in
content and style. This hinders learning truly repre-
sentative differences between the varieties, and the
classification models might learn to differentiate
between the datasets based on other differences,
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unrelated to varieties, such as topic (Kilgarriff and
Kilgarri, 2001; Tiedemann and Ljubešić, 2012).

An alternative approach to the corpus-based clas-
sification is lexicon-based. It has been used by
Lui and Cook (2013) who devised a “variant pair”
classifier based on the VarCon lexicon of spelling
variants (Atkinson and Titze, 2020). This approach
does not introduce any biases, related to the cor-
pora content, and the classification is explainable.
However, its disadvantage is that as it relies on a
specific list of words, if none of the words occur in
a text, its variety is unknown, meaning that some
texts in the corpus may remain unclassified.

While research on automatic identification of
English varieties is rather limited, automatic genre
identification (AGI) has been an established text
categorization task ever since the advent of the
world wide web. As genre information is very
useful for obtaining better hits to a query in infor-
mation retrieval tools, used on the web, there has
been large interest for genre identification in the
area of information retrieval (see Roussinov et al.
(2001); Vidulin et al. (2007)). In addition, with
the emergence of technologies for automatic col-
lection of text corpora, an interest for tools for AGI
emerged also in the field of corpora creation and
curation. To this end, genre researchers devised
sets of genre categories which aim to cover all of
the diversity of texts found on the web, and pro-
vided manually annotated datasets (see Egbert et al.
(2015); Sharoff (2018); Kuzman et al. (2022b)).
Classification of genres was shown to be a hard
task as texts can display characteristics of multiple
genres (Sharoff, 2021), and most genre classifica-
tion models were not able to generalize outside
of the dataset on which they were trained (Sharoff
et al., 2010). However, recent advances in deep neu-
ral technologies led to a breakthrough in this field,
and Transformer-based language models (Vaswani
et al., 2017), fine-tuned on manually-annotated
genre datasets, showed the ability to identify gen-
res in various web corpora and languages (see
Rönnqvist et al. (2021); Kuzman et al. (2022a)).
Following encouraging results, Transformer-based
genre classifiers have started to be applied to web
corpora to provide genre information as metadata.
For instance, as part of newly available massive
Oscar web corpora, 351 million documents in 14
languages were enriched with genre information
(Laippala et al., 2022).

Dataset Size Text length
MaCoCu-tr-en 193,782 184
MaCoCu-hr-en 91,619 172
MaCoCu-sl-en 91,459 190
MaCoCu-bg-en 88,544 170
MaCoCu-mt-en 21,376 300
MaCoCu-mk-en 20,108 194
MaCoCu-is-en 11,639 201

Table 1: Comparison of English datasets, extracted from
the parallel corpora, in terms of size (number of English
texts) and median text length in words.

3 Datasets

In this paper, we compare seven parallel web
corpora, created in the scope of the Ma-
CoCu project (Bañón et al., 2022h): Croatian-
English MaCoCu-hr-en (Bañón et al., 2022b),
Slovene-English MaCoCu-sl-en (Bañón et al.,
2022f), Bulgarian-English MaCoCu-bg-en (Bañón
et al., 2022a), Macedonian-English MaCoCu-mk-
en (Bañón et al., 2022d), Turkish-English MaCoCu-
tr-en (Bañón et al., 2022g), Icelandic-English
MaCoCu-is-en (Bañón et al., 2022c) and Maltese-
English MaCoCu-mt-en (Bañón et al., 2022e) cor-
pus. The corpora were created by crawling the
national top-level domains, e.g. the Slovenian top-
level domain .si for the English-Slovene dataset
MaCoCu-sl-en. Important to note is that the crawl
primarily focused on the top-level domain crawl-
ing, but was allowed to harvest data from generic
domains (.com, .net etc.) if the domain proved to
have enough data in the language being crawled.
Websites containing the target language and En-
glish were identified and processed with the Bitex-
tor3 tool.

3.1 Preparation of Datasets
The corpora we analyse are available in a sentence-
level and paragraph-level format. Based on the
information on the URL of the original document
and metadata on the position of the sentence in
this document, we took English sentences from
the sentence pairs in the sentence-level format and
created a document-level corpus of English texts
from each parallel corpus.

We applied the American-British variety classi-
fier and genre classifier to the documents. Finally,
as a post-processing step, we filtered out texts with
noisy genre predictions, that is, based on manual

3https://github.com/bitextor/bitextor
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inspection, we decided to remove texts that were
annotated with two less reliable and very infrequent
labels – Forum and Other –, and texts with labels
where the confidence of the genre classifier was
low. This post-processing step amounted to around
10% of documents being discarded from the final
corpora. The code for the dataset preparation, en-
richment and analysis of the results is published on
GitHub for the purposes of reproducibility4.

3.2 Final Datasets

The final sizes of datasets, used in our comparisons,
are shown in Table 1. The Turkish corpus is the
largest, consisting of almost 200,000 English texts,
followed by the Croatian, Slovenian and Bulgar-
ian corpora with around 90,000 English texts. The
smallest corpora are Maltese, Macedonian and Ice-
landic with 10,000 to 20,000 English texts. Table 1
also shows differences between the median length
of texts. While the median text length in most
datasets is between 170 and 200 words, the Mal-
tese stands out with longer texts with the median
length of 300 words.

4 Enrichment of Datasets

4.1 American-British Variety Classifier

Although there exist numerous English varieties
throughout the world, including Indian English,
New Zealand English, Irish English, etc., in this pa-
per, we focus on differentiating between American
and British English, which are often considered
as the main varieties of standard English (Quirk,
2014). To avoid topic-related and other biases that
come with training a classifier on any reference
corpora, we opted for the lexicon-based approach.
At the same time, as the classifier is based on a
lexicon of variety-specific words and spellings, it
has a limited coverage: it cannot classify texts if
they do not contain any of variety-specific words.
However, to obtain reliable results, we opted for a
high precision approach rather than high recall.

To create our classifier, we used the VarCon lex-
icon of different spellings and vocabularies (Atkin-
son and Titze, 2020) which is based on various
dictionaries and resources on spelling differences.
We extracted British and American variety-specific
words from the lexicon. To improve the classi-
fier’s performance and reliability, a researcher with
a translation background inspected the list. We

4https://github.com/TajaKuzman/
Applying-GENRE-on-MaCoCu-bilingual

discarded rare words and words that are specific
for one variety solely when used as a certain part-
of-speech type, e.g. can (noun, as opposed to tin,
while the verb can is used in both varieties), or in a
certain context, e.g., rubber (as opposed to eraser,
while the material rubber is used in both varieties).
Multiple English dictionaries were consulted as a
reference, including Oxford Advanced Learner’s
Dictionary of Current English (Hornby, 1995) and
the online Cambridge dictionaries5.

The final size of the lexicon is 6,041 words. It
includes spelling differences, such as “-our” versus
“-or” (Br. behaviour, Am. behavior), “-ll-” versus
“-l-” (Br. bejewelled, Am. bejeweled), “-ae-” versus
“-a-” (Br. anaemia, Am. anemia), “-re” versus “-er”
(Br. theatre, Am. theater). While the great ma-
jority of words in the lexicon are spelling variants,
there are also some variety-specific words, such as
Br. lorry and Am. beltway.

Since the spelling variant “-ise” (apologise, crit-
icise, etc.) is specific for British English, while
its alternative “-ize” is used in both American and
British English, we included only the British “-ise”
variants of these words. Consequently, the lexicon
is unbalanced towards British. It consists of 4,368
British words and 1,673 American words. In this
paper, we trained the classifier on the unbalanced
lexicon. However, we also provide a balanced lexi-
con by discarding the British “-ise” spelling vari-
ants, and allow an option of using the classifier with
the balanced lexicon. It consists of 3,268 words:
1,652 American and 1,616 British words. Both lex-
icons are made available along with the code of the
classifier6.

The American-British variety classifier trans-
forms the input text into lower case and counts the
number of variety-specific words from the lexicon
that are present in the text. If no variety signal is
present, the text is classified as “unknown”. If one
variety is at least twice as present than the other,
the text is classified as the prevalent variety, either
as British or American. If both varieties are present
in a similar extent, the text is classified as a “mix”.
The resulting classifier is fast and explainable. It
classifies a text of an average length from the Ma-
CoCu corpora (190 words) in 0.25 ms and a text of
1,000 words in 1.2 ms.

We analysed the classifier’s reliability by per-
forming a manual analysis of the lexicon it is based

5https://dictionary.cambridge.org/dictionary/
6https://github.com/macocu/

American-British-variety-classifier
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Dataset Size (texts) Median length Coverage Accuracy Mix
DSL-TL dev 599 30 12% 94% 0.1%
GloWbE + NOW 1,445 634 66% 90% 4.0%
PAN17 test 800 1,391 78% 94% 12.0%

Table 2: The size of datasets, used for testing the coverage and performance of American-British classifier, in
terms of number of texts, and the median length of texts in terms of number of words. The coverage shows what
percentage of texts was assigned a variety label (American or British) as opposed to the labels “unknown” or “mix”.
The accuracy is calculated only for the texts that were assigned a variety label. Mix shows the percentage of texts
which include words from both varieties.

on, and by improving the lexicon by using the En-
glish dictionaries as a reference. We also evaluated
the performance of the classifier on three datasets,
annotated with English varieties: 1) the web cor-
pora GloWbE (Davies, 2013) and NOW (Davies,
2016), 2) the manually-annotated news DSL-TL
dataset, and 3) the Twitter PAN17 dataset (Rangel
et al., 2017). We evaluated the classifier in two cri-
teria: coverage – in what percentage of the texts it
recognizes a variety instead of categorizing them as
“UNK” (unknown) or “MIX” – and performance,
calculated for the texts to which a British or Amer-
ican variety is assigned.

To test the classifier on web-corpus-like con-
tent, we applied it over samples of the Corpus
of Global Web-based English (GloWbE) (Davies,
2013) and the News on the Web (NOW) corpus
(Davies, 2016). The GloWbE corpus is a web cor-
pus, collected by searching frequent n-grams on
Google, while the NOW corpus consists of texts
from web-based newspapers and magazines. While
the corpora consist of texts from around 20 English-
speaking countries, we used only texts from United
Kingdom and United States. The sample is bal-
anced between the two varieties and consists of
around 1,400 texts. As shown in Table 2, our clas-
sifier identified a British or American variety in
two thirds of texts (66%) and 90% of them were
predicted correctly.

Similar results were obtained on the Twitter
dataset7 from the PAN 2017 shared task on author
profiling (Rangel et al., 2017). The English part of
the dataset comprises tweets, originating from the
United States, Great Britain, Ireland, Canada, Aus-
tralia and New Zealand. However, we used only
texts from Great Britain and United States. For
each author, 100 tweets were collected and con-
catenated into one text instance, and the assigned
language variety was based on the location from

7The PAN17 dataset is available at https://zenodo.org/
record/3745980#.ZBxM3HbMI2w.

which the author mostly posted tweets. We applied
the American-British classifier on the test split of
the dataset, which consists of 800 texts with the me-
dian text length of around 1,400 words. As shown
in Table 2, the American-British variety classifier
identified a variety in 78% of texts with accuracy
of 94%. Out of the unidentified texts, 12% were
revealed to consist of words from both varieties
which might point toward lower reliability of this
dataset.

In contrast, the classifier performed poorly when
tested on the DSL-TL dataset8. The dataset is a
subset of the DSLCC dataset (Zampieri et al., 2014)
that was manually annotated with American and
British English variety labels for the VarDial 2023
shared task on discriminating between similar lan-
guages. At the time of writing the paper, the test
set with labels has not been published yet, so we
tested our classifier on the development split. The
dataset consists of excerpts from journalistic texts
which are rather short – the median text length of
the texts in the dev subset is only 30 words. The
texts were shown to be too short to provide any sig-
nal of English varieties to our classifier. As shown
in Table 2, it recognized English varieties in only
12% of texts. However, its accuracy on the labeled
texts was high, reaching 94%.

The comparison of results on the three datasets
shows a high reliability of the classifier on the texts
that were predicted to be British or American. It
also nicely shows its limitations, connected with
the length of texts. Results in Table 2 show very
clearly, but also very expectedly, that the longer the
texts are, the bigger is the classifier’s coverage.

8The dataset is available at https://github.com/
LanguageTechnologyLab/DSL-TL

95

https://zenodo.org/record/3745980#.ZBxM3HbMI2w
https://zenodo.org/record/3745980#.ZBxM3HbMI2w
https://github.com/LanguageTechnologyLab/DSL-TL
https://github.com/LanguageTechnologyLab/DSL-TL


4.2 Genre Classifier

To obtain information on genres in the corpora,
we used the X-GENRE classifier9, a multilin-
gual classifier which categorizes texts into genres.
It uses the following genre categories: Informa-
tion/Explanation, Instruction, News, Legal, Pro-
motion, Opinion/Argumentation, Prose/Lyrical, Fo-
rum and Other (see the description of the labels in
Appendix A). The classifier is based on the base
size multilingual XLM-RoBERTa Transformer-
based model (Conneau et al., 2020). It was fine-
tuned on a combination of three datasets, manually
annotated with genre labels: English CORE (Eg-
bert et al., 2015), English FTD (Sharoff, 2018) and
Slovene GINCO (Kuzman et al., 2022b) dataset.
Each of the datasets has their own set of categories,
which were mapped into a joint schema. The rea-
son for using multiple datasets instead of just one
is to assure better generalization of the model to
new datasets and languages.

We manually annotated around 150 English texts
from the Slovene MaCoCu-sl-en corpus to analyse
the reliability of the genre classifier on the Ma-
CoCu datasets. Based on that, the genre classifier
reached macro F1 of 0.73 and micro F1 of 0.88.
Analysis showed that we can eliminate some noisy
predictions by removing texts, annotated as Forum
and Other, and texts, predicted with low confidence
level, obtained from the raw output. As the main
goal of this study is to analyse global differences
between MaCoCu datasets, we decided to remove
less reliably predicted instances, as described in
Section 3.1, to perform comparison only on the
most reliable data. With this intervention, while
sacrificing the model’s coverage a bit, we obtained
a much higher classifier’s performance, reaching
0.92 in terms of micro and macro F1 score.

We applied the genre classifier to each of the
seven English datasets from the parallel MaCoCu
corpora. Prediction took approximately 6 hours
per 100,000 texts which amounted to around 35
hours on one NVIDIA V100 GPU. Afterwards,
we post-processed the data, discarding noisy genre
predictions. In the next section, we compare the
resulting datasets in terms of English variety and
genre distribution.

9https://huggingface.co/classla/
xlm-roberta-base-multilingual-text-genre-classifier

Figure 1: Distribution of American and British English
in the English parts of the Icelandic, Maltese, Slovene,
Croatian, Macedonian, Bulgarian and Turkish parallel
web corpora.

5 Results

5.1 English Variety Distribution

By using our American-British variety classifier,
more specifically, the unbalanced version, we iden-
tified the predominant English variety in each En-
glish text in the MaCoCu parallel corpora. If
there were equal amounts of American and British
variety-specific words in a text, the text was an-
notated as a “mix”, and if there were no variety-
specific words, the text was labeled as “unknown”.
The results, presented in Figure 1, show the distri-
bution of British and American English in analysed
corpora. The analysis shows that a variety was
identified in mostly over 50% of texts in a corpus.
Rather large amounts of unlabeled texts are not sur-
prising, because most of the texts are quite short,
with the median length of 170 to 300 words.

Figure 1 also shows that web corpora, obtained
from different national top-level web domains, dis-
play different preference towards British and Amer-
ican English variety. The Maltese corpus was
shown to have an overwhelming preference to-
wards British English, with 63% texts classified
as British, and only 9% classified as American.
One of possible reasons for a strong influence of
British English is Malta’s close connection to the
United Kingdom. The country is a former British
colony and a member of the Commonwealth of
Nations (Busuttil and Briguglio, 2023). Secondly,
an inspection of the most frequent domains in the
Maltese corpus revealed that half of the 10 most
frequent domains are websites from the European
Union, e.g. europarl.europa.eu, eur-lex.europa.eu,
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Figure 2: Distribution of genres in Icelandic-, Maltese-, Slovene-, Croatian-, Macedonian-, Bulgarian- and Turkish-
English MaCoCu parallel web corpora.

ec.europa.eu, etc., covering 43% of all texts from
the corpus. As the translation services in European
Union have a preference towards British English
(see Forsyth and Cayley (2022)), large amounts
of EU texts in the corpus surely impacted the En-
glish variety distribution in it. The predominance of
British English was also observed in the case of Ice-
landic, Slovene and Croatian corpora. In contrast,
the corpora from the web domains of the countries
further to the East, namely Macedonian, Bulgarian
and Turkish corpora, show a much bigger influence
of American English.

5.2 Genre Distribution
To obtain genre information, we applied the X-
GENRE classifier to each text in the English
part of the MaCoCu parallel corpora. The anal-
ysis of genre distribution, shown in Figure 2, re-
vealed interesting differences between the cor-
pora. The results show that the category Infor-
mation/Explanation is notably present in all cor-
pora, covering 20–30% of all texts. Other two
predominant categories are News and Promotion,
mostly covering 15–45% of texts. News is espe-
cially present in the Macedonian corpus, where it
amounts to almost half of all texts, followed by
Maltese and Icelandic with 25–35% of texts of this
genre. In contrast, Promotion represents only up to
15% of texts in these three corpora, while it is much
more frequent in Slovene, Croatian, Bulgarian and

Turkish corpora, representing 30–40% of texts.
Other genre categories are generally less fre-

quent. Instruction represents 5–15% of texts, with
the highest frequency in Icelandic and Turkish. Le-
gal represents around 5% of corpora. However,
legal texts represent 28% of all texts in the Mal-
tese corpus, showing this corpus to be significantly
different than the others based on genre distribu-
tion as well. Opinion/Argumentation is more or
less equally represented in all corpora, represent-
ing around 5% of texts. This category is the least
represented in the Turkish corpus, with only 1% of
texts. The least frequent category is Prose/Lyrical,
representing 0.2–3% of texts, with the largest dis-
tribution in the Maltese corpus.

5.3 Genre Distribution in English Varieties
To obtain more information on the interplay of
genres and English varieties, we looked at the aver-
age distribution of English varieties in each genre
across all corpora. The results, shown in Figure
3, reveal that News texts and Legal texts from the
analysed corpora are in average much more fre-
quently written in British English, representing
twice as much texts as the texts of these genres
written in American English. News and Legal
texts represent 60% of texts in the Maltese cor-
pus, which also provides some explanation on why
the Maltese corpus contains so much more British
English than the others. In contrast, the category
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Figure 3: Average distribution of British and American
varieties in each genre over all seven corpora. The
abbreviated labels represent the following categories:
Info – Information/Explanation, Promo – Promotion,
Opinion – Opinion/Argumentation, Instr – Instruction,
Prose – Prose/Lyrical.

Prose/Lyrical was shown to be more frequently
written in American English. An inspection of the
domains of the Prose/Lyrical texts revealed that
in most corpora, a large majority of Prose/Lyrical
texts come from American religious websites, such
as www.biblegateway.com and www.jw.org, which
explains the predominance of American English
in this genre. In other genres, namely, Informa-
tion/Explanation, Instruction, Promotion and Opin-
ion/Argumentation, the two varieties are more or
less equally present.

6 Conclusion

In this paper, we introduce a freely-available En-
glish variety classifier for fast and reliable iden-
tification of British and American English. The
corpus-based approaches to language variety clas-
sification can be impacted by topic-related or other
biases, occurring due to differences between the
corpora on which the model is trained. In contrast,
our lexicon-based approach is based on a carefully
selected lexicon of words which are confirmed by
linguists to be variety-specific, making the results
more reliable and explainable. We then show how
the classifier can be used to obtain an insight into
the characteristics of large parallel corpora, col-
lected with automatic methods. We compare par-
allel web corpora from European national webs
in seven languages. As all languages are paired
with English, we obtained meaningful information
on the differences between the corpora in terms
of English varieties. The results revealed British
English is prevalent in Maltese, Icelandic, Slovene
and Croatian corpora, while corpora from the Mace-

donian, Bulgarian and Turkish national webs are
more influenced by American English. A stark dif-
ference between the use of varieties was observed
in the case of the Maltese corpus, where a large
majority of texts were written in British English
and there were less than 10% of texts in American
English. These results reflect the country’s histor-
ical connection with the United Kingdom, along
with a significant presence of EU websites in the
corpus, which have a policy of preferring British
English. Thus, we show how the classifier can be
used for not only comparing corpora, but also ob-
taining insight into the use of English by native and
non-native speaking content writers and translators.
By making the classifier freely available, we hope
to encourage analyses of the use of English and its
varieties among teachers, translators and content
creators in the fields of corpus linguistics, transla-
tion studies, linguistics and digital humanities.

Furthermore, we extend the comparison by au-
tomatically annotating the English texts from the
parallel corpora with genre information. The re-
sults revealed significant differences between the
corpora in terms of genre distribution. Once again,
the Maltese corpus was shown to be more differ-
ent than the others, consisting mostly of News and
Legal texts. News is also strongly present in Mace-
donian and Icelandic corpora, while Slovene, Croa-
tian, Bulgarian and Turkish corpora constitute of
large amounts of promotional texts.

With the two classification approaches, we ob-
tained valuable information on the characteristics
of the datasets. As such datasets are often used for
creation of machine translation systems, various
NLP tools, as well as linguistic studies, it is crucial
that the users are provided with the information
on what types of texts and language varieties the
datasets consist of. The MaCoCu project will pro-
vide this information for all their datasets, covering
13 European under-resourced languages: Albanian,
Bosnian, Bulgarian, Catalan, Croatian, Icelandic,
Macedonian, Maltese, Montenegrin, Slovene, Ser-
bian, Turkish and Ukrainian. The datasets will
be made freely available by June 2023. As the
initial analysis of the English variety and genre
distribution in corpora, presented in this paper, re-
vealed that this information highlights important
differences between the corpora, in the future, we
plan to extend the analysis to all 13 newly avail-
able MaCoCu corpora. Furthermore, one important
downstream task that we did not tackle in this work
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is the inspection of the impact of the variation in
variety and genre on machine translation and other
systems based on these and other datasets, which
we also plan to analyse in future studies.

Limitations

In this paper, we describe how we devised a lexicon-
based classifier for American and British English.
We argue for the lexicon-based approach as a better
alternative to the corpus-based approach, as it is
rule-based and explainable. However, we are aware
that a lexicon-based approach is less feasible or im-
possible for classification of varieties of other lan-
guages or identification between languages. While
the corpora-based approaches can be performed on
all languages where at least one corpus of appropri-
ate size exists, this approach requires an availability
of a lexicon or at least linguistic rules on which a
new lexicon needs to be based.

Secondly, by using the lexicon-based approach,
we prefer reliability over coverage. If no variety-
specific word is present in the analysed text, the
text is left unlabeled. This was the case for 30 to
50% of texts in our analysed corpora. Furthermore,
our lexicon is based on words only, and does not
take account of variety-specific multiword expres-
sions. Consequently, one should be aware that the
findings reflect only the characteristics of the texts
that were long enough and had any variety-specific
word. Furthermore, while the corpora were col-
lected by crawling the national web domains, there
might exist texts on the web that were deliberately
or not left out of the final datasets. This means that
the nature of these corpora does not necessarily
reflect the English variety distribution of all texts
found on a national web.

Thirdly, in this research, we limit ourselves to
the two most recognized varieties of the Standard
English. We are aware that numerous other va-
rieties from throughout the world exist. As this
analysis has been done on texts from non-native
English-speaking European countries, we consider
that focusing on the two varieties which are often
considered to be the main varieties is appropriate,
albeit simplistic. However, we are aware that some
of British or American-specific words might over-
lap with words that are also typical for other En-
glish varieties, such as Australian, Canadian, Irish,
etc., and could for instance classify Irish English as
British. We are aware that our pragmatic approach
could be regarded as discriminatory towards other

English varieties. While our classifier can be used
on any English text, we should be aware that it
solely provides information on the frequency of
words, defined to be British or American. We leave
discussions whether these texts are by that truly
British, or whether we are talking about European
English with British influence to the linguists, as
we are aware that defining how many English vari-
eties are there and what are their key differences is
outside of our expertise.

Finally, in contrast to the English variety classi-
fier which can be used only for English, the genre
classifier is multilingual and covers all of the lan-
guages, included in the XLM-RoBERTa language
model (Conneau et al., 2020). On the other hand,
while the English variety classifier does not require
massive computational resources, genre identifica-
tion requires the use of a GPU. We are aware that
not everyone is privileged to have access to such
computational resources to be able to reproduce
our research.

Ethics Statement

We are aware that collecting texts from the web
can raise questions of respecting the intellectual
property and privacy rights of the original authors
of the texts. The web corpora, analysed in this pa-
per, have been collected by crawling the national
top-level domains. To assure that no sensitive data
would be included, only texts that have been freely
accessible were included in the corpora. We are
aware that the datasets might still include some
texts that the authors do not consent to be included.
To mitigate this, the datasets are published with a
notice, which informs the authors of the text that
the texts can be taken out of the corpora upon their
request. Secondly, for privacy issues, the sentences
in the published corpora that contain personal in-
formation are flagged, so that the corpora users can
leave them out of their research if the nature of their
study would reveal this information. In our paper,
we look into and report on the overall character-
istics of the texts and do not examine texts more
closely or produce systems which could abuse per-
sonal information or intellectual property rights.
That is why anonymisation or additional filtering
was not necessary.

Secondly, as mentioned in Limitations, our En-
glish variety classifier labels a text to be British
or English based on the counts of variety-specific
words. While it is a useful tool for quick inspec-
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tion of the differences in English between vari-
ous corpora, it is meant to be used on English
texts, produced by non-native English speakers. As
the British and American-specific words it detects
could overlap with other English varieties, such as
Irish, Australian, Canadian, Indian etc., one should
not use it with the intention of belittling other vari-
eties or proving that the entire world uses only the
two mentioned varieties.
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A Appendix

A.1 Genre Categories

Label Description Examples

Information/Explanation

An objective text that describes or presents
an event, a person, a thing, a concept etc.
Its main purpose is to inform the reader
about something.

research article, encyclo-
pedia article, product spec-
ification, course materials,
biographical story/history.

Instruction
An objective text which instructs the read-
ers on how to do something.

how-to texts, recipes, tech-
nical support

Legal
An objective formal text that contains legal
terms and is clearly structured.

small print, software li-
cense, terms and condi-
tions, contracts, law, copy-
right notices

News
An objective or subjective text which re-
ports on an event recent at the time of writ-
ing or coming in the near future.

news report, sports report,
police report, announce-
ment

Opinion/Argumentation

A subjective text in which the authors con-
vey their opinion or narrate their experi-
ence. It includes promotion of an ideology
and other non-commercial causes.

review, blog, editorial, let-
ter to editor, persuasive ar-
ticle or essay, political pro-
paganda

Promotion

A subjective text intended to sell or pro-
mote an event, product, or service. It ad-
dresses the readers, often trying to con-
vince them to participate in something or
buy something.

advertisement, e-shops,
promotion of an accom-
modation, promotion
of company’s services,
invitation to an event

Prose/Lyrical

A literary text that consists of paragraphs
or verses. A literary text is deemed to have
no other practical purpose than to give
pleasure to the reader. Often the author
pays attention to the aesthetic appearance
of the text. It can be considered as art.

lyrics, poem, prayer, joke,
novel, short story

Table 3: Descriptions of genre labels, with examples.
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Abstract 

This paper applies the ontology-based 
dialectometric technique of Engsterhold 
(2020) to surnames. The method was 
originally developed for phonetic analyses. 
However, as will be shown, it is also suited 
for the study of graphemic representations. 
Based on data from the German Surname 
Atlas (DFA), the method is optimized for 
graphemic analysis and illustrated with an 
example case. 

1 Introduction 

Engsterhold (2020) introduced an ontology-based 
dialectometric method aiming at the investigation 
of the phonological structure of dialects on the 
basis of phonetic features.1 The author exemplifies 
his technique based on the phonetic maps of the 
Linguistic Atlas of the Middle Rhine Area 
(MRhSA), which are available in IPA notation. The 
so-called phonOntology is a classification of the 
sounds of the MRhSA data according to their 
phonetic features, which are automatically 
matched by means of an inference procedure. At 
the same time, they are related to a historical 
reference system, which means that, in addition to 
the phonetic assignment, a phonological 
classification is implemented. For example, the 
long vowel [uː] in Moselle Franconian gruß (‘big’) 
is assigned the phonetic features [+close, +back, 
+long, +round] and relates to MHG ô. 

On this basis, a vector of sound characteristics 
is created for each location in the study area. 
Comparing the vectors of all locations in the 
dataset, data classifications can then be performed 
that provide information about which locations are 
maximally similar or distant with respect to the 
phonetic characteristics of the data. Since the 
procedure systematically accounts for historical 

 
1 https://doi.org/10.17192/z2020.0213 

phonological classes (gruß, groß < MHG. ô), the 
analysis can be restricted to selected subsets, for 
example, to a single historical reference sound or 
the combination of historical sound classes.  

For historical data, however, phonetic 
assignment cannot be reliably implemented. Even 
a phonological classification bears its difficulties 
since in historical writing, we find a broad variation 
of graphemes referring to the same sound. What is 
required is a rough assignment of graphemes to all 
possible phonemes which leaves room for both, 
allophonic and allographic variation. In this paper, 
we present such a modification based on German 
surname data. Our aim is to show how the 
ontology-based procedure can be applied to 
identify regional phonological patterns, even in 
data that is part of written language.  

2 Method 

In order to process large amounts of data and, at the 
same time, apply the inferences based on the 
ontology, phonOntology makes use of semantic 
web technologies. The data is organized in a 
TripleStore graph database (GraphDB)2 using the 
Resource Description Framework (RDF) and the 
Web Ontology Language (OWL) as a language for 
describing the rules that are implemented in the 
phonetic ontology.  

The classification of the data is based on cluster 
analyses. This needs the transformation of data, 
which is performed via one-hot encoding into a 
data set that generates a multidimensional feature 
vector for all locations and for all sounds. 
Subsequently, the data are standardized using 
z-transformation. In order to optimize classification 
results, principal component analysis (PCA) is 
performed so that the resulting data set has fewer 
dimensions but still explains most of the variance 
in the data set.  

2 https://ontotext.com 
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The clustering algorithms used are k-means, 
Ward’s agglomerative clustering (Ward), and the 
Gaussian mixture model (GMM). In our study we 
added k-medoids and spectral clustering (k-nearest 
neighbor, SC-kNN). Since no ground truth or 
verification dataset is available, the evaluation of 
the cluster analysis is limited to intrinsic metrics. 
Thus, primarily cluster stability is evaluated. For 
this purpose, the silhouette coefficient (SC) and the 
Calinski-Harabasz index (CH) are used. In 
addition, bootstrapping and k-fold methods are 
used to generate pseudo-ground truths, which can 
then be used to evaluate classification results (cf. 
Engsterhold 2020). 

In this way, cluster analysis based on the 
phonOntology allows the semi-automated 
investigation of sound properties across all tokens 
and phenomena of a given corpus. This provides a 
deeper insight into the sound-related structure of a 
study area under discussion.  

The method is free of interpretative assumptions 
and designed for large data sets. It offers the 
possibility to highlight and evaluate structures in a 
chaotic-looking data set. The architecture is similar 
to the built-up of the PHOIBLE database (Moran et 
al., 2014). The classification methodology is 
similar to the methods described in Nerbonne et al. 
(2011). 

3 Material 

3.1 Background 

We chose German surnames as an example of 
applying the ontology-based dialectometric 
technique to a data set of graphic representations. 
Surnames preserve linguistic material which is up 
to 900 years old. They developed from bynames in 
the medieval period and became finally fixed in the 
course of the 16th century. Investigating the current 
distribution of surnames allows conclusions to be 
drawn about historical dialects and writing 
traditions. 

Several studies focus on the areal distribution of 
specific phonological or graphic variants in 
German surnames (e.g., Kunze and Kunze, 2003; 
Dammel and Schmuck, 2009). They face the 
difficulty that most of the surnames are restricted 
to limited regions. Usually, several surname types 
are compared in order to be able to investigate the 
areal distribution of linguistic features in the 
surnames. 

Quantitative approaches as e.g., the isonomy 
analyses by Cheshire et al. (2011) or Flores Flores 
and Gilles (2020) are able to determine spatial 
structures by using big datasets, but they do not 
inform about the linguistic characteristics of the 
identified isonymy structures.  

In contrast, our technique not only allows to 
determine spatial structures but also makes it 
possible to investigate the linguistic features that 
are crucial for the classification. It is the 
characteristic of ontologies that they allow a 
multidimensional access to the data and thus 
provide the user with different perspectives of 
analysis. 

3.2 Data 

The data comes from the German Surname Atlas 
database (cf. DFA), which is an extract from the 
database of the Deutsche Telekom AG as of June 
30, 2005. The database comprises > 28 million 
private telephone connections (= surname tokens) 
with > 850,000 different names (= surname types). 
The data set matches the number of tokens of a 
surname type with the postal code districts 
comprising five digits each, e.g., Hausmann 
(surname type) | 27628 (postal code) | 5 (number of 
tokens).  

3.3 Preparation 

In preparation for the analysis, the historical 
reference sounds for each surname type were 
determined via the map commentaries of the DFA 
volumes as well as via historical and etymological 
dictionaries. The map commentaries inform about 
the etymology of the presented surnames, and they 
collect the relevant variants of a surname group 
(e.g., the surname types Groth, Grote, Grott, Groß, 
Gros, and Gross [see Table 1] that can be traced 
back to the same etymon WG *grauta-). For vowels 
the Middle High German (MHG) and for 
consonants the West Germanic (WG) reference 
sounds were identified. By aligning the surname 
types with historical reference sounds we 
encountered a central problem that comes across 
when researching the spatial distribution of 
surnames: Except for a limited number of high 
frequent surname types, the occurrence of most 
surnames is restricted to small-scale regions. 
Applying the historical reference system, these 
types become aggregated via the annotation.  

As surnames are writing-induced data with 
considerable historical depth, a phonetic 
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classification of the data is hardly possible. Hence 
the annotation was oriented towards the grapheme-
phoneme system of Early New High German (cf. 
Anderson et al., 1981) which enables to align the 
graphemes of the surnames with phonological 
sound types. In this way, we allow for allophonic 
and allographic variance. Applying the 
phonOntology, we created feature vectors for each 
postal code district. The feature vectors to be 
derived here are thus rougher and more strongly 
typed than in the original use case of 
phonOntology. 

Table 1 provides an extract from the annotation 
table dealing with the variance of the consonant 
(sound types t vs. s) in the coda of names which are 
related to the standard German adjective groß ‘big’ 
(cf. DFA 2: 448–449). The sound types, as does 

their graphemic representation, differ with respect 
to the plosive vs. fricative realization thus referring 
to the historical process of the High German 
consonant shift.  
In this specific case, the different graphemes <ß>, 
<s> and <ss> refer to the same idealized sound 
type s whereas <t>, <th> and <tt> refer to the 
sound type t. When the alignment to several sound 
types is possible, the annotation allows for multiple 
references. Especially, concerning the length and 
quality of vowels, multiple reference is the normal 
case. In the present case, an idealized phonological 
feature vector as in (1) would be applied to the 
sound types. This feature vector is the basis of the 
intended linguistic classification over several 
family names. The feature vectors consist of the 
place (postal code district), the corresponding 
linguistic features and the number of tokens that 
account for the features. 

 𝑠 = [+𝑐𝑜𝑛𝑡, −𝑛𝑎𝑠, −𝑙𝑎𝑏,… ] (1) 

 𝑡 = [−𝑐𝑜𝑛𝑡, −𝑛𝑎𝑠, −𝑙𝑎𝑏,… ]  

Following the choice of linguistic phenomena that 
are presented in the DFA 1 and 2, the annotated data 
set comprises 8,197 surname types with more than 

2.3 million tokens (= approx. 8 % of the whole 
dataset). The sounds and graphemes that show 
oppositions in the surnames were traced back to 36 
historical reference sounds. In Table 1, the 
historical reference sound is West Germanic t 
(= WG t). 

4 Analysis of a Defined Range of Sound 
Classes  

4.1 Quantitative Analysis  

The following analysis focuses on the linguistic 
structure of surnames that are linked to long vowels 
in Middle High German. Therefore, the data set is 
filtered for the historical reference sounds MHG â, 
æ, ê, î, ô, œ, û, iu. This reveals a subsample of 1034 
different surname types with a total of 278,689 
surname tokens.  

Table 2 shows the results of the evaluation of 
cluster stability performed by phonOntology for 
both a 2-cluster and a 3-cluster solution. 
Comparing the silhouette coefficients (SC) and the 
Calinski-Harabasz indexes (CH), we see that for 
both clusterings – following the silhouette 

coefficients – the SC-kNN algorithm shows the 
best results. Regarding the Calinski-Harabasz 
index k-means leads to the best results. It should be 
noted that k-means still performs well on the SC, 
while SC-kNN only achieves average performance 
on the CH. In the following, we present the 
findings of both cluster analyses. 
The results of the cluster analyses consist of two 
parts, a map and an assessment of the individual 
linguistic features. As regards the maps, the 
clustering is plotted against the dialect 
classification introduced by Wiesinger (1983). The 
clustering is strictly based on the properties of the 
feature vectors and neither influenced by the 
geographical proximity of the postal code districts 
nor by the linguistic information provided by 
Wiesinger’s map. The colors and numbers of the 
clusters are allotted by chance and have no 
meaning.  

Grapheme Types Sound Historical 
reference 

<t> Grote t WG t 
<th> Groth t WG t 
<tt> Grott t WG t 
<ß> Groß s WG t 
<s> Gros s WG t 
<ss> Gross s WG t 

Table 1: Example of the grapheme-phoneme 
alignment of the surname types. 

 2 3 
Clustering SC CH SC CH 
GMM 0.20 186.97 0.13 133.60 
k-means 0.27 251.24 0.23 210.14 
k-medoids 0.24 235.63 0.23 209.03 
SC-kNN 0.28 217.73 0.25 198.12 
Ward 0.23 207.96 0.23 190.38 

Table 2: Evaluation of the clustering algorithms. 
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The assessment of linguistic features is no longer 
binary, as indicated by (1), but metrical according 
to their impact on the particular clusters found by 
the classification algorithm under discussion.  
 

 
Figure 1: SC-kNN clustering (2 clusters) for MHG 
long vowels. 

 

 
Figure 2: K-means clustering (2 clusters) for MHG 
long vowels. 

 
Comparing the maps in Figure 1 and 2 reveals that 
both clustering techniques, k-means and SC-kNN, 
lead to overall contingent and coherent clusters. In 
both maps there is a clear north-south divide. 
However, the northern cluster in Figure 2 
(k-means) is more widespread than the comparable 
cluster in Figure 1 (SC-kNN). On the other hand, in 

contrast to Figure 1, there are some regions in the 
Southwest that are part of the northern cluster in 
Figure 2. 
 

 
Figure 3: Linguistic features of the SC-kNN 
clustering (2 clusters) for MHG long vowels. 

 
In addition, Figure 3 shows the linguistic features 
that are relevant for the clusters in Figure 1. In this 
analysis, the data set is filtered for MHG long 
vowels. Therefore, Figure 3 shows only the 
linguistic features of the sounds (in the surnames) 
that are related to MHG long vowels as reference 
sounds. The values are presented in contrast for 
each feature (we have kept Engsterhold’s feature 
names for now out of simplicity). Above-average 
values are colored in red, low values in blue. 
Compared to (1), it becomes obvious that, in order 
to ensure comparability, the phonologically 
induced binary classification has been resolved. 
Each category of a binary differentiation is now 
defined as a separate feature. The same holds for 
the categorical classification of the vowel space. 
Figure 3 lists all of the resulting characteristics for 
all features set for the vocalism. 

Since the values per cluster are related and 
scaled at the relations of all features per cluster, the 
values across clusters cannot be directly related to 
each other. Nevertheless, they indicate an inverse 
relationship in the two-part cluster. Not reported 
are features with zero realizations as is the case, for 
example, for [central], [nil], [mid]. These features 
typically refer to schwa, which seems to be not 
relevant for the sound class under discussion.  
The logic of this procedure can be best explained 
by focusing on the northern red cluster 1 in Figure 
1. The first result from Figure 3 is that this cluster 
prefers monophthongs over diphthongs, which 
becomes clear by the fact that features connected to 
diphthongs are the less frequent ones in cluster 1 
(e.g., [DiphLoweredClose-NearBack] refers to au).  
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Second, the most characteristic features of 
cluster 1 are [close], [long], [round]. Translating 
these features into sounds, the most frequent 
features of cluster 1 stand for sounds like u and i, 
but also ü if assuming that the features do not 
necessarily have to be linked. Other features of 
higher impact are [back], but also [front] and 
[unround] thus referring to the remaining 
monophthongs.  

In this way, for the sound class in focus, not only 
a spatially definable dominance of monophthongs 
over diphthongs becomes apparent through 
cluster 1. In addition, a gradation in the relevance 
of individual features within the group of 
monophthongs becomes clear, which characterizes 
the quantitatively identified cluster. These features, 
in turn, make it possible to predict which sounds to 
expect in this cluster. 

Examining the characteristic features of the 
clusters in Figures 4 (k-means), a similar picture 
becomes visible, however, the values are more 
balanced than in the SC-kNN clustering. 

 

 
Figure 4: Linguistic features of the k-means 
clustering (2 clusters) for MHG long vowels. 

4.2 Linguistic Interpretation 

The specific characteristics of the clusters can be 
interpreted by looking at the historical sound 
changes that affected the Middle High German 
long vowels and their Low German equivalents. 
Here, we recognize the New High German 
diphthongization that affected the German dialect 
regions in different extent and in temporal 
succession (cf. Reichmann and Wegera, 1993: 64–
67).  

While the diphthongization captured most of the 
High German area, the Low German and the 
Alemannic dialects preserved the historical 
monophthongs. However, the areal distribution of 
the surname clusters differs from the distribution of 

the NHG diphthongization in the dialects: the 
surnames show phonological features of the NHG 
diphthongization even in areas where the dialects 
preserve the old monophthongs, for example, in 
Eastern Low German and in Alemannic (with some 
exceptions, see e.g., the scattered red postal code 
districts in Figure 2). This refers to the graphematic 
basis of surnames. Surnames were part of the 
regional writing traditions that were severely 
influenced by the arising NHG written language. In 
the Low German regions, the strong influence even 
led to a change from the former Low German 
writing language of the Hanse to the NHG written 
language, starting in the Brandenburgish area in the 
16th century (cf. Peters, 2015). Thus, the surnames 
as part of the writing traditions mirror an advanced 
and medially different development of the NHG 
diphthongization compared to the dialects; they 
show “verhochdeutschte” forms.  

The influence of the NHG written language was 
especially high when the source lexemes of the 
surnames were transparent and could be transferred 
into High German forms by applying simple 
transformation rules (e.g., LG/ALEM u > HG au in 
LG/ALEM Husmann > HG Hausmann).  

 

 

Figure 5: SC-kNN clustering (3 clusters) for MHG 
long vowels. 

Looking at the higher clustering in Figure 5, we see 
that the areas that change their classification 
between Figures 1 and 2 now create own clusters, 
together with the adjacent areas.  

It thus becomes apparent that the third cluster 
structure in Figure 5 indicates transition zones 
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(grey cluster, 0). It shows intermediate values for 
diphthongs and long monophthongs (cf. Figure 6). 
On the other hand, cluster 0 is characterized by 
high values for specific features which sets it apart 
from the two main clusters. The most prominent 
features are [NearFront] and [OpenMid], pointing 
at high occurrences of different monophthong 
sound features and their underlying phonological 
processes, for example, shortening of long vowels 
(e.g., Siffert < MHG Sîvrit ‘Siegfried’) or umlaut 
(e.g., Krämmer < MHG krâmære ‘grocer’).  

 

 
Figure 6: Linguistic features of the SC-kNN 
clustering (3 clusters) for MHG long vowels. 

 
As a result, this example analysis has shown that 
the cluster structure of the surnames that relate to 
MHG long vowels depict both, the development of 
historical sound changes like the diphthongization, 
and region-specific phonological characteristics. In 
this way, the spatial structures revealed by our 
ontology also reflect fundamental cultural events 
and processes like the change of the writing 
tradition in the Low German area. 

5 Analysis of an Individual Sound Class  

5.1 Quantitative Analysis  

Focusing on only one sound class, we are able to 
investigate the outcome of regional specific 
developments in more detail. As an example, we 
restricted our data set to surnames that were 
assigned to MHG û (e.g., Kruse, Kruss, Krause < 
MHG krûs). We expect that the spatial structure 
mirrors the realization of the NHG diphthongization 
and its regionally different outcomes. In contrast to 
the analysis of all MHG long vowels we should see 
more clearly how the historically long 
monophthong û developed depending on the 
dialect regions. Except from our interest for the 
diphthongization, we aim at identifying regions 
with a tendency towards umlaut.  
The subsample of our analysis comprises 199 types 
with 58,708 tokens. We present the cluster solution 
for four clusters. As Table 3 indicates, k-means 
shows the best results.  

 
 
 

 
Figure 7: Comparing the k-means clusterings (2, 3, and 4 clusters) for MHG û. 

 

 4 
Clustering SC CH 
GMM 0.02 167.48 
k-means 0.47 599.98 
k-medoids 0.34 418.14 
SC-kNN 0.44 586.25 
Ward 0.42 553.89 
Table 3: Evaluation of the clustering algorithms. 
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Figure 8: K-means clustering (4 clusters) for 
MHG û. 

 
The map in Figure 8 presents the results for the 4-
cluster solution for k-means. Again, the cluster 
structures are mostly coherent and consistent. 
Comparing this map with the 2-cluster solution in 
Figure 7, it becomes evident that the northern 
cluster (yellow, 1) is already separated from the 
other clusters. The 3-cluster analysis then 
segregates the red cluster (3) in the southwest. Only 
in the 4-cluster map, the green cluster (2) appears 
as a substructure of the grey one (0). 

Comparing the clusters from Figure 8 with their 
linguistic features in Figure 9, we see that the 
clusters are defined by the different outcomes and 
developments of the historical reference sound 
MHG û. 

The main divide in Figure 8 results from the 
opposition of monophthongs vs. diphthongs. For 
example, the grey cluster 0 is mainly characterized 
by the features [DiphLoweredCloseNearBack] and 
[DiphOpen-Central] which indicate the 
diphthongized vowel au. Similar holds for the 
green cluster 2, which refers, e.g., to the well-
known preference for diphthongs in Hesse (see 
Birkenes and Fleischer, 2019).  

Furthermore, in the Baden area of southeast 
Germany, it is the short lowered-closed, near-back 
vowel u, that influences the clustering (red, 3).  

Finally, the green cluster 2 is characterized not 
only by diphthong features but mainly by features 

 
3 https://www.idiotikon.ch/Register/ 
faksimile.php?band=7&spalte=1477 

that indicate the umlaut diphthong äu/eu 
[DiphOpenMidLoweredClose-NearFront]. 
 

 
Figure 9: Linguistic features of the SC-kNN 
clustering (3 clusters) for MHG û. 

 

5.2 Linguistic Interpretation 

Evaluating the spatial structure from a historical 
point of view, the main north-south divide shows 
where the NHG diphthongs were adopted in the 
regional writing traditions. It is remarkable that the 
diphthongs in the surnames (e.g., Krause vs Kruse) 
prevail not only in the regions where the 
diphthongs occur in the dialects, but also in Baden 
and Brandenburg where the Alemannic and Low 
German dialects preserved monophthongs. Here, 
the surnames are influenced by the regional writing 
traditions that are more progressive in adopting 
NHG forms than the dialects.  

On the other hand, the higher clusterings show 
that in cases where the lexical basis is not 
transparent, the dialectal realizations prevail: In 
Baden, an example is the surname Sutter(er) vs 
Sauter which shows characteristic shortening (uː > 
u) in the closed syllable. The profession name 
Sutter/Sauter derives from MHG sûter ‘tailor, 
shoemaker’. Other than the competing lexemes 
Näher, Schneider and Schuster, the lexeme 
Sutter/Sauter was not adopted into the NHG written 
language. Today, it is only known as a dialect word 
(cf. Schweizerisches Idiotikon3) or as a surname. 

Thirdly, the analysis shows that there are well-
defined areas in which, additionally to 
diphthongization, umlaut modification took place. 
Those areas (green cluster 2) are restricted to 
western and central dialects, and do not appear in 
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the Upper German regions, that, significantly, are 
known for their non-affinity towards umlaut. 

In summary, the example demonstrates that the 
spatial analysis of surnames provides information 
about regionally specific developments in the 
graphic and phonological representations of 
surnames. 

6 Conclusion 

The paper has shown that the ontology-based 
analysis technique provides a tool which allows to 
investigate the regional distribution of 
phonological characteristics in the German 
surnames. At the same time, it is possible to detect 
the spatial extension of historical sound changes 
that are mirrored in the surnames. We assume that 
the surnames not only represent fossils of historical 
spoken language but also developments in regional 
and transregional writing traditions. 

A characteristic of our approach is the 
multidimensional processing of the surname data, 
which provides a variety of starting points for 
further research. Depending on how the data set is 
filtered, different perspectives are possible. Either 
the diachronic and diatopic developments of a 
single historical reference sound are investigated, 
or the analysis is broadened to describe the major 
graphemic and phonological features of the 
surname landscapes of Germany. 

Limitations 
The presented study was limited by the selection of 
the surname types for annotation. Following the 
choice of topics that are presented in the DFA 1 
and 2 the historical reference sounds are not 
represented in a balanced way. Also, our annotation 
categories cover, at present, neither the 
phonological nor the morphological contexts of the 
analyzed sounds.  

The greatest challenge was the alignment of 
graphemes and phonemes. While we managed to 
cope with multiple references between graphemes 
and phonemes, we did not yet implement a 
technique that identifies regionally diverse 
phonological realizations of the same grapheme 
(e.g., the grapheme <ue> corresponds to either /y/ 
or /uː/ depending on the dialect area). We plan to 
implement this in the future. 

Ethics Statement 
We declare that our research complies with the 
ACL Ethics Policy. As surnames are part of 
personal data, we ensured that data protection was 
not violated at any time. 
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Abstract

Automatic discrimination between Bosnian,
Croatian, Montenegrin and Serbian is a hard
task due to the mutual intelligibility of these
South-Slavic languages. In this paper, we in-
troduce the BENCHić-lang benchmark for dis-
criminating between these four languages. The
benchmark consists of two datasets from dif-
ferent domains – a Twitter and a news dataset –
selected with the aim of fostering cross-dataset
evaluation of different modelling approaches.
We experiment with the baseline SVM mod-
els, based on character n-grams, which perform
nicely in-dataset, but do not generalize well
in cross-dataset experiments. Thus, we intro-
duce another approach, exploiting only web-
crawled data and the weak supervision signal
coming from the respective country/language
top-level domains. The resulting simple Naive
Bayes model, based on less than a thousand
word features extracted from web data, outper-
forms the baseline models in the cross-dataset
scenario and achieves good levels of general-
ization across datasets.

1 Introduction

The status of “separate language” for Bosnian,
Croatian, Montenegrin and Serbian is frequently
discussed and is in academic circles mostly un-
derstood as related to the construction of iden-
tity (Alexander, 2013) and diverging and converg-
ing tendencies throughout history (Ljubešić et al.,
2018). While each is an official language in the
respective country, with a separate top-level Inter-
net domain (Ljubešić and Klubička, 2014), their
mutual intelligibility cannot be disputed. Regard-
less of the mutual intelligibility, differences do ex-
ist (Ljubešić et al., 2018). In this paper, we in-
troduce a discrimination benchmark based on two
datasets: a newspaper-based one, covering three
out of four languages, and a Twitter-based one,
covering all four languages. The publication of
this benchmark coincides with the 10th anniversary

of the VarDial workshop, in which this language
group has been involved from the beginning.

The main contributions of this paper are the fol-
lowing. We introduce two datasets, based on pre-
viously collected data, that we now encode with
maximal structure and publish in an academic data
repository following the FAIR principles (Jacob-
sen et al., 2020). We introduce a benchmark based
on the two datasets, and present baselines for the
benchmark. Given the low performance of these
competitive baselines on the benchmark, we intro-
duce a new web-dataset-based method that shows
to carry specificities of each language across the
two datasets much better than any model directly
trained on one of the two datasets. We hope that
the availability of this benchmark, as well as the
introduced strong competitors, will motivate fur-
ther research in discriminating between similar lan-
guages.

2 Benchmark Datasets

The benchmark consists of two rather different
datasets, whose selection was made with the aim of
fostering cross-dataset evaluation of different mod-
elling approaches. The first dataset is the parallel
newspaper dataset from the “South-Eastern Times”
(SETimes) website covering news in languages of
South-Eastern Europe, including Bosnian, Croatian
and Serbian. The dataset has been part of the Var-
Dial shared task since 2014 (Zampieri et al., 2014)
as part of the DSLCC collection (Tan et al., 2014),
and was present in the following iteration of the
shared task as well (Zampieri et al., 2015). Within
VarDial, it was available in the form of 22 000
instances per language, each no longer than 100
tokens. We have now published all available con-
tent from the SETimes website in the form of 9 258
whole documents (Ljubešić and Rupnik, 2022a).1

The documents are separated into a train, devel-

1http://hdl.handle.net/11356/1461
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opment and test subset in an 8:1:1 ratio. While
dividing the documents, we made sure that, given
that the dataset consists of the same content in the
three languages, there is no leakage of parallel data
across these three subsets, especially given the mu-
tual intelligibility of the languages covered. We as-
sume that, given the parallel nature of this dataset,
it could be very useful in learning the specifics in
which the three close languages differ. The me-
dian length of instances (documents) is 627 words,
while the arithmetic mean length is 849 words.

The second dataset is based on tweets, har-
vested with the TweetCat (Ljubešić et al., 2014)
tool. This dataset was used as the out-of-domain
testing data in the third iteration of the VarDial
shared task (Malmasi et al., 2016), but in signif-
icantly smaller volume than what we included in
this benchmark. We share tweets of 614 users, 394
of which are labeled as tweeting in Serbian, 89 in
Croatian, 75 in Bosnian, and 56 in Montenegrin.
Each user is represented with at least 200 tweets,
merged in our experiments into one single text per
each user. Single tweets were not filtered by the
language they are written in, which allows for other
languages besides the four languages of interest to
occur in the dataset, such as infrequent tweets in
English. With this decision we wanted to keep the
dataset as natural and realistic as possible. The
users were split into the train, development and
test subset in a 3:1:1 ratio, so that the development
and test splits would be large enough. The median
length of instances (all tweets of one user) is 5,438
words, while the arithmetic mean length is 7,257
words. The dataset is published as a JSON file,
each primary entry representing one user, the label
denoting which language the user is tweeting in,
and a list of the users’ tweets (Ljubešić and Rupnik,
2022b).2

The benchmark allows for training on any of the
two training datasets, as well as using external data,
provided that it does not overlap with texts in the
test split. Hyperparameters or model decisions can
be chosen with the help of development data. The
two official metrics of the benchmark are micro F1
and macro F1, both considered equally important.

The researchers are welcome to add to this
benchmark the results achieved on any combina-
tion of training and testing datasets (in-domain or
out-domain). However, the primary goal of this
benchmark is to present results obtained in the

2http://hdl.handle.net/11356/1482

cross-dataset scenario, that is, testing the model
on test data from a dataset on which the model was
not trained on, to prove the general applicability of
the resulting model on the task of discriminating
between the languages in question. The results of
various models can be submitted via the GitHub
repository3 through a pull request.

3 Experiments

We experiment with two approaches: the baseline
approach – a linear SVM model with character
n-gram representation, described in Section 3.1,
and our new approach, presented in Section 3.2:
a Naive Bayes model using a text representation
based on feature extraction from national web cor-
pora. The classifier selection in each of the ap-
proaches is based on best results on the develop-
ment data, and each of the two classifiers were
considered in each of the approaches.

3.1 Baseline: SVM Model with Character
N-Gram Text Representation

For the initial baseline of this benchmark, we used
a simple approach that has been shown to be very
competitive with even much more complex solu-
tions (Malmasi et al., 2016; Zampieri et al., 2017)
– a linear SVM model, used with the character n-
gram text representation. We implemented the base-
line solution inside the sklearn package (Pedregosa
et al., 2011), and the only hyperparameter we tuned
was the maximum length of the character n-gram,
given that the shortest character n-gram is 3.

During hyperparameter tuning on the develop-
ment data, we first selected the appropriate clas-
sifier, comparing the SVM and the Naive Bayes
classifier while using character 3-grams as features.
The results showed, as expected, that SVMs work
better with the significant number of features pro-
duced with the character 3-gram feature generator.
We next compared character 3-gram and 3–5-gram
representations on our development data. The ex-
periments showed that the character 3–5-grams per-
form slightly better in the in-dataset setup, reaching
1 to 6 points higher micro and macro F1 scores,
while in the cross-dataset setup the 3-gram text
representation provides slightly better results, out-
performing the 3–5-gram representation by 1 to 4
points. This result does not come as a surprise as
the character 3-gram model has a higher generaliz-

3https://github.com/clarinsi/benchich/tree/
main/lang
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Test data Train data micro F1 macro F1

SETimes
SETimes 0.995 0.995
Twitter (3 class) 0.839 0.672

Twitter (3 class)
SETimes 0.743 0.747
Twitter (3 class) 0.929 0.875

Table 1: Results of the linear SVM baseline with a character 3-gram text representation, trained either on the
SETimes or the Twitter 3-class dataset, and tested in the in-dataset and the cross-dataset setup.

ability, important in the cross-dataset setup, while
the 3–5-gram model has more capacity to learn the
specifics of a dataset, preferred in the in-dataset
setup. In further experiments, we use the charac-
ter 3-gram text representation, as we are interested
in a model which is able to generalize well to be
applicable to different downstream datasets.

The method is tested on in-dataset and cross-
dataset experiments, using the benchmark datasets:
the SETimes and Twitter datasets. The in-dataset
experiments consist of training and testing the
model on the train and test split from the same
dataset, while in the cross-dataset experiments, the
model is trained on the train split from one dataset
and tested on the test split of the other dataset. The
cross-dataset setup was shown to be especially rele-
vant for the task of discrimination between similar
languages (Malmasi et al., 2016; Zampieri et al.,
2017; Gaman et al., 2020), as well as document
classification in general, because it shows the abil-
ity of the model to generalize across the datasets,
and with that, its usefulness for the real-world ap-
plications.

Given that the SETimes dataset covers only three
out of the four languages, while the Twitter dataset
covers all four languages of interest, we used only
languages that occur in both datasets for the base-
line experiments, that is, the Bosnian, Croatian and
the Serbian language.

Table 1 shows the results of the two baseline
models, that is, the SVM model, trained on SE-
Times, and the SVM model, trained on the Twit-
ter dataset. The models were tested on test splits
from both datasets, showing their in-dataset and
cross-dataset performance. The results show that,
as expected, the in-dataset results are much higher
than the cross-dataset results on both datasets. The
in-dataset results reached up to 0.995 micro and
macro F1 scores in the case of the SETimes model
and 0.929 micro F1 and 0.875 macro F1 in the case
of the Twitter model. As expected, in the in-domain
setup, the SETimes model achieves higher results

than the Twitter model. Somewhat unexpected,
in the cross-dataset setup both combinations of
training and evaluation data result in a very similar
micro F1, showing a similar level of per-instance
cross-dataset portability. However, on the macro F1
metric, the SETimes dataset shows to be a simpler
evaluation dataset than the Twitter dataset, which
is quite probably due to the fact that the SETimes
dataset is more balanced, while the Twitter dataset
is more challenging with its intensive skewness
towards the Serbian language.

In the cross-dataset setup, the models scored
for 9 up to 25 less points in micro and macro F1
points than in the in-dataset setup. This shows that
models trained on any of the two datasets show
to be rather incapable of generating predictions in
the cross-dataset scenario that would be useful in
the downstream, as around 25% of predictions are
incorrect.

3.2 Our Approach: Naive Bayes Model and
Web Corpora Feature Extraction

Given the rather low results of the proposed base-
lines in the cross-dataset setup on both datasets,
we decided to propose a more robust approach
to discriminating between the languages included
in this benchmark. Since each of the four lan-
guages/countries has a top-level Internet domain
(.hr for Croatian, .ba for Bosnian, .me for Mon-
tenegrin and .rs for Serbian), and since there
are crawls of all four top-level domains avail-
able (Ljubešić, 2021), we are proposing a weak-
supervised approach exploiting the information
about the top-level domain from which a text came
as our signal of weak supervision. That is, we re-
gard texts from a specific top-level domain as being
of the language related to the domain, e.g., texts
from .hr as texts in Croatian language. Based on
this, we perform a feature selection that identifies
a small subset of words that are most specific for
each language, i.e., top-level domain.

For the experiments, we use web corpora for the
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Feature Extraction Training
paragraph # word # paragraph # word #

Bosnian 943 515 18 503 316 2 102 489 37 681 981
Croatian 959 600 17 536 075 1 970 022 32 639 016
Montenegrin 864 921 35 684 637 999 997 35 677 096
Serbian 952 964 17 954 495 2 868 638 49 577 451

Table 2: Size of the parts of the web corpora used for feature extraction and model training.

four languages, available as part of the BERTić-
data (Ljubešić, 2021), a text collection used for
training the BERTić transformer model (Ljubešić
and Lauc, 2021). We use part of the data for feature
extraction and part of the data for training the Naive
Bayes model, using the obtained features. Similarly
to the baselines presented in the previous step, we
have considered both the linear SVM and the Naive
Bayes model, but the latter proved to be better
performing on this task. The amount of data used
for the feature extraction and for the model training
is shown in Table 2. We used between 17 and 35
million words for the feature extraction, while we
trained the classifier on 100 000 documents from
each of the four top-level domains, each consisting
of between 33 and 50 million words.

The feature extraction is based on comparing
pairs of web corpora: for each pair, we identify
features (words) that are the most specific for one
language given another language. The weighting
function for each language pair is the odds ratio,
i.e., how much more probable it is for a word to
appear in one language (or web corpus) in compar-
ison to another language. As possible features, we
consider words of three or more characters, consist-
ing only of letters.

One hyperparameter that has to be tuned in our
approach is the number of features per ordered lan-
guage pair to be included in the feature set. Our
experiments on the development data of both the
SETimes and the Twitter dataset showed that us-
ing around 100 most prominent features per or-
dered language pair gives the best results on both
test datasets. Since we obtain from each ordered
language pair a list of 100 features, we have to
calculate a union of 12 lists of 100 features, result-
ing in 819 final features, due to expected feature
repetition. When training a model, texts are repre-
sented as vectors based on the 819 features, created
with the CountVectorizer tool, available inside the
sklearn package (Pedregosa et al., 2011). Prelimi-
nary experiments on the development set showed

that among various quantifications of feature oc-
currence (frequency, TF-IDF, binary), the binary
values regularly provided the best results.

Our next step is to train our model on web texts,
classified into languages based on the top-level do-
main they are published on. As already reported,
preliminary results showed that the Naive Bayes
classifier performs better than the linear SVM clas-
sifier. It was shown to be much more stable across
datasets, which does not come as a surprise given
the low number of selected features. This is exactly
the opposite from our baseline method, relying on
many character n-gram features, where the SVM
method showed to perform better. Interestingly, for
both classifiers, the optimal number of features per
ordered language pair showed to be around 100
features.

SETimes test data
model micro F1 macro F1
NB Web 0.957 0.957
SVM SETimes 0.995 0.995
SVM Twitter 0.839 0.672

Twitter 3-class test data
model micro F1 macro F1
NB Web 0.946 0.897
SVM Twitter 0.929 0.875
SVM SETimes 0.743 0.747

Twitter 4-class test data
model micro F1 macro F1
NB Web 0.870 0.682
SVM Twitter 0.870 0.732

Table 3: Results of our Naive Bayes model with web
feature-based text representation and trained on web
corpora (NB Web), compared to the baseline models:
SVM model, trained on SETimes (SVM SETimes), and
SVM model, trained on Twitter (SVM Twitter), on test
splits of various datasets. The best results are in bold.

We compare our method, hereinafter referred to
as “NB Web”, with the in-dataset and cross-dataset
baseline results, described in the previous section,
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both on the SETimes and Twitter test splits. The re-
sults are shown in Table 3. When the models are ap-
plied to the SETimes test dataset, the baseline SVM
model, trained on the SETimes dataset, does per-
form best, reaching almost perfect scores of 0.995
micro and macro F1. This does not come as a sur-
prise given the narrowness of the SETimes dataset
(single-source news dataset). However, the NB
Web model performs also rather well, micro and
macro F1 scores lagging behind only for 4 points.
Most importantly, the NB Web model performs
drastically better than the baseline SVM model
which was trained on the Twitter 3-class training
dataset and used here in a cross-dataset setup.

The second section of Table 3 reports on the
results on the Twitter 3-class test set where we
used only instances from the three classes that are
available in the SETimes dataset, that is, instances
of Bosnian, Croatian and Serbian. In this setup,
our model slightly outperforms even the in-dataset
baseline results, i.e., the SVM model trained on
Twitter data. It also performs drastically better than
the baseline SVM model trained on SETimes, with
a difference of more than 20 points.

This model finally allows also for some com-
parison to the 4-class baseline experiments, re-
sults of which we did not show in the previous
section, given that the SVM classifier, trained on
the SETimes dataset, only contains three out of
four classes. The results on the Twitter 4-class
test dataset are presented in the final section of Ta-
ble 3. In this scenario, the NB Web model did not
significantly outperform the baseline SVM model,
trained on the Twitter dataset, as was the case on
the 3-class Twitter test set. On the micro F1 met-
ric, we obtained an equally good result with both
methods – micro F1 of 0.87, while on the macro F1
metric, the SVM model, applied in an in-dataset
setup, performs better, reaching the score of 0.73,
while the NB Web model obtained 0.68 macro F1.
However, given the equal result on the micro F1
metric, we assume that the edge of the (in-dataset)
SVM Twitter model here is just the knowledge of
the class distribution in the test set, information to
which the NB web model was not exposed. Given
this result, we can even assume that, with a class
distribution far from the Twitter 4-class dataset,
the NB web model should result in a better per-
category performance than the in-domain method,
and comparably on the per-instance level.

3.2.1 Impact of Amount of Training Data
Given that we have used a significant amount of
data for training the web model (100 000 docu-
ments per class), we perform an additional analysis
of the dependence of the performance of the NB
Web model to the amount of web training data. We
investigate how the model performs on all three
test datasets (SETimes, Twitter 3-class and Twit-
ter 4-class) if we are to train it on 25%, 50%, or
100% of our training data. The results are presented
in Figure 1. The experiments show that we obtain
very similar results to the previously presented ones
even if we perform parameter estimation on one
fourth of the training data. The only argument for
using as much data as we are is the stability of the
results, especially in the case of the 4-class Twitter
problem, while on the SETimes dataset the results
on less training data do not vary much.

What we have not explored, and what we leave
for future work, is the impact of the amount of data
used for feature selection. Given that best results
were obtained with only 100 features selected from
millions of words of text, we have to assume that
these 100 features could have been similarly well
extracted on a portion of the text used in our case.
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Figure 1: Impact of the size of the training dataset of
the NB Web model on its performance on the SETimes
and Twitter test datasets. Variation in the results is
represented through the standard deviation.

3.2.2 Per-Category Performance
We conclude the results section with an analysis
of the per-category performance of both models
that are able to discriminate between all four lan-
guages, which are the baseline SVM Twitter in-
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Figure 2: Confusion matrices for the baseline in-dataset SVM Twitter model and the NB Web model. The models
are evaluated on the test split of the 4-class Twitter dataset.

dataset model, and the NB Web model. We present
the performance via confusion matrices on the Twit-
ter 4-class test split in Figure 2.

We can observe a good performance of both
models on Croatian and Serbian, with a decent per-
formance on Bosnian, especially with the NB Web
model. However, the performance on Montene-
grin is very unsatisfactory in case of both models.
While the SVM Twitter in-dataset model correctly
classifies only 4 out of 11 test instances in the Mon-
tenegrin category, the situation with the NB Web
model is even worse. It classifies correctly only
one out of 11 instances, others being taken primar-
ily by Serbian and Bosnian. This analysis shows
the limitation of our current results – while we do
have a robust dataset-independent way of discrim-
inating between Bosnian, Croatian and Serbian,
the problem of identifying Montenegrin cannot be
considered solved to a satisfactory level.

4 Conclusion

In this paper, we introduce the BENCHić-lang
benchmark for discriminating between four very
similar languages: Bosnian, Croatian, Montenegrin
and Serbian. The benchmark consists of two rather
different datasets, providing a good test bed for
beyond-model generalizability.

We introduce two methods for discriminating
between the languages. The first, a baseline, is a
linear SVM model using character n-gram features,
showing to perform well in-dataset, but not having

generalization power to perform well in the cross-
dataset setup. For that reason, we introduce an-
other approach, exploiting only web-crawled data
and the weak supervision signal coming from the
country/language respective top-level domains. We
perform heavy feature selection of less than 1000
word features on one subset of the web data, and
train a Naive Bayes model on the remainder of
the web data. We show that this model performs
much better than the character n-gram models in
the cross-dataset setting. What is more, it even out-
performs the in-dataset results of the SVM model
on one of the Twitter test sets. While we obtain very
stable results on Bosnian, Croatian and Serbian, we
must put forward that neither the in-dataset SVM
Twitter, nor the NB Web model perform satisfac-
tory on discriminating Montenegrin from the three
other languages, which is a task to be tackled in
future work.

Besides improving the identification of Montene-
grin, there are many other directions we hope the
community will investigate. One direction is ex-
ploiting linguistic features known to vary between
the four languages (Ljubešić et al., 2018) and base
the classification decision on these features. An-
other is to investigate transformer models, fine-
tuning them either on the training data, or on the
weak-supervision web data. We have performed
an initial experiment on the latter, fine-tuning the
BERTić model (Ljubešić and Lauc, 2021) for one
epoch on the 400 000 web documents. During
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this first epoch we consistently obtained low re-
sults, with no tendency of improvement. Additional
experimentation, potentially with lower learning
rates or more complex loss functions, could be per-
formed here. Finally, additional datasets should be
added to the benchmark, especially such datasets
that cover all of the four languages of interest.

Limitations

The two datasets included in the benchmark are by
no means representative for the four languages we
focus in this work. However, the datasets are differ-
ent enough to serve as an initial test bed for robust
discrimination between the four languages through
a cross-dataset setup. Furthermore, the definition
of these four languages is also rather problematic
due to their similarity, and a potentially more viable
option would be a linguistically-motivated multi-
dimensional description of the variation among
these languages, rather than aiming at the single-
dimension 4-level description. The linguistically-
motivated methods might be also more reliable, as
they would be based on rules and lexicons, defined
by linguists, rather than training corpora with un-
known biases. We are aware that training the mod-
els with our method might introduce some bias to
the results, because it is based on identifying words
that are specific for each language by comparing
the web corpora content. Consequently, some of
the identified words might be more connected to
topic differences between the corpora than vari-
ety differences. For instance, one of the words,
specific for Croatian, is “kuna”, a former Croatian
currency, which is more of a culture-specific than
a language-specific word. However, by extracting
many features from very large numbers of docu-
ments, and then training the model on thousands of
texts, we hope that such topic biases are minimized
by the massive amounts of texts used.

Finally, using top-level domain information for
assuming language labels is a weak-supervision
method and is less reliable than manual annotation.
With this approach, we presume that the majority
of texts, published on the top-level web domain,
are written by native speakers of the language that
is associated with the respective country and its
top-level domain. However, we are aware that it is
possible that some texts are mislabeled and actu-
ally written in another language. We cannot be sure
that the authors of these texts are native speakers,
live in the respective country related to the national

web domain, or that the text is not a republication
from another source in another language, as was
shown to be the case for the British-American En-
glish dataset in the Discriminating between Similar
Languages (DSL) shared task 2014 (Zampieri et al.,
2014).

Ethics Statement

We are aware that using web data is inevitably con-
nected with questions of respecting the intellectual
property and privacy rights of the original authors
of the texts. In this paper, we used web corpora
that have been collected by crawling the national
top-level web domains. Only freely accessible texts
were included in the corpora to avoid inclusion of
sensitive data. Since the datasets were collected
automatically and are too large to review manu-
ally, it is possible that the datasets include some
texts whose authors do not consent to be included.
However, in our paper, we only use the overall
characteristics of the texts by extracting the most
frequent language-specific words and do not exam-
ine the texts more closely or produce systems that
could abuse personal information or intellectual
property rights.

Secondly, as mentioned in Limitations, when
training our NB Web model on web data, we pre-
sume that all texts from a specific national top-level
domain are written in the main official language
of the country to which the domain is connected.
However, we are aware that there are national mi-
norities of each of the analyzed languages that live
across the borders of the country where the lan-
guage is officially spoken, and that we can, for
example, find a Serbian minority living in Bosnia
and speaking Serbian on the Bosnian national web.
By labeling all web texts from the Bosnian domain
as Bosnian language, the resulting model could
discriminate towards the minorities, equating their
language with the language of the majority, pub-
lishing on the national domain. We are aware that
our weak-supervision approach is a bit simplistic
in regards to this issue, and while this is out of the
scope of this paper, we plan to analyze this issue
further in the future.
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language resource repository CLARIN.SI.
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Abstract

Eye-tracking data in Chinese languages present
unique challenges due to the non-alphabetic
and unspaced nature of the Chinese writ-
ing systems. This paper introduces the first
deeply-annotated joint Mandarin-Cantonese
eye-tracking dataset, from which we achieve a
unified eye-tracking prediction system for both
language varieties. In addition to the commonly
studied first fixation duration and the total fix-
ation duration, this dataset also includes the
second fixation duration, expressing fixation
patterns that are more relevant to higher-level,
structural processing.

A basic comparison of the features and mea-
surements in our dataset revealed variation be-
tween Mandarin and Cantonese on fixation pat-
terns related to word class and word position.
The test of feature usefulness suggested that
traditional features are less powerful in pre-
dicting the second-pass fixation, to which the
linear distance to root makes a leading con-
tribution in Mandarin. In contrast, Cantonese
eye-movement behavior relies more on word
position and part of speech.

1 Introduction

Eye-tracking has quickly become one of the most
popular methodologies in psycholinguistic stud-
ies, as it allows researchers to measure people’s
real-time processing efforts during a reading task
(Attardo and Pickering, 2023). Consequently, more
computational models have been proposed to pre-
dict eye-fixation patterns in English and many other
languages (Hollenstein et al., 2021a,b, 2022; Salic-
chi et al., 2022).

Chinese languages, being non-alphabetic, are
considered unique in eye-tracking research, mainly
due to the unspaced nature of the writing con-
ventions, the visual complexity of the characters,
and the abundance of homophonic and homo-
graphic characters (Hsu and Huang, 2000; Bai et al.,
2008). The computational modeling of Chinese

eye-movement patterns is still relatively limited, al-
though several traditional psycholinguistic models
have been proposed to measure Chinese reading
times (Rayner et al., 2007; Li and Pollatsek, 2020;
Thierfelder et al., 2020). Such models have focused
on factors such as word frequency, word length, and
word predictability but have not considered syntac-
tic and semantic processes that may have an equally
decisive influence on eye-movement behaviors.

To fill such research gaps, this paper first intro-
duces a deeply-annotated eye-tracking dataset that
covers Mandarin texts in simplified characters and
Cantonese texts in traditional characters, thus rep-
resenting two demographically important language
varieties. Based on this joint dataset, we imple-
mented a series of statistical tests to investigate
the inter-linguistic variance from the perspective
of fixation durations. Furthermore, we propose a
feature-rich prediction model of basic eye-tracking
measurements in Chinese, in addition to an abla-
tion study of the usefulness of features. Our pre-
dictors include both traditional and new features,
such as syntactic features, local lexical semantic
features, and contextual semantic representations.
We believe that comparing these features will fur-
ther broaden our understanding of the differences
between Mandarin and Cantonese. The contribu-
tions of the present study are as follows:

• we presente the first parallel Mandarin-
Cantonese eye-tracking dataset. The dataset
is annotated with three eye-tracking features,
including the second fixation duration, which
reflects higher-level, structural processing of
a sentence;

• we explore the similarities and differences
between Mandarin and Cantonese, two de-
mographically important varieties within the
family of the Sinitic languages, from the per-
spective of cognitive processing as reflected
in eye-tracking measurements.
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• we introduce computational models to approx-
imate and predict the fixation patterns of the
two varieties. Specifically, we integrate mor-
phosyntactic features and contextualized se-
mantic representations with traditional lexical
features into the modeling of fixation measure-
ments.

2 Related Work

As eye-tracking data are closely linked to real-
time cognitive processes, they can reveal the au-
tomatic operations in our brains that are related
to different linguistic modules, such as lexical ac-
cess (Clifton Jr et al., 2007), syntactic processing
(Van Schijndel and Schuler, 2015), semantic pro-
cessing (Hwang et al., 2011; De Groot et al., 2016),
and pragmatic competence (Gironzetti, 2020). Re-
garding the modeling of fixation patterns, previous
research has highlighted the close relationship be-
tween eye-tracking measurements and certain word
properties, including word position (Just and Car-
penter, 1980), word frequency (Yan et al., 2006; Li-
versedge et al., 2014), word predictability (Rayner
et al., 2005), and word length (Li et al., 2011; Zang
et al., 2018). Fixation on a particular word is also
sensitive to the cognitive load from the previous
word (known as a spill-over effect) (Rayner et al.,
1989; Pollatsek et al., 2008).1

In addition to these traditional lexical features,
morpho-syntactic features, such as part-of-speech
categories (POS) and syntactic dependency, also
impact fixation patterns. POS have been demon-
strated to influence the number of fixations and
the fixation duration (Blanchard, 1985). Concern-
ing syntactic dependency, previous studies indi-
cated that cognitive loads from syntactic structure
lead to increased refixation probability and dura-
tion (Conklin and Pellicer-Sánchez, 2016; Frenck-
Mestre, 2005), which is mainly related to the sec-
ond fixation duration (SFD) in this paper and par-
tially reflected on the total fixation duration (TFD).
Previous research also reported that the sensitiv-
ity of first-pass processing to the syntactic agree-
ment increases the first fixation duration (Deutsch,
1998; Deutsch and Bentin, 2001), although there

1According to some studies, another factor affecting fix-
ations is the semantic relatedness of a word with its context,
which can be measured via Distributional Semantic Models
(Pynte et al., 2008; Mitchell et al., 2010; Salicchi et al., 2023).
However, the evidence for the role of semantic relatedness
in predicting reading times and eye fixations is controversial
(Frank, 2017).

is counter-evidence that syntactic parsing only in-
creases the total fixation duration by affecting the
second fixation (Pearlmutter et al., 1999). De-
spite being crucial for modeling fixation patterns,
it should be noted that most of the research that
has targeted Chinese languages has not considered
POS and syntactic dependency.

Regarding the distinctiveness of the Chinese
writing system, most studies have supported the
view that words and characters are equally salient
units in the cognitive processing of texts written
in Chinese characters, as both word properties and
character properties influence reading-time mea-
surements and eye-movement behaviors (Bai et al.,
2008; Li et al., 2015). Following this assertion, the
word-level features widely applied in the reading-
time modeling of alphabetic languages are equally
applied in Chinese-specific research. Features re-
lated to higher-level processing, such as syntactic
properties, are also considered in research on Chi-
nese language processing (Lu et al., 2022; Chen
and Tsai, 2015; Zang et al., 2020). However, previ-
ous studies using syntactic properties have mainly
focused on syntactic complexity and the grammati-
cal function of a word without linking the syntactic
dependency of the entire sentence to eye-movement
modeling.

3 Dataset

This section introduces our eye-tracking dataset’s
construction procedures and annotation structure.2

We then present the results of inter-variety compar-
isons regarding basic eye-tracking measurements
in the next section.

3.1 Data Collection and Normalization

This study used two comparable eye-tracking cor-
pora collected by ourselves, one in Mandarin and
one in Cantonese, which were recorded using a
normal reading paradigm. Each corpus included
30 participants who were native speakers of the tar-
get language; the mean age of the Mandarin group
was 25.8 years old (22 females) and the Cantonese
group was 21.7 years old (20 females). During the
recording sessions, the participants read a trans-
lated version of The Little Prince by Antoine de
Saint-Exupéry, in Mandarin, and in Cantonese, re-
spectively. The Mandarin texts were presented in
simplified Chinese characters and the Cantonese

2Code and datasets will be made available via Github at the
following URL: https://github.com/CN-Eyetk/MCFIX.
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Figure 1: An example heatmaps of fixation duration by Mandarin and Cantonese readers, weighted by the duration
of the individual fixations.

texts in traditional Chinese characters. Each corpus
contained recordings of two reading tasks using
the same texts, i.e., the natural reading (NR, only
with a reading comprehension task) and the task-
specific reading (TSR, with the purpose of finding
specific information in a given text). Each cor-
pus contained three eye-movement measurements
and their standard deviations: first fixation dura-
tion (FFD), second fixation duration (SFD), and
total fixation duration (TFD). Figure 1 shows the
heatmaps of fixation duration recorded from one
Mandarin and one Cantonese reader in our data.

We then normalized the raw data as follows: If a
word, w, occurs Ntotal = n+nnull times, where n
is the number of instances with fixation values, and
nnull is the number of instances with null values,
then the normalized value equals the sum of the fix-
ation values of n occurrences divided Ntotal times.
Table 2 shows the descriptive statistics for these fix-
ation measurements of the two language varieties
in each task. Our datasets show that monosyllabic
words were more dominant in Cantonese than in
Mandarin, especially for content words such as
verbs and nouns, as shown in Figure 2; this ten-
dency is in line with the monosyllabic salience
observed in Cantonese (Li et al., 2016).

SENT WORD POS LDR LDH DEPTH Freq NSY L

1 看见(see) VERB 0 0 0 260.0 2
1 一(one) NUM 1 5 2 8489.0 1
1 幅(clf) DET 2 4 2 103.0 1
1 很(very) ADV 3 1 3 1755.0 1
1 棒(good) ADJ 4 2 2 27.0 1
1 的(de) PART 5 1 3 77946.0 1
1 图画(figure)， NOUN 6 6 1 25.0 2

Table 1: Annotation Example

Figure 2: Two-way comparison of syllable number and
part-of-speech in Mandarin and Cantonese

3.2 Annotation Structure

In addition to eye-movement measurements, we
obtained several linguistic features of our dataset
in the annotation: (1) Word Segmentation, which
inherited the word segmentation marked by native
speakers with a Ph.D. in linguistics during the col-
lection of eye-tracking data; (2) Part-of-speech,
which is derived from jiagu toolkit (https://
github.com/ownthink/Jiagu) for the Mandarin
text, and from pycantonese (Lee et al., 2022) for
the Cantonese text; the results of which were man-
ually checked and aligned by a Mandarin speaker
and a Mandarin-Cantonese bilingual speaker; (3)
Syntactic distances, including dependency depth
(DEPTH), linear distance to Head (LDH), and lin-
ear distance to root (LDR); all of these were based
on a syntactic analysis derived by the Stanford De-
pendency Parser (Chang et al., 2009); and (4) Tradi-
tional features in eye-tracking modeling, including
word frequency (obtained from the cifu dictio-
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nary (Lai and Winterstein, 2020) and the cncorpus
word-frequency list), and the syllable number.

Table 1 provides an illustration of the annotation
of linguistic features.

4 Cross-variety Comparison

4.1 One-way Comparison

Concerning the cross-variety variance between the
data in the two corpora, we fit a linear model
against FFD, SFD, and TFD (all in a log scale).
The fixed effects included LanguageTypes (Can-
tonese vs. Mandarin, the former as the treat-
ment), and WordFrequency, POS and Syllable-
Count (NSyllable). The estimation was imple-
mented by lm function in RStudio (Allaire, 2012).

The result shown in Table 3 (With Nsyllable)
highlights the effect of writing system simplifica-
tion. The tendency indicates that the Mandarin
readers consistently had significantly shorter fix-
ation durations for all the FDs of the TSR task
and the FFD of the NR task. This finding was
consistent with the expectation that lower visual
complexity may reduce cognitive effort; thus, Man-
darin readers who encountered simplified Chinese
texts showed significantly shorter first-past fixation
times than Cantonese readers who processed tradi-
tional Chinese texts. This tendency extended to all
the fixation measures in task-specific reading.

Nonetheless, the tendency caused by the writing
system’s simplification could be weakened by the
fact that Cantonese has more monosyllabic words,
thus simpler words, as shown in Figure 2. This was
demonstrated by the finding that (1) the exclusion
of syllable count from random effect neutralized
the significance (See without Nsyllable in Table 3),
and (2) the descriptive statistics of FD levels did
not show a significant difference between the two
variables (See Table 2).

4.2 FD Variance by POS and Word Position

On par with the general effects of language va-
riety on the word-level fixation duration, this re-
search also implemented a Tukey post hoc test to
investigate the FD differences of each POS be-
tween the two language varieties. Figure 5 (in
the appendix) shows that pronoun fixation and
noun fixation (excluding proper names) had signif-
icant cross-variety differences, as Mandarin read-
ers tended to fixate more on nouns in both read-
ing tasks, while Cantonese readers were inclined
to fixate more on pronouns in TSR. This consis-

tent tendency concerning noun fixation presum-
ably arises from the different distribution of syl-
labic length between Mandarin and Cantonese, as
nouns in Mandarin are more likely to be disyllabic
than monosyllabic (see Figure 2). The tendency
for pronoun fixation, we assume, arises from the
fact that Cantonese pronouns are more ambigu-
ous than those in Mandarin. For example, the sin-
gular third-person pronouns of masculine gender
"ta1"(他), feminine gender "ta1"(她), and neutral
gender "ta1"(它) in Mandarin all correspond to
the only singular third-person pronoun "keoi5"(佢)
in Cantonese, which may cause Cantonese read-
ers to spend more time on processing pronomi-
nal reference. In addition, Cantonese demonstra-
tive pronouns have high-frequency homographs
(or pseudo-homographs). The demonstrative pro-
noun "ni1/nei1" (呢"this") is homographic with the
sentence-final particle "ne1" (呢). The demonstra-
tive pronoun "go2" is pseudo-homographic with
the classifier "go3" (個). This property presumably
induces more efforts for Cantonese readers in the
lexical access for demonstrative pronouns.

Apart from POS, we also investigated the simi-
larities and differences between the two language
varieties in terms of the effect of word position on
fixation durations. For this, we fit the correlation
between the word position in the sentence (normal-
ized by sentence length) and the fixation duration
with the third-degree polynomial formula (to cap-
ture non-linearity). Non-overlapping contours of a
confidence interval indicate statistically significant
differences. As shown in Figure 3, the final part
of each sentence showed significant differences
between Mandarin and Cantonese. Cantonese con-
sistently tended to involve a descent of fixation
durations in the final quarter of a sentence, while
Mandarin was almost the opposite in such a local
span, except for TSR’s first fixation duration.

5 Methodology

This section introduces the features and the regres-
sors used in the prediction of eye-tracking measure-
ments, derived from the results of the cross-variety
comparison drawn from both psycholinguistic and
computational studies.

5.1 Prediction Targets

The prediction targets include the subject-wise nor-
malized level (below referred to as mean level) of
FFD, SFD, and TFD and the standard deviations
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Mode Variety Word Count FFDavg FFDstd SFDavg SFDstd TFDavg TFDstd

NR
Cantonese 5050 108.53 55.56 37.32 41.97 171.37 144.47
Mandarin 3939 108.98 55.42 40.27 44.91 180.21 160.61

TSR
Cantonese 5047 101.22 52.75 30.29 34.10 145.89 102.89
Mandarin 3941 101.26 54.45 30.82 34.27 147.30 106.41

Table 2: Descriptive statistics of fixation durations

Mode Y With Nsyllable Without Nsyllable

estimates Pval Sig estimates Pval Sig

TSR
FFD +0.031 0.004 ** 0.007 0.544
SFD +0.060 0.056 -0.015 0.663
TFD +0.046 0.000 ** 0.009 0.515

NR
FFD +0.009 0.003 ** -0.01 0.400
SFD +0.002 0.952 -0.064 0.061
TFD +0.017 0.222 -0.016 0.282

Table 3: Estimates of the effect of Cantonese on FDs,
with Nsyllable not placed in random effect (on the left)
and placed (on the right).
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Figure 3: Polynomial contours and their 95% confi-
dence interval of the correlation between normalized
word position and FDs (in log scale) in Mandarin and
Cantonese.

of FFD, SFD, and TFD, for both Mandarin and
Cantonese. We believe that it is important to in-
clude the standard deviations in our gold standard:
eye-tracking metrics prediction is an example of a
task in which predicting only the mean value from
a set of measurements typically excludes a large
amount of variation existing in the data. For this
reason, in the spirit of paving the way for NLP sys-
tems that can better deal with human label variation
(Plank, 2022), we added this additional challenge
to our dataset.

5.2 Features

We used two sets of features in our prediction ex-
periment: Linguistic features and GPT word em-
beddings.

5.2.1 Linguistic Features

Given the annotation structure in our dataset, we
selected nine linguistic features as shown below.

Traditional features based on previous studies
included Frequency (of the current word and its
previous word), Syllable Number (of the current
word and its previous word), Word Position, and
POS. Specifically, Frequency was extracted from
cifu dictionary (Lai and Winterstein, 2020) and
cncorpus word-frequency list3 and was projected
to a log scale; the previous word frequency and
syllable number are specified as “-1" for sentence-
initial words; word position is the order of a word
in a sentence divided by the sentence length (by
word).

In addition, we proposed five new features, of
which four had not been used in modeling fixation
patterns of Chinese languages in natural language
processing, and one feature that has recently been
shown to be useful in predicting eyemovement pat-
terns: they are DEPTH, LDH and LDR, which
are summarized in section 3, Word Predictabil-
ity measured by GPT2 Surprisal (Salicchi et al.,
2022), and Orthographic Neighborhood. The
orthographic neighborhood refers to how likely
a character cooccurs with other characters in a
compound-word, inferring a given character’s am-
biguity level. We calculated this based on the cifu
dictionary and xinhua wordlist for Cantonese and
Mandarin, respectively. To calculate the Ortho-
graphic Neighborhood of each word, we divide the
word into characters and sum up the number of
words containing each single character, treating the
summation as the value of the Orthographic Neigh-
borhood. The Surprisal of Mandarin and Cantonese
was computed with a simplified Chinese GPT2

3https://github.com/bedlate/cn-corpus
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trained on CLUE Corpus Small4 (hereafter referred
to as clue), while the Surprisal of Cantonese was
additionally calculated with a traditional-Chinese
GPT2 finetuned on cantonese-wikipedia for 10
epochs 5, which is referred to as jed351 below. For
each round of Cantonese FD modeling, we fed one
of the two Surprisals and finally reported the better
performance. On account of the character-base to-
kenization of both clue model and jed351 model,
we sum up the Surprisal score of each character
cik (the i-th character of the k-th word wk in a sen-
tence) to represent the exact score of the whole
word. More in detail:

suppose wk =
[
c1k, c

2
k, ..., c

m
k

]
), which means

that the k-th word in the current sentence has m
characters. Then the surprisal of the whole k-th
word is represented as:

Surprisal(wk) =
m∑

i=0

Surprisal(cik) (1)

suppose cn is the n-th character in the whole
sentence, then the surprisal of each character is:

Surprisal(cn) = − log(P (cn|c0, c1, ..., cn−1))
(2)

5.2.2 GPT Contextual Word Embeddings
To explore the effectiveness of contextualized word
representation in improving eye-tracking predic-
tion, we extracted the last hidden state of each
word input from the GPT2 architecture to be con-
catenated with the linguistic features mentioned
above. We used the clue model to extract GPT
word embedding for both Mandarin and Cantonese.
Since clue is basically trained on the Mandarin
corpus, we equally used the jed351 model to ex-
tract embedding for Cantonese. We separately try
one of the two types of Cantonese GPT embedding
for each regressor.

All compositions of features tried in this re-
search are summarized below. For each feature
composition, we tried both interactions (using the
PolynomialFeatures module in scikit-learn)
and non-interaction between linguistic features and
reported the best results.

4https://huggingface.co/uer/
gpt2-chinese-cluecorpussmall.

5https://huggingface.co/jed351/gpt2_tiny_
zh-hk-wiki

Gpt Embedding Other Features

Mandarin
noGpt Linguistic Features (with clue Surprisal)
clue Linguistic Features (with clue Surprisal)

Cantonese
noGpt

Linguistic Features (with clue Surprisal)
Linguistic Features (with jed351 Surprisal)

clue Linguistic Features (with clue Surprisal)
jed351 Linguistic Features (with jed351 Surprisal)

Table 4: All possible composition of features for Man-
darin and Cantonese.

5.3 Regressors

To propose an optimal prediction system, we uti-
lized several regression models to approximate
the eye-movement measurements concerned, using
the implementations in the scikit-learn Python
package and catboost package (Dorogush et al.,
2018) (for GradientBoostDecisionTree only, due
to its slow implementation without GPU accelera-
tion). Below in Table 5 we listed the main hyper-
parameters.

Regressors Hyper-Parameters

BRR (BayesianRidge)
alpha=1.0,
normalized=True

ELAST (ElastRegressor)
alpha=1.0 ,
l1_ratio = 0.5 ,
selection="cyclic"

GBDT (CatBoostRegressor)
num_leaves = 31 ,
learning_rate =0.03

LGB (LGBMRegressor)
objective=’regression’ ,
num_leaves = 31 ,
learning_rate =0.05

LR (LinearRegression) fit_intercept=True

MLP (MLPRegressor)
hidden_layer_size=5,
activation = identity,
solver = adam

PLSR (PLSRegression) n_components = 5

RF (RandomForestRegressor)
min_samples_split=2,
min_samples_leaf =1

RR (Ridge)
alpha=1.0,
normalize =True

Table 5: Regressor Parameter Settings

5.4 Metrics

To evaluate and compare the performance of the
participating systems, we used the mean absolute
error (MAE) in the 5-fold cross-evaluation as the
main metric in the Results and Discussion sec-
tion, as it increments linearly with the increases
in the error. To complement, the mean squared
error (MSE), the R-Square (R2), the Pearson cor-
relation (Pears.), and the Spearman correlation
(Spear.) for the 5-fold cross-evaluation are jointly
reported for the best prediction system for each of
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Y Lang Gptvec brr elast gbdt lgb lr mlp plsr rf rr

FFD
Cantonese

- 38.86 38.87 36.19 38.82 38.48 38.99 38.78 35.64 38.47
clue 35.19 36.81 33.14 37.81 35.62 35.72 36.27 33.76 35.60

jed351 35.78 36.46 33.20 37.95 35.78 36.22 36.08 33.86 35.78

Mandarin
- 36.49 36.56 34.37 37.20 36.48 36.79 36.69 34.49 36.36

clue 34.34 35.46 32.53 36.64 35.33 35.13 35.02 33.80 35.28

SFD
Cantonese

- 24.54 24.53 23.48 24.81 24.49 24.63 24.49 24.98 24.49
clue 23.39 24.05 22.58 24.53 24.06 23.78 23.92 23.73 24.05

jed351 23.70 23.89 22.59 24.56 23.93 23.93 23.86 24.19 23.93

Mandarin
- 24.38 24.58 23.81 25.22 24.38 24.81 24.38 25.38 24.38

clue 23.84 24.30 23.39 24.96 25.08 24.35 24.08 24.64 25.06

TFD
Cantonese

- 74.17 74.03 70.77 74.24 74.13 74.55 74.11 74.76 74.11
clue 68.96 70.31 66.32 72.87 71.34 71.34 71.03 68.30 71.29

jed351 70.27 70.45 66.41 72.89 70.91 71.98 70.65 70.22 70.90

Mandarin
- 73.50 74.07 71.62 75.63 73.57 74.46 73.55 77.35 73.56

clue 70.71 71.60 69.11 74.82 74.90 73.61 72.05 73.22 74.84

Table 6: Performance (By MAE, lower is better) of different regressors (with and without GPT2 embeddings) on
subject-normalized FFD, SFD, and TFD levels

the 6 FD measurements.

6 Results and Discussion

6.1 Regressor Performance

Table 6 presents the optimal MAE of each regres-
sor in the prediction of the mean levels of FFD,
SFD, and TFD. Table 7 shows all the metrics for
the best system with and without GPT embedding.
For the regressor selection, the GBDT regressor
was dominantly the optimal choice for predicting
eye-tracking data for the two Sinitic language va-
rieties. In general, our prediction system is most
helpful in approximating a human’s first-pass eye-
movement behavior, as the best R2 scores were
44% and 41% for the Mandarin and Cantonese first
fixation predictions, respectively (see Table 7). The
correlation scores listed in Table 7 ranged between
0.57 and 0.66 for the FD mean value prediction and
between 0.26 and 0.46 for the FD standard devia-
tion prediction, demonstrating the predictability of
the FD measurements in our dataset and the effec-
tiveness of the features proposed in this research.

The utility of GPT embeddings was evaluated in
this study, with Table 7 indicating that they are par-
ticularly effective in predicting FFD. Specifically,
the performance (by R2) on mean level prediction
for FFD in Mandarin and Cantonese was reinforced
by 6% and 10%, respectively. However, GPT em-
beddings were found to be less helpful in predicting
the mean level of SFD and TFD for both varieties.
These results suggest that contextual semantics play
a relatively marginal role in predicting non-initial
fixation behavior for Mandarin and Cantonese.

The Pears correlation scores listed in Table 7

show a moderate correlation (0.4 - 0.6 for psychol-
ogy) for most measurements between the ground
truth and prediction, except for the standard devia-
tion of Mandarin FFD (Akoglu, 2018).

6.2 Feature Usefulness

To investigate the usefulness of the linguistic fea-
tures, we performed a series of ablation analyses
against each feature in relation to the 6 measure-
ments under discussion and found the change in
MAE to be a metric suitable for measuring the use-
fulness. Intending to identify the pure usefulness
of each feature, we restricted our ablation analyses
to non-interaction GBDT regressors to avoid po-
tential confusion due to cross-module interactions
and regressor differences. In this paper, we mainly
discuss the contribution of each feature to the MAE
reduction of the mean level prediction.

Figure 4 presents each feature’s usefulness (cor-
responding to positive values and highlighted in
color) to the prediction of the mean level of each
measurement. To facilitate the discussion, we di-
vided the features into (1) Traditional Features uti-
lized in psycholinguistic research, including Fre-
quency (Word Frequency), Nsyl (Syllable Count),
POS (Part-of-speech), Word Position, Prev Freq
(Previous Word Frequency), and PrevNsyl (Previ-
ous Syllable Number) (2) Newly-introduced fea-
tures in this research, including DEPTH, LDR and
LDH, Surprisal, and the Neighbor (Orthographi-
cal Neighborhood).

6.2.1 Traditional Features
The traditional features widely used in psycholin-
guistic research indicated the usefulness of all types

127



Y Variety
+GPT Embedding -GPT Embedding

Mapper Gptvec MAE R2 Pears Spear Mapper MAE R2 Pears Spear

FFD
Cantonese gbdt- clue 33.14 0.41 0.64 0.62 rf- 35.64 0.31 0.57 0.53
Mandarin gbdt+ clue 32.53 0.44 0.66 0.65 gbdt+ 34.37 0.38 0.62 0.60

FFDstd
Cantonese gbdt+ jed351 21.82 0.13 0.37 0.36 gbdt+ 22.46 0.08 0.28 0.27
Mandarin lgb- clue 22.03 0.06 0.26 0.28 lgb+ 22.22 0.04 0.22 0.23

SFD
Cantonese gbdt+ clue 22.58 0.32 0.57 0.52 gbdt+ 23.48 0.28 0.53 0.45
Mandarin gbdt+ clue 23.39 0.33 0.58 0.56 gbdt- 23.81 0.31 0.56 0.54

SFDstd
Cantonese gbdt+ clue 33.09 0.20 0.46 0.46 gbdt- 34.26 0.16 0.40 0.40
Mandarin gbdt+ clue 33.21 0.18 0.44 0.48 gbdt- 33.23 0.20 0.45 0.47

TFD
Cantonese gbdt- clue 66.32 0.36 0.60 0.60 gbdt- 70.77 0.31 0.56 0.51
Mandarin gbdt- clue 69.11 0.37 0.62 0.66 gbdt- 71.62 0.36 0.60 0.61

TFDstd
Cantonese gbdt+ clue 56.99 0.17 0.43 0.47 gbdt- 58.47 0.16 0.41 0.39
Mandarin brr- clue 62.33 0.20 0.45 0.47 gbdt- 62.50 0.20 0.45 0.47

Table 7: The best model for each language variety on each fixation measurement. The "+" on the mapper denotes
the introduction of interaction between linguistic features, while the "-" denotes the contrary.
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Figure 4: The usefulness of each feature based on ablation analyses of non-interaction models with no GPT
embeddings.

of FDs in the two language varieties. In addition,
most traditional features showed conspicuously
less effectiveness in SFD prediction than in FFD
and TFDprediction, except for the current syllabic
length (Nsyl) for Mandarin, which showed more
effectiveness in SFD than in FFD.

For the cross-variety comparison under discus-
sion, it is worth mentioning that Word Position
and POS are consistently more useful to Can-
tonese FD predictions. The stronger usefulness
of word position in Cantonese is in line with the

well-acknowledged typological statement that Can-
tonese exhibits a more robust canonical SVO order
than Mandarin, whose word order shows the prop-
erty of both SOV and SVO languages (Dryer, 1992,
2003; Liu, 2000).

6.2.2 Newly-introduced Features
Comparing with traditional features (except Nsyl),
syntactic properties (Depth, LDH, LDR) are a
bundle of features whose utility does not bleach
as much in second fixation duration, which is con-
sistent with suggestions from psycholinguistic re-
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search that second-pass fixation is less dependent
on lexical access than syntactic processing(Conklin
and Pellicer-Sánchez, 2016)). Specifically, LDR
stands out as the third most contributive feature
in modeling Mandarin’s second fixation duration,
following Surprisal and Nsyl.

Neighbor and Surprisal also display overall ef-
fectiveness on all FDs. Specifically, Surprisal is
the second most useful feature in the prediction of
Mandarin FFD and TFD, following Nsyl. The find-
ing that the Surprisal tends to be more beneficial
to Mandarin can be attributed to the specific prop-
erties of the GPT models that we applied in this
research, both of which take Mandarin text as their
dominant training data (to the best of our knowl-
edge, there are no publicly available GPT-like au-
toregressive Transformer models trained purely on
Cantonese texts).

7 Conclusions

In this paper, we introduced an extensively an-
notated dataset of Mandarin and Cantonese eye-
tracking data and shed light on their differences by
features, such as word formation, word class, and
word order. We also proposed a prediction system
of fixation behaviors accompanied by new features
from different modules, such as dependency fea-
tures, the orthographic neighborhood, and GPT
word embeddings, which were introduced with the
goal of the computational prediction of Chinese
eye-tracking data.

Based on a comparison of the regressor perfor-
mance under different feature compositions, we
investigated the usefulness of GPT vectors and lin-
guistic features in reducing prediction errors. The
results highlighted the effectiveness of our newly
introduced features in modeling fixation patterns
in representative Chinese language varieties and
the importance of word order, part-of-speech, and
syntax in addressing how Mandarin and Cantonese
differ in language comprehension.

The findings in our study identify a few possible
topics for future studies on language processing and
regional syntactic variation of Chinese languages,
such as how the syllabic structure, the visual com-
plexity of different writing systems, pronominal
resolution, syntactic relations, word order interact
with gazing patterns and reading times of Chinese
language speakers, especially for native speakers
of different varieties. In addition to the varieties we
studied here, we also plan to enlarge the dataset by

including Mandarin processed through traditional
Chinese characters, which is the standard system
used in Taiwan. Finally, for future psychological
and computational modeling studies, possible re-
finements of the representations in our experiment
could be features targeting orthographic complex-
ity and lexical ambiguity.

Limitations

The current study still has some limitations. For
feature introduction, the GPT-based features are
probably biased toward Mandarin text due to the po-
sition of Cantonese as a low-resource language. For
the design of the prediction system, our approach
is blind to the sequential properties of word-level
fixation measurements. For future exploration, it
would be promising to explore a sequential model-
ing approach.
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A Appendix

In this appendix, Figure 5 presents each FD’s
difference between Mandarin and Cantonese
(FDMandarin − FDCantonese) grouped by part-
of-speeches. FDs are in log scale. Differences
above zero denote longer FD for Mandarin. Part-
of-speeches involving significant differences are
colored.
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Figure 5: Tukey post hoc test of FD difference between
paired part-of-speech in Mandarin and Cantonese (re-
porting 95%-level confidence intervals of the difference
of“Mandarin-Cantonese"). FDs are in log scale. Word
classes involving significant variance are colored. Posi-
tive difference means longer FD for Mandarin for the
corresponding word category.
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Abstract 

Based on historical dialect data we 

introduce a local measure of linguistic 

coherence in spatial language variation 

aiming at the identification of regions 

which are particularly sensitive to language 

variation and change. Besides, we use a 

measure of global coherence for the 

automated detection of linguistic items 

(e.g., sounds or morphemes) with higher or 

lesser language variation. The paper 

describes both the data and the method and 

provides analyses examples.  

1 Introduction 

Dialectometric work typically focuses on the co-

occurrence of the distribution of variants in 

different sites (see Goebl 1984). From these co-

occurrences, reasonably coherent regions of 

linguistic similarity can be identified. These 

regions then provide, for example, clues to the 

aggregated structuring of higher-level linguistic 

areas (e.g., within a nation). Alternatively, they 

show to what extent individual sites of a given 

corpus are integrated into the region under 

discussion in terms of their similarity or distance to 

other sites (e.g., Heeringa 2003). Such analyses, 

which at the same time constitute the classical field 

of dialectometry, thus benefit from the aggregation 

of all linguistic phenomena of a given corpus. 

However, if the interest is not in the overall 

structuring of a region, but in the distribution 

                                                           

1 The study builds on R programming 

(R Core Team 2021), using the 

packages spatstat (Baddeley & 

Turner 2005) and Rvision (Garnier 

et al. 2021) mainly. In order to 

perform our coherence measure more 

efficiently it has been implemented 

patterns of individual variants, non-aggregating 

procedures must be applied. For a single 

phenomenon, spots of variation may be identified 

in most cases by visual inspection (see Ormeling 

2010 for a critical account). However, in order to 

capture this variation quantitatively, more recent 

studies have considered a number of solutions, for 

example based on resampling techniques (e.g., 

Wieling & Nerbonne 2015), Kernel Density 

Estimation (e.g., Rumpf et al. 2009) or the concept 

of entropy (e.g., Prokić et al. 2009).  

This paper presents a diagnostic measure for the 

detection of coherence or heterogeneity in spatial 

language variation aimed at identifying those 

regions that are particularly prone to variation or 

particularly sensitive to language change. We 

perform an approach based on nearest neighbor 

comparison and exemplify the used measure.1  

In the remainder, we provide information on the 

data and introduce both a local and a global 

measure of linguistic coherence and diversity. In 

what follows we present example analyses based 

on historical dialect data from southwestern 

Germany and discuss the introduced procedure. 

2 Data  

The study makes use of a data set collected by the 

German linguist Friedrich Maurer during the year 

1941 in the Upper German dialect region within the 

boundaries of the national territory at the time. The 

survey was based on a questionnaire with 113 

into a R-package (LinguGeo). The 

current version of the LinguGeo 

package can be found at: 

https://github.com/SchoenbergA/Lin

guGeo  
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individual words (most of them nouns, but also 

adjectives and verbs) and 10 sentences together 

with biographic information of the participants. In 

contrast to both the earlier survey by Wenker 

(Wenker 2013) and the contemporaneous 

investigation by Mitzka (cf. Wrede et al. 1926–

1956), Maurer focused more strongly on social and 

biographic information. Thus, in addition to the age 

of the participants, for example, their gender as 

well as the origin of their parents or their preferred 

market towns are documented. 

We focus on the Alemannic part of the Maurer 

data which is mainly related to the southwestern 

part of nowadays Germany (the Baden region) and 

the Alsace in France (see Strobel 2021 for further 

information). In total, the data document 2344 

locations, providing a quasi-total coverage of the 

region under discussion (Figure 1). The hand-

written questionnaires of this area have been 

typewritten and therefore digitalized by student 

assistants. The data is stored in *.csv files and will 

be publicly accessible in the future in the data 

repository of the Research Center Deutscher 

Sprachatlas. 

 

 
Figure 1: Study area. 

3 Method 

3.1 Local Measure 

In order to analyze the spatial variation of the area 

under discussion we compare the linguistic 

realizations of one site with the realizations of its 

geographic neighbors. Behind the selection of 

neighborhood relations is the assumption of the so-

called “Fundamental Dialectological Postulate” 

(Nerbonne & Kleiweg 2007), which states that 

closer objects are linguistically more similar than 

distant objects. 

From a technical point of view, for every site r 

we compare the linguistic realization of an 

individual item i of the questionnaire (e.g., a word) 

with its geographic neighbor s. Cohrs|i is then the 

number of identities between r and s with Cohrs|i = 

1 in case of identity and Cohrs|i = 0 otherwise.  

To obtain a better insight into how the individual 

sites fit into the language region, the number of 

compared sites should be S > 1. In the present 

paper, we consider up to 19 neighbors (0 ≤ S ≤ 19), 

where 0 is used for the rendering of the original 

data. CohrS is then the average overlap between r 

and its set of neighbors S with 0 ≤ CohrS ≤ 1 and 

CohrS = 1 indicating identity between r and S and 

CohrS = 0 indicating no identity between r and S. In 

case a location has several variants for a linguistic 

variable (e.g., because of several participants or 

multiple responses), the number of matches 

between r and s is related to the number of local 

variants. 

An example is provided by Figure 2. The 

centrally located site is opposed by a total of 5 

nearest neighbors, which have a total of 2.5 

matches with the central site, resulting in Coh = 

2.5/5 = 0.5. The number of variants is irrelevant for 

this approach but is relevant for the global measure 

(cf. 3.2) 

 

 
Figure 2: Model of distribution of variants. 

 

Inverting the scale results in a measure of linguistic 

diversity instead of linguistic coherence which we 

refer to as Div = 1-Coh. We use this Div measure 

in order to identify moments of particular dynamics 

on language maps.  

Another point is worth mentioning. The nearest 

neighbor approach relies heavily on the definition 

of geographic coordinates and distances. In our 

approach, the geometric information of the spatial 

position for each survey site is thus originally 

stored in the WGS 84 format (longitude and 

latitude). Due to the ellipsoidal coordinate system, 

the distances are heavily distorted which directly 
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affects the selection of the nearest neighbors. To 

use the quasi-exact distances a cartesian coordinate 

system is required. Therefore, we projected our 

data to the UTM system related to the ETRS89 

ellipsoid.  

3.2 Global Measure 

While the local measure indicates the integration of 

individual sites into its nearest spatial 

neighborhood, it says nothing about the coherence 

or heterogeneity of an overall map. Various options 

are available for this purpose. For example, the 

mean of all local Coh values could be taken as a 

global measure of coherence (CohG). However, as 

Figure 3 demonstrates, this measure is dependent 

on the number of linguistic variants in a data 

distribution, making it difficult to compare CohG 

across maps with different numbers of variants. For 

example, if a map shows two linguistic variants a 

complete random distribution results in 0.5 ≤ CohG 

≤ 1 and 0.33 ≤ CohG ≤ 1 for three variants etc.  

In order to solve this problem, we perform a 

CohG* correction in which CohG is divided by the 

number of variants and scaled 0 < CohG* ≤ 1. As 

becomes evident by Figure 3, CohG* is robust 

against the number of variants, while CohG, in 

contrast, is sensitive to it and converges to CohG* 

as the number of variants increases. Similar holds 

for the number of neighbors against which CohG* 

is robust while CohG is sensitive to it (not 

reported). 

 

 
Figure 3: Comparison of CohG and CohG* based on 

simulated degrees of both spatial coherence and random 

data filling (0-100 %) for a data distribution with 2 to 5 

linguistic variants. 

 

Another view on CohG* is provided in Figure 4 

and Figure 5. In these figures, data simulations are 

performed for the locations of the corpus, 

generating different degrees of random data 

distributions. Starting from a uniform distribution, 

20 % of the data of each map are successively 

overwritten with a random distribution.  

 

 
Figure 4: Simulation of different degrees of spatial 

heterogeneity (0 %, 20 %, 40 %, 60 %, 80 %, 100 %) for 

a map with two linguistic variables. Variant 1 = purple, 

variant 2 = yellow, alpha = 1-Coh. 

 

 
Figure 5: Simulation of different degrees of spatial 

heterogeneity (0 %, 20 %, 40 %, 60 %, 80 %, 100 %) for 

a map with three linguistic variables. Variant 1 = purple, 

variant 2 = yellow, variant 3 = green, alpha = 1-Coh. 
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While Figure 4 illustrates data simulation with two 

linguistic variants, Figure 5 illustrates the same 

procedure based on three linguistic variants. The 

figures show that while the CohG is related to the 

amount of variants, the CohG* values describe the 

same amount of coherence/homogeneity 

unattached to the number of variants. 

Against this background, the Coh measure, and 

also the CohG* measure, yields plausible results as 

far as different degrees of coherence or 

heterogeneity are concerned. However, it is still an 

open question how the values turn out in concrete 

use cases and what more detailed conclusions can 

be drawn from them. 

4 Use Cases 

4.1 Lambdacism in Kirche ‘Church’ 

As a first example we focus on a rather simple 

spatial pattern provided by the distribution 

of -r- and -l- sounds in the word Kirche ‘church’ 

(Kirche vs. Kilche) in the southern part of our study 

area (Figure 6). The phonological process behind 

this is the so-called lambdacism, which is typical 

for some regions of the German-speaking area (cf. 

Lameli 2015).  

Figure 6 illustrates the distribution of the 

variants in the southern part of the study area. At 

each site one variable is documented, where Kirche 

(blue) occurs 1008 times, Kilche (red) 222 times 

(1230 sites in total). Hence, 81.94 % of the sites in 

the study area show -r-.  

 

 
Figure 6: Example of a spatial distribution of linguistic 

variants -r- (blue) and -l- (red) in the word Kirche 

‘church’. 

In a random distribution the expected probability 

that a particular site’s neighbor shares the same 

variant is EV = (1008-1) / (1230-1) = 81.94%. For 

the same distribution we reveal under the 

consideration of 5 nearest neighbors CohG* = .94 

(Coh = .9) indicating that, on average, 94 % of the 

neighboring 5 sites share the same variant -r- as the 

site under observation. However, the question 

remains open as to how high CohG* turns out to be 

in a random distribution when 5 nearest neighbors 

are considered, as in the present case. For this 

purpose, 1000 data simulations were performed in 

which the existing occurrences of -r- and -l- sounds 

were randomly distributed among the study sites. 

The resulting mean of CohG* = .41 indicates that, 

given a random distribution of data, statistically 

41 % of the neighboring five locations share the 

same variant as a particular site under observation 

with a range of CohG* = .37–.44. 

By CohG* being higher than both the random 

distribution and the expected value EV, (1) spatial 

clustering of -r- and -l- is indicated and, as a 

consequence, (2) a clear separation of the variants. 

Indeed, very few locations aside, all variants cluster 

in contiguous areas as already becomes clear by 

visual inspection. 

Testing the distribution of local Coh values 

against a normal distribution using a Wilcoxon 

rank sum test reveals a statistical difference 

between the expected value EV and the empirically 

found Coh measure (z = -4.21, p < .001, r = .94). 

What these measures refer to becomes evident 

when plotting 1-Coh (= Div) on a map (Figure 7).  

 

 
Figure 7: Local measure of linguistic coherence (Div = 

1-Coh) applied to the data of Figure 6. 
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As expected, the highest Div values are at the 

border zone between the variants. Most 

interestingly, there are differences depending on 

the spatial alternation of the variants. For example, 

on the left, where we find a mix of variants, Div 

values are high. In contrast, in the center, where we 

find a separation of Kirche and Kilche, Div values 

are low. The spots illustrated by Figure 7 thus allow 

conclusions to be drawn about zones of increased 

linguistic dynamics: around the sites with high 

values (intense colors) there is a high degree of 

variation, around the sites with low values (pale 

colors) there is a lower degree of variation. While 

the former can be expected to be more sensitive to 

language change regarding the variable under 

discussion, the latter can be expected to be more 

robust to language change. 

Methodologically, it should be emphasized that, 

due to the nearest neighbor approach, the described 

procedure always computes a gradient-like result. 

Even if there is a sharp separation between variants 

(Figure 6) a gradient would be computed (Figure 

7).  

The intensity of this gradient-like effect depends 

on the number of nearest neighbors. Using the 

minimum of two nearest neighbors will result in 

exactly three index values and the resulting map 

would set a focus on areas which differ from their 

surroundings (Figure 8/A). This may be useful to 

detect islands of variation in rather coherent areas. 

With increasing numbers of nearest neighbors, the 

amount of possible index values will increase and 

return much more smoother transitions. This is 

helpful for the detection of areas with variation in 

a cluster-like way. Areas with variation in close 

distances would be smoothed to clusters which 

would be differentiated from surrounding 

homogeneous areas (e.g., Figure 8/D). This way of 

proceeding captures, for example, border regions 

in a more schematic way and those regions which 

are most likely unaffected by these border regions. 

 

 

 
Figure 8: Local measure of linguistic coherence applied to the data of Figure 6 with different number of nearest 

neighbors and without information on linguistic variants. 

 

 

4.2 Subtractive Plural in Hunde ‘Dog-PL’ 

Another example is provided by Figure 9, which 

focuses on the whole language area of the Maurer 

data. The map illustrates the variation of the word 

ending in Hunde (‘dog-PL’; CohG* = .87) 

considering three graphemic variants (<nd>, <ng>, 

<nn>), of which <nn> (phonologically /n/) and 

<ng> (phonologically /ŋ/) have been considered as 

subtractive plurals (Birkenes 2014). While the 

Kirche example considers only two linguistic 

variants, Figure 9 refers to three linguistic variants. 

The figure combines three different views. On the 

left side is the distribution of variants without any 

preparation, in the middle the representation of the 

coherence measure (expressed in Div) including 

information on the variants and on the right side the 

representation of coherence (Div) without 

information on the linguistic variants. 

Obviously, the coherence map in the middle 

clearly highlights the spots of linguistic variation. 

Among them are areas where only two variants 

interact (e.g., <nd> and <nn> in the South, <nd> 

and <ng> in the North), but also areas where all 

three variants meet (in the center). Similar to the 

previous example the coverage of individual 

variants is mapped.  

The map on the right, on the other hand, 

emphasizes where generally such patterns of 

variation are encountered. This map consequently 

emphasizes the contrast between homogeneous 

and heterogeneous moments of the spatial data 

distribution. In this case, too, conclusions can be
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Figure 9: Local measure of linguistic coherence (Div = 1-Coh) for a linguistic variable with three variants (Hunde 

‘dog-PL’); green = <ng>, red = <nd>; blue = <nn>; left: distribution of variants; middle: Div measure with information 

on linguistic variants; right: Div measure without information on linguistic variants. 

 

drawn (as in the previous example) about the extent 

of regional variation and possible language change 

events; it is in the yellow zones where variation is 

highest and possible language change is most 

likely. 

From a methodological perspective, the 

following is worth mentioning. By integrating the 

nearest neighbors, a smoothing effect is created, 

which shows linguistic variation in places where 

actually no variation is documented by data 

collection. The idea behind this is that variation is 

probably more widespread than what is captured by 

data collection. For example, if only one person is 

asked about a particular linguistic variant at each of 

two surveyed locations (which is very often the 

case in dialectological studies), it would possibly 

be wrong to take different answers per se as 

evidence of strict linguistic differences between 

those locations. Instead, it must be expected that 

both variants would be encountered in both 

localities and would be appropriately documented 

with other participants if data were repeatedly 

collected. However, the probability of this 

decreases with increasing geographical distance. 

The measure thus provides a prediction for the 

communicative reach of language variants.  

5 Discussion 

The Coh measure, as well as the Div measure 

respectively, reveals spots of local variation, which 

indicate horizontal (i.e. geographical) or vertical 

(i.e. social, pragmatic) heterogeneity. As Labov 

(2004) points out, these spots of increased language 

variation might be possible starting points of 

language change. In this regard, Bellmann (1983) 

considers the model in Figure 10.  

Starting from a situation where variant A is the 

only available realization of a particular linguistic 

variable, at a certain time variant B becomes an 

alternative. This is the situation illustrated by 

Figure 10 for both scenarios (above and below). 

However, the Coh measure goes beyond local 

variation by modeling the closest relative area of 

influence of that alternative.  

 

 
Figure 10: Possible stages in the formation of language 

variation and/or language change on the example of two 

variants A and B; above: scenario 1 (language change); 

below: scenario 2 (temporary language variation). 

 

Obviously, analysis using Coh (like Figure 7) does 

not specify how long the variative phase will 

persist. Furthermore, it could be that variant B 

disappears again (Figure 10 below), and it could 

just as well be that variant B prevails (Figure 10 

above) while A disappears. Consequently, Coh 

does not allow for a clear prediction of the process 

of language change, but it does illustrate that, if 

language change does occur, it is likely to occur at 

the spots with high Div (= 1-Coh). Against this 

background, the relevance of the Coh measure is to 

indicate spots of particular linguistic dynamics. 

Identifying these spots enables both prediction and 

explanation of ongoing and/or completed language 

change.  
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On the other hand, with CohG* → 1 it can also 

be shown directly whether a language region has 

proto-typical variants, which can then be easily 

identified in the data distribution.  

Furthermore, applying the coherence measure to 

a collection of multiple linguistic phenomena, as 

shown in Figure 11, leads to a new perspective on 

the structuring of linguistic space. Instead of 

highlighting the clusters of linguistic similarity, 

rather the zones of particular linguistic dynamics 

are identified. From looking at the coherence 

values, even without mapping, a first impression is 

given whether the lemmas in question show a 

strong spatial clustering or not. This is useful for 

huge datasets with lots of linguistic variables. At 

the same time, it becomes evident that the measure 

is sensitive for outliers (i.e., isolated sites), which 

are evident by individual points. 

 

 
Figure 11: Local measure of linguistic coherence (Div = 1-Coh) for different linguistic variables. 

 

Among the existing dialectometric literature, our 

coherence measure is comparable to the technique 

introduced by Rumpf et al. (2009) using Kernel 

Density Estimation (KDE). Our measure explicitly 

considers geographical neighborhood, but, in 

contrast to the KDE approach, it is more focused 

on local variation. Instead of calculating an 

adequate bandwith, we choose a certain number of 

neighbors in order to test for the integration of an 

individual site into the linguistic area. In this 
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respect, the underlying concept is that linguistic 

space develops in small-scale communication 

zones, not in large-scale continua. From a technical 

perspective, a difference to the KDE approach is 

that we do not rely on the definition of individual 

variant-occurrence maps as an intermediate step of 

analysis, but process the variation given in the data 

set directly. 

Notwithstanding this, there are other studies that 

work with the notion of coherence or focus on 

transitional spaces. Nerbonne & Kleiweg (2007), 

for example, introduce a local measure of 

incoherence, which, however, focuses on linguistic 

rather than geographic distances. Our measure thus 

provides an alternative view of the relationship 

between spatial and linguistic proximity based on 

individual maps and not on aggregated data. Goebl 

(2010), nonetheless, illustrates the importance of 

skewness as a global statistical measure of the 

linguistic integration of individual sites into the 

linguistic area and the assessment of transitional 

zones. Similar to Nerbonne & Kleiweg (2007), the 

basis of linguistic measurement is in Goebl’s 

approach not the individual map, but a set of 

aggregated data. Unlike Goebl (2010), we focus 

exclusively on concrete geographic neighbors of an 

individual site with both the local and global 

measures, which makes our approach, in the case 

of the local measure, independent from the overall 

statistical distribution, which is in dialectometric 

studies typically shaped by linguistic distance or 

similarity. 

6 Conclusion 

This paper introduces a nearest neighbor approach 

as a diagnostic tool in order to find regions which 

are more sensitive to language variation and 

change than others. For this purpose, a local 

measure of coherence is used (Coh). In addition, a 

global coherence measure (CohG) as well as a 

corrected global measure (CohG*) was used to 

quantitatively assess the spatial coherence of more 

comprehensive data distributions (e.g., on maps) 

and to automatically identify linguistic items with 

higher/lesser language variation. Two case studies 

illustrate the application of the method and the 

informative quality of the measures. 

Limitations 

The method works reliably, even if a map contains 

multiple variants. However, if there are more than, 

say, 10 or 15 variants, it can happen that no clear 

spots can be identified on the maps. For this matter, 

a more probabilistic approach would be desirable, 

which is currently not implemented. 

Another limitation is the distance measure used 

for the identification of nearest neighbors. 

Currently, nearest neighbors are defined using 

Euclidean distance. This is not a problem if the 

analysis takes place in flat terrain (e.g., the Upper 

Rhine Plain). In mountainous terrain, however, this 

can lead to slight biases. To solve this problem, we 

will implement more realistic distance measures 

such as travel time in the future.  

From a linguistic perspective, a limitation of the 

method is that even if it informs about the variation 

spots, it does not provide any information about the 

direction in which a possible language change 

could develop. However, such a statement is 

difficult to make without concrete comparative 

language data (e.g., diachronic data) or social 

interpretation. Since the Maurer data allow an 

analysis in apparent-time, further approaches for 

investigation will be possible in the future. 
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Abstract

We argue that dialect identification should be
treated as a multi-label classification problem
rather than the single-class setting prevalent
in existing collections and evaluations. In or-
der to avoid extensive human re-labelling of
the data, we propose an analysis of ambiguous
near-duplicates in an existing collection cover-
ing four variants of French. We show how this
analysis helps us provide multiple labels for a
significant subset of the original data, therefore
enriching the annotation with minimal human
intervention. The resulting data can then be
used to train dialect identifiers in a multi-label
setting. Experimental results show that on the
enriched dataset, the multi-label classifier pro-
duces similar accuracy to the single-label clas-
sifier on test cases that are unambiguous (single
label), but it increases the macro-averaged F1-
score by 0.225 absolute (71% relative gain) on
ambiguous texts with multiple labels. On the
original data, gains on the ambiguous test cases
are smaller but still considerable (+0.077 abso-
lute, 20% relative gain), and accuracy on non-
ambiguous test cases is again similar in this
case. This supports our thesis that modelling
dialect identification as a multi-label problem
potentially has a positive impact.

1 Introduction

In this paper, we argue that dialect1 identification
should be treated as a multi-label classification
problem unless it can be shown that every text in
a given dataset belongs to only one dialect or lan-
guage variant. This feels like a natural hypothesis,
as it seems reasonable that some utterances are
equally valid in more than one dialect or variant.
However, most datasets for, and evaluations of this
task rely on single-label classification, where each

1In this paper, we use the terms “dialect” and “language
variant” somewhat interchangeably. In the FreCDo dataset,
language variants are specifically delimited by national origin,
as determined by the top-level domain of the original webpage.

utterance is annotated as belonging to a single vari-
ant.2

Previous work shows that manually identifying
the language variety of a text is difficult, and that
it is actually easier for native speakers to identify
texts that are not in their variety (Goutte et al., 2016,
sec. 4.4). Accordingly, proper multi-label man-
ual annotation requires multiple annotators with
complementary skills, and therefore massive an-
notation budget, when run at the usual scale of
tens-to-hundreds of thousands of utterances.

In this work, we focus instead on analyzing and
processing already existing dialect identification
data, with minimal annotation need. We argue
that automatically assessing differences between
two similar texts, as done here, is an easier task.
We explore empirically how the data can be en-
riched with multiple labels, and how switching to
the multi-label classification paradigm can poten-
tially improve performance in identifying dialects
and variants.

We start by analyzing the duplicates and near-
duplicates in an existing dataset built for French
dialect identification. We search for instances that
are identical or highly similar textually, but are
annotated with different labels. We find that a con-
siderable number of near-duplicates have different
labels, but no obvious differences that could be
considered dialectal in nature.

We further show that near-duplicate analysis is
useful in at least two ways. First, it allows us to
inspect and refine a dataset, in a manner similar
to measuring data (Wang et al., 2022; Mitchell
et al., 2022, inter alia), by identifying phenomena
that might otherwise go unnoticed, e.g. texts that
are assigned to different classes but have no actual
dialectal differences or spotting artefacts due to
the selection of text sources or to the processing

2A notable exception is this year’s “True Labels”
shared task at VarDial (https://sites.google.com/view/
vardial-2023/shared-tasks).
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pipeline (e.g. boiler plate removal, sentence split-
ting, etc.). Second, by spotting similar texts that
have no obvious dialectal differences, it allows us
to convert an existing dataset in single-label format
into a multi-label dialect classification format.

Using the results of this analysis, we combine the
labels of near-duplicates to create what we argue
is a more accurate representation of the data. For
further empirical validation of this approach, we
use this data to train a multi-label classifier for
dialect identification. We compare those results to
single-label classification and show that the overall
classification performance stays at a similar level,
while the performance on the subset of examples
that have multiple labels is greatly improved.

The experimental code developed in this work is
available at https://github.com/gbcolborne/
vardial2023.

2 Data

For this project, we used the FreCDo corpus (Gă-
man et al., 2022),3 which was used for the
Cross-Domain French Dialect Identification (FDI)
shared task at the VarDial 2022 evaluation cam-
paign (Aepli et al., 2022). It contains 413,522 short
texts belonging to one of four varieties of French
from Belgium (BE), Canada (CA), Switzerland
(CH), and France (FR), cf. Table 1. The data is
unbalanced, with a much lower number of CA texts
(8.5% overall, < 1% on Dev). The training, devel-
opment, and test sets were compiled from several
public news websites using different keywords, in
order to create a cross-domain split. Furthermore,
tokens that are part of a named entity were replaced
with the special token “$NE$”.

BE CA CH FR
Train 121,746 34,003 141,261 61,777
Dev 7,723 171 5,244 4,864
Test 15,235 944 9,824 10,730

Table 1: Number of text segments in the original
FreCDO corpus.

We selected this dataset for several reasons. First,
we wanted to follow up on the results of the shared
task at VarDial 2022 that exploited this dataset.
The results of that shared task pointed to various
properties of the dataset that could explain some
of the errors made by the submitted systems, and
the generally low scores of both the baselines and

3https://github.com/MihaelaGaman/FreCDo

the submitted systems (Bernier-Colborne et al.,
2022). These include the presence of duplicates
both within classes and across classes. In this work,
we extend the analysis of the data to include near-
duplicates.

Second, this dataset features four different di-
alects of French, which seemed promising in terms
of identifying texts that belong to more than one
dialect. In particular, the four-variant setting seems
more flexible than the situation where only two vari-
ants are considered (e.g. Portuguese from Brazil
and Portugal), in which case the only multi-label
configuration is essentially all labels.

Third, the authors of this paper are all fluent in
(one or more variants of) French and were there-
fore able to analyze the texts and identify possi-
ble dialectal differences between texts or dialectal
markers in a given text.

It is important to note that this dataset was cre-
ated using methods that are common for dataset
compilation for dialect identification tasks (aside
from the cross-domain split). These methods in-
clude scraping texts from the Internet and assigning
them to a language variety based on the top-level
domain name of the source. This practice naturally
leads to a single-label formulation of the problem,
if each unique text is only present in one of the
sources.

The limitations of this practice was a motivating
factor for the DSL-TL (Discriminating Between
Similar Languages - True Labels) shared task at
this year’s VarDial evaluation campaign:

The DSLCC was compiled under the as-
sumption that each instance’s gold label
is determined by where the text is re-
trieved from. While this is a straight-
forward (and mostly accurate) practical
assumption, previous research has shown
the limitations of this problem formula-
tion as some texts may present no lin-
guistic marker that allows systems or
native speakers to discriminate between
two very similar languages or language
varieties.4

The solution proposed in DSL-TL was therefore to
curate a higher-quality, human-annotated subset of
an existing collection of dialect identification data,
DSLCC5, such that some of the resulting examples

4https://sites.google.com/view/vardial-2023/
shared-tasks

5http://ttg.uni-saarland.de/resources/DSLCC/
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have multiple labels (Zampieri et al., 2023). This
is in line with our proposal to reformulate the prob-
lem as a multi-label classification task. However,
although DSL-TL provides high-quality annotation
on a subset of data, we focus on the use of semi-
automatic near-duplicate analysis in order to min-
imize the annotation burden. Also, as mentioned
earlier, the dataset used in this work contains four
different dialects of French, whereas the DSL-TL
dataset uses only two dialects for each of three dif-
ferent languages: American and British English,
Brazilian and European Portuguese, and Argen-
tinian and Peninsular Spanish.

It is also important to note that deduplication
is often applied to datasets for dialect identifica-
tion, although we have observed duplicates both
within and across classes in several such datasets. If
deduplication is somewhat common, near-duplicate
analysis is not a common step in dataset develop-
ment as far as we can tell.6 We argue that it is a
useful tool in the context of dialect identification.
It can be carried out efficiently and provides useful
additional information. In fact, our analysis shows
that many highly similar near-duplicates vary only
in minor aspects that have nothing to do with di-
alectal variation or lexical choice, such as slight
changes in punctuation or formatting (for example
the choice of double quotes), which are typically
missed by standard deduplication pipelines.

In the following experiments, we used our own,
random split of the texts, because the cross-domain
nature of the original split was not relevant for our
purposes. We also wanted to eliminate the small
amount of leakage of texts between the training, de-
velopment, and test portions of the original dataset.
We therefore created an 85/5/10 split, as this was
approximately the size of the partitions in the origi-
nal dataset, by randomly sampling the train/dev/test
from the entire original collection.

3 Methods

In this work, we first identify ambiguous near-
duplicates that are present in an existing single-
label dataset for dialect identification. We perform
a light manual inspection (Section 3.2), then create
an enriched version of the data by combining the
labels of near-duplicate texts. Finally, we train and
evaluate classifiers on the resulting data.

6We are not aware of a single dataset where such analysis
was described in the documentation.

3.1 Identification of Ambiguous
Near-duplicates

We used two different text similarity measures to
identify near-duplicates. Then, by checking their
respective labels, we focus on the near-duplicate
pairs that have different label sets.

The first similarity measure is the character-level
Levenshtein edit ratio. This is computed by nor-
malizing the Levenshtein distance by the sum of
the length of the two texts, and turning that into a
similarity by subtracting the result from 1. We used
the Levenshtein library7 for Python to compute
this, using an arbitrary cutoff at 0.8 to speed up the
computation and extract only the most similar text
pairs. Given the large size of the pairwise similarity
matrix, we used a sparse matrix representation to
limit memory usage.8

The second similarity measure is what we refer
to as the Manhattan similarity of the word bigram
frequency count vectors of the two texts. This is the
absolute difference between the two count vectors
divided by the sum of the two vectors, then turned
into a similarity again by subtracting from 1. Our
motivation for using word bigrams was that these
were the most useful features for sparse vector-
based classifiers according to the results of the
shared task (Aepli et al., 2022; Bernier-Colborne
et al., 2022). In order to limit memory require-
ments, we computed similarities in mini-batches,
and kept the 1000 highest similarities for each text.

We are aware that we could integrate additional
statistics such as the length of the texts in the sim-
ilarity measure used to identify interesting near-
duplicates. However, we have chosen to explore
two text similarities that use very different infor-
mation, one relying on character sequences and the
other on word bigram counts, instead of engineer-
ing a more complex measure.

Note that we also considered testing sentence
embedding methods, but we prioritised methods
that are focused on surface similarity, whereas sen-
tence embedding methods are designed to model
semantic similarity beyond surface characteristics.

3.2 Manual Inspection

A sample of the most similar text pairs with dif-
ferent labels, which we will call ambiguous near-
duplicates, was manually inspected and annotated

7https://github.com/maxbachmann/Levenshtein
8We use scipy.sparse for this purpose, (https://docs.

scipy.org/doc/scipy/reference/sparse.html).
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by the authors.9 The goal was to estimate the pro-
portion of near-duplicates that showed no obvious
dialectical differences or markers. We also used the
results of this inspection to establish a minimum
similarity threshold above which it was unlikely
that true dialectal differences were present. For
the classification experiments we conduct later, we
then assume that all ambiguous text pairs with sim-
ilarity above that threshold can be considered valid
in each of their respective dialects, so we combine
their labels (as explained in Section 3.3) before
training a multi-label classifier.

The visual inspection was done using an inter-
face that highlights the differences between two
similar texts, so that we could quickly locate those
differences and assess their nature. We also de-
veloped a simple annotation protocol with three
possible judgments or categories for each pair of
ambiguous near-duplicates. In practice, for each of
the two similarity measures, we randomly sampled
260 ambiguous near-duplicates, above an arbitrary
threshold on the similarity measure (0.8 for Lev-
enshtein, 0.6 for Manhattan). Out of these 260 ex-
amples, 20 were annotated by all human judges, to
calibrate their judgments and have a rough estimate
of inter-annotator agreement. The other samples
were split evenly and annotated by one judge each.
We defined a simple annotation protocol for this
task, which we refined on one of the common sets
of 20 samples. For each sample, the annotator had
to pick one of three categories:

1. No lexical differences (e.g. minor changes to
punctuation, function words, number of $NE$
tokens, span of $NE$ tokens, numbers, etc.).

2. Minor differences, like something an editor
might do to a text, with no potentially dialectal
differences.

3. Potentially dialectal differences (including dif-
ferences in content, such as lexical choice,
or addition/removal of entire clauses or sen-
tences).

Examples in the first two categories are very
unlikely to present actual dialectal differences or
markers, therefore if a pair of texts falls in this cat-
egory, it is likely justified to combine their label
sets, as we do following the method explained in
Section 3.3. In the third case, where there might be

9All native French speakers, two from Canada and one
from France.

actual dialectal differences between the two texts,
combining the labels might introduce noise. Exam-
ples are provided in Section 4.1

Note that this simple protocol could likely be
improved in the future to ensure higher agreement
between annotators.

3.3 Combining Labels
Instead of representing the label of each text as a
single integer representing a class identifier, we use
a set containing the classes that were observed for
that text. So, at first, the vast majority of texts have
a single class in their label set. The only exceptions
are the texts that appear more than once in the orig-
inal dataset, and with more than one unique label
(i.e. ambiguous exact duplicates). This version of
the data is referred to as the ‘Original’ data below.
We also initialize a ‘Combined’ version of the data
by copying the Original version.

Once the similarity threshold for near-duplicates
has been set, as explained in Section 3.2, we iden-
tify all pairs of texts (xi, xj) with i < j and a
similarity greater or equal to that threshold. For
each of these pairs, we add the Original label set of
each text in the pair to the Combined label set of
the other text.10

So, given two texts x1 and x2 with Original label
sets {y1} and {y2} respectively, if y1 ̸= y2 and the
similarity of x1 and x2 is above the threshold, then
the Combined labels sets of both texts becomes
{y1, y2}.

Note that in this process, the same text may re-
ceive labels from more than one other text, if it
has more than one neighbour given the similarity
threshold. So, if text x3 with Original label set {y3}
is also a neighbour of x1, then the Combined label
set of x1 becomes {y1, y2, y3} (assuming y2 ̸= y3,
otherwise the label set is unchanged, as y2 was al-
ready in it), and the Combined label set of of x3
becomes {y1, y3} (assuming y1 ̸= y3).

3.4 Training and Evaluating Classifiers
We developed a pipeline to train and evaluate
single-label and multi-label classifiers.

For the multi-label setting, it takes the source
data, a pairwise similarity matrix for the texts, and
a minimum similarity threshold, and produces a

10A slightly different method would be to first identify sets
of neighbouring texts, and assign the combined label set to
all of these. This might increase the average number of labels
per text, but it would also assume that texts belonging to the
same neighbour set should be treated as neighbours even if
their similarity measure is below the threshold.
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dataset for multi-label classification, by combining
the labels of duplicates and near-duplicates that
have more than one unique label. It also produces a
single-label representation of that data, by creating
duplicates both within and across classes, as in
the original data. Finally, it creates a single-label
version without in-class duplicates. We also create
these three representations of the data using the
original labels rather than the combined labels.

The texts are randomly split into training, de-
velopment and test sets (85%, 5% and 10%, re-
spectively). The same split of texts is used for
single-label and multi-label settings.

On each of the training sets, we fine-tuned
a pre-trained French language model, namely
CamemBERT (Martin et al., 2020), which uses
the RoBERTa architecture and training proce-
dure (Liu et al., 2019). This was the most suc-
cessful approach on the FDI shared task at Var-
Dial 2022 (Aepli et al., 2022). We downloaded
the camembert-base checkpoint from the Hug-
gingFace repository of pre-trained models.11 This
model has 110 million parameters, and was pre-
trained on the French portion of the OSCAR cor-
pus (Ortiz Suárez et al., 2019; Ortiz Suárez et al.,
2020; Abadji et al., 2021).

Given that we use a transformer architecture,
training a multi-label classifier rather than a single-
label one only involves a few changes to the output
layer (or head) and the representation of the targets.

For the single-label classifiers, we add a ran-
domly initialized softmax output layer and use the
cross-entropy loss function. Targets are represented
as a single integer class ID for each example.

For the multi-label classifiers, we feed the output
logits to a sigmoid activation function and use the
binary cross-entropy loss function. Targets are rep-
resented as a binary vector indicating which classes
a given example belongs to.

The models are fine-tuned using the AdamW
optimizer (Loshchilov and Hutter, 2019) with a
learning rate of 5× 10−5 and a batch size of 8 for
3 epochs. These were the hyperparameter settings
used by Bernier-Colborne et al. (2022) in the FDI
shared task to fine-tune their open run 2 model that
achieved the highest score (without ensembling) on
the development set.

In the single-label setting, the model produces
a probability distribution over all classes, and pre-
dicts the most likely class for each example. In the

11https://huggingface.co/camembert-base

multi-label setting, the model produces a probabil-
ity for each class, and the predicted labels are all
classes for which that probability is greater than
0.5. We do not apply any calibration methods to
either the single-label or the multi-label classifiers
that we trained.

Both single-label and multi-label models were
evaluated on the same test examples, by comput-
ing the F1-score of each class, as implemented
in sckikit-learn.12 Note that for class-wise F1-
scores, the predicted and gold labels are binary,
and the score is computed in exactly the same way
for single-label and multi-label settings. We also
report the macro-averaged F1-score (class-wise av-
erage) and weighted F1-score (class-wise average
weighted by the support of each class). Macro-
averaged F1 is the more common evaluation mea-
sure for language identification, but we also report
weighted average for completeness.

It is important to note that the scores reported
in this paper can not be compared to the scores
achieved on the shared task, as our random split
of the data is different. In particular, we did not
keep the cross-domain split in the original data,
because it was not relevant to the problem explored
in this paper. As a consequence, our scores are
considerably higher.

We evaluate the classifiers both on unambiguous
examples, i.e. examples that belong to only one
class in the original dataset, and on ambiguous
examples, including the near-duplicates with high
similarity that belong to more than one class.

Note that training a multi-label classifier incurs
no extra cost compared to a single label classi-
fier. However, our procedure for identifying near-
duplicate pairs of texts, which we use to enrich
an existing dataset, does incur additional cost, as
mentioned in the Limitations section below.

4 Results

4.1 Identification of Ambiguous
Near-duplicates

Analyzing the exact duplicates in the dataset shows
that there are 81 texts that belong to more than
one dialect. However, if we extend this analysis
to include near-duplicate text pairs, the number of
pairs that have different label sets increases sharply.
Using the Levenshtein edit ratio with a cutoff at 0.8,
we obtain 615,932 near-duplicate text pairs, and

12https://scikit-learn.org/stable/modules/
generated/sklearn.metrics.f1_score.html
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6044 of those belong to different classes. Using
the Manhattan similarity with a cutoff at 0.6, we
obtain 576,722 near-duplicates, 3567 of which are
ambiguous.

If we look at the most frequent edit opera-
tions, using both similarity measures, the most
frequent edit operations by far are those that re-
move/add/replace punctuation or named entity to-
kens, all of which seem very unlikely to be dialectal
in nature.

Manual inspection of a sample of ambiguous
near-duplicates resulted in a disagreement rate, be-
tween the three annotators, around 15-20% on the
common sets (i.e. 3 or 4 examples out of 20).

To illustrate the three categories we established
for annotation purposes, consider the following two
examples, where additions and deletions are within
square brackets, and deletions are striked out.

An example of category 3 (potentially dialectal
changes) is shown below. The first text is labelled
CH, the second BE, and their edit ratio is 0.919.
The first text contains a short phrase at the begin-
ning that is completely absent from the second
text. Note that, were this not the case, this example
would likely have been annotated as category 1.

[« Nous avons commencé », a-t-il
ajouté. « ]["]Des collaborateurs (du
ministère) sont venus prendre leurs af-
faires personnelles[,] mais nous les avons
mises sous scellés et nous ne lais-
seront personne entrer tant que la situ-
ation ne se normalise pas dans le pays
[»][""], a indiqué l[’][']un des militants à
[$NE$ $NE$ $NE$][l’agence Interfax].
$NE$[,] dont le centre est occupé depuis
fin novembre par les manifestants pro[-
]européens après la volte - face du pou-
voir sur un rapprochement avec [$NE$
][l’]$NE$ $NE$ au profit de la $NE$[,]
est le théâtre de heurts violents entre
manifestants radicaux et forces de [$NE$
][l’]ordre depuis dimanche qui ont fait
cinq morts.["]

Another example of category 3 is shown below.
The first text is labelled CH, and the second BE,
and their edit ratio is 0.924.

[Une ][L’]inconnu[e] subsiste quant aux
réelles intentions de $NE$ $NE$ qui
[$NE$ ][n’]a dit mot lundi des troupes

russes [présent][déployé]es aux fron-
tières de [$NE$ ][l’]$NE$. Il a en re-
vanche une fois encore vilipendé le refus
occidental de lui céder sur la fin de la
politique d[’][']élargissement de [$NE$
][l’]$NE$ et le retrait de ses moyens mil-
itaires d[’$NE$ de l’Est]['$NE$ $NE$
$NE$ $NE$]. La $NE$ a présenté ces
exigences comme étant les conditions
d[’][']une désescalade.

An example of category 2, where only the adverb
“notamment” was deleted, is shown below. The
Manhattan similarity of these texts is 0.973. The
first text was labelled CH, and the second BE.

Ce phénomène météorologique violent
touche particulièrement les immenses
plaines américaines. Sur des vidéos ama-
teur prises vendredi soir, on voit ces im-
menses colonnes noires balayant le sol,
illuminées par des éclairs intermittents.
Le $NE$ a [notamment ]été balayé sur
plus de 200 miles (320 kilomètres) par
$NE$ une des plus longues tornades ja-
mais enregistrées aux $NE$, selon son
gouverneur.

The manual annotation of samples of ambiguous
near-duplicates indicates that between 6.25% and
11.25% of near-duplicates identified using the Lev-
enshtein edit ratio exhibited potentially dialectal
differences (i.e. category 3), though most of these
were cases where one text had significant additions
compared to the other, such that they might poten-
tially contain dialectal markers. As noted above,
the examples in category 3 might introduce some
level of noise when we combine the labels of near-
duplicates. As for “editorial” type changes (i.e.
category 2), they represent between 0 and 8.75%
of the samples.

As for the Manhattan similarity, the number of
texts containing potentially dialectal differences
was much higher, 36.25% and 46.25%. Additions
with potential dialectal markers account for the vast
majority of these. The number of “editorial” type
changes was between 0 and 2.5%.

The two similarity measures identified different
kinds of differences. The edit ratio was more effec-
tive for identifying slight, character-level changes
between texts. The Manhattan similarity identified
a large number of text pairs where one text had
an additional trailing or leading sentence, which
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might indicate that the data should be split at sen-
tence level rather than paragraph level, or that the
paragraph splitting method could be improved.

The classification tests described in the next sec-
tion were only carried out using the Levenshtein
edit ratio as similarity measure, because there was a
much higher proportion of potentially dialectal dif-
ferences in the samples we annotated for the Man-
hattan similarity, and therefore a higher likelihood
of introducing noise in the enriched dataset. We
set the minimum similarity threshold at 0.8, which
was the cutoff used when the near-duplicates were
initially computed.

Using the Levenshtein edit ratio with a mini-
mum of 0.8, we identified 615,932 pairs of similar
texts. 6044 of these near-duplicate pairs had dif-
ferent sets of unique labels, and were therefore
ambiguous. Among these 6044 pairs of ambiguous
near-duplicates, there are 2901 unique texts. 74%
of these have only one neighbour (i.e. they appear
in only one pair), but the number of neighbours
reaches as high as 241 for one of the texts. As for
the number of new, unique labels each text will
receive from its neighbours, 85% of texts receive
only one new, unique label, but almost 15% receive
two, and 10 texts (0.34%) receive three. There are
also 8 texts (0.28%) that receive no new, unique
labels.13

The distribution of the number of unique labels
in the original dataset and the one we created by
combining the labels of near-duplicates are shown
in Table 2.

Labels/Text Original Combined
1 325,182 322,297
2 77 2,516
3 4 439
4 0 11

Table 2: Distribution of label counts according to the
original labels and the combined labels.

The number of texts for each of the training,
development, and test partitions we created using
the original labels and the combined labels is shown
in Table 3.

The most frequently confused pairs of dialects
in the training sets, according to the original labels

13These are texts that had exact duplicates with different
labels. If such a text is in an ambiguous near-duplicate pair,
and the other text’s label set is a subset of this text’s label set,
then it will “give” one or more new labels to it, but will not
receive any.

Partition Subset Original Combined

Train
Unambig 276,408 273,929
Ambig 66 2545

Dev
Unambig 16,256 16,132
Ambig 7 131

Test
Unambig 32,518 32,236
Ambig 8 290

Table 3: Number of texts using original labels and com-
bined labels.

and our combined labels, are shown in Table 4.

Pairs Original Combined
(BE, FR) 54 1377
(CH, FR) 13 531
(BE, CH) 11 1381
(CA, FR) 0 19
(CA, CH) 0 18
(BE, CA) 0 13

Table 4: Most frequently confused classes in the training
sets, using the original labels and the combined labels.

4.2 Classification
The classifiers were compared in the following
ways. Using either the original labels of the dataset
or the enriched (combined) labels resulting from
our analysis of near-duplicates, we train classifiers
on all the training data, and evaluate them on two
subsets of the test data: ambiguous texts, that be-
long to more than one dialect, and unambiguous
texts. In the single-label setting, ambiguous texts
in the training set are represented by duplicating
the text for each of its labels.14 In this case, the
model is evaluated on a test set that contains no
in-class duplicates, as evaluating on in-class dupli-
cates serves no purpose. In the multi-label setting,
both the training and test data is represented in a
multi-label format.

It is important to note that, on ambiguous test
cases, single-label classifiers are obviously at a
disadvantage, as they can only predict one class for
a given text.

The results of this experiment are shown in Ta-
ble 5 and Table 6 for the original labels and the
combined labels respectively. When inspecting
these results, it is important to remember that there

14We also tried training single-label classifiers without any
in-class duplicates in the training data, but this made very little
differences to the scores. We do not report these scores to
avoid unnecessary confusion.
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Test Set Classifier BE CA CH FR Average Weighted

Unambig
Single-label 0.891 0.722 0.898 0.817 0.832 0.877
Multi-label 0.894 0.670 0.903 0.826 0.823 0.882

Ambig
Single-label 0.533 - 0.571 0.400 0.376 0.490
Multi-label 0.727 - 0.800 0.286 0.453 0.575

Table 5: Results using original labels: class-wise F1 scores, macro-average and weighted average. Note that there
were no CA examples in the ambiguous test set.

Test Set Classifier BE CA CH FR Average Weighted

Unambig
Single-label 0.891 0.644 0.901 0.818 0.813 0.878
Multi-label 0.895 0.690 0.895 0.814 0.824 0.877

Ambig
Single-label 0.519 0.000 0.399 0.357 0.319 0.438
Multi-label 0.815 0.000 0.800 0.561 0.544 0.739

Table 6: Results using combined labels: class-wise F1 scores, macro-average and weighted average.

are only 8 unique texts in the ambiguous test set us-
ing the original labels. None of these were labelled
as CA, so the F1-score for this class is actually
undefined.

On the enriched dataset (produced by combining
labels of near-duplicates), the multi-label classifier
produces similar accuracy to the single-label clas-
sifier on test cases that are unambiguous. The only
class that displays significant difference is CA (up
from 0.644 to 0.690), but that class is much smaller
so it hardly makes a difference overall. On am-
biguous examples, however, the macro-averaged
F1-score increases from 0.319 to 0.544, for a 0.225
absolute gain (71% relative gain) on the combined
data. Results on the original data are similar. Gains
on the ambiguous test cases are smaller but still
sizeable (+0.077 absolute, 20% relative gain), and
accuracy on non-ambiguous test cases is hardly
changed overall. To summarize, on unambiguous
texts, the single-label and multi-label classifiers
achieve similar accuracy, but on ambiguous texts,
the multi-label classifier is considerably more ac-
curate.

Note that we do not report overall performance
(on both unambiguous and ambiguous examples),
because it is almost identical to the performance
on unambiguous examples, given that there is only
around 1% of ambiguous examples with multiple
labels. The main finding we want to highlight here
is that multi-label classification improves accuracy
on ambiguous examples without sacrificing accu-
racy on unambiguous ones, and at no extra cost in
terms of modelling.15

15The only extra costs involved here are those of creating
the enriched dataset, by combining labels of near-duplicates.

It is important to note that the multi-label classi-
fiers sometimes predict no dialects at all. Knowing
that the test set contains no examples that belong to
no classes, we could force the classifier to at least
predict the most probable label, but we did not do
this. The other option is simply to accept that the
classifier does not assign sufficient probability to
any dialect.

These results show that multi-label classifiers
provide additional predictive information about am-
biguous cases without degrading performance on
unambiguous ones.

5 Discussion

Based on our analysis and experimental results,
we argue that the analysis of near-duplicates and
particularly ambiguous near-duplicates, should be
an integral part of a dataset creation and validation
pipeline, and should be described in the documenta-
tion for the collection. In the case of French variant
identification, this analysis uncovered a number of
features and issues with the dataset, such as differ-
ing formatting and typological conventions, which
evade traditional deduplication, and may cause fur-
ther problems, such as inconsistent named entity
tagging, especially in terms of span. Another issue
is that the segmentation of the original news sto-
ries into text fragments may differ between similar
instances. This suggests that we may improve the
near-duplicate detection and analysis by integrating
sentence splitting into the processing, i.e. further
split segments into individual sentences to detect
more duplicates or near-duplicates.

It is important to remember that we do not be-
lieve that the ambiguity of duplicate text pairs and
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near-duplicates is unique to this dataset. In fact,
we have observed similar issues in several datasets
used for dialect identification in the past. However,
further testing, e.g. on datasets in other languages,
may be required to better establish the validity of
the proposed approach.

Although we show that modelling dialect iden-
tification as a multi-label problem is useful, the
proportion of ambiguous near-duplicates identi-
fied by our methods may seem small and there-
fore of little significance. If another dataset con-
tained more ambiguous near-duplicates, or if a bet-
ter method of identifying them were to be devel-
oped, the utility of this proposal would only be
heightened. Note that in the dataset developed for
the “True Labels” shared task at this year’s VarDial
evaluation campaign (Zampieri et al., 2023), the
number of ambiguous examples was between 12%
and 32%, which is much higher than the ∼ 1%
proportion we identified in the FreCDo dataset us-
ing near-duplicate analysis. In the proof of con-
cept presented here, we limited ourselves to semi-
automatic methods that exploit a sampling-based
re-annotation protocol that is simple and inexpen-
sive. Note also that further refinements to this pro-
tocol could reduce the number of disagreements
between annotators on the sampled cases.

6 Conclusion

This contribution is motivated by the hypothesis
that dialect identification is best addressed as a
multi-label problem. By analyzing the similarity
between instances in a four-class, French-language
variant identification collection, we showed that
there are a significant number of duplicates or near-
duplicates with essentially the same surface repre-
sentation and content, but differing reference labels.
This is likely an artefact of the data acquisition
pipeline, which focuses on the source of the data
and provides a single label. By leveraging this find-
ing, we were able to re-label some instances with
multiple labels, and show that taking those into ac-
count by training a multi-label classifier produces a
large increase in performance on the instances with
multiple labels, while maintaining the performance
on instances with a single label.

We argue that the analysis of ambiguous near-
duplicates should be a standard in dataset creation
and validation efforts, hopefully producing data
that is labelled in a more informative way than by
provenance alone.

Additional investigations may provide more in-
sight on how to best represent dialect and variant
classification. For example, we could encode mul-
tiple labels in a single-label model by encoding
combinations of dialects as classes. Another possi-
bility would be to formulate dialect identification
as a word-level sequence tagging problem, identi-
fying parts of a sentence that are dialectal markers,
and parts that are not specific. This would likely re-
quire much more labelling, modelling and training
effort.

Limitations

It must be acknowledged that identifying near-
duplicates is a computationally intensive task, as
it involves pairwise comparisons of a potentially
large number of texts. For instance, processing
350K texts, as we did in this work, involves well
over 100B comparisons. It took us about two days
to compute the Levenshtein edit ratio matrix on
this dataset, using a cutoff of 0.8 to speed up the
dynamic program. This was done on a CPU server
with large amounts of memory. Scaling this to
larger datasets may require more efficient methods.

Furthermore, we have only experimented on di-
alects of the French language. Our method uses no
tools that are specific to French, so that we believe
that it may be useful on other dialect identifica-
tion collections. However we cannot guarantee that
any findings will generalize to all or any specific
language or language families that have different
properties.
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Abstract
In this work, we induce character-level noise
in various forms when fine-tuning BERT to en-
able zero-shot cross-lingual transfer to unseen
dialects and languages. We fine-tune BERT
on three sentence-level classification tasks and
evaluate our approach on an assortment of
unseen dialects and languages. We find that
character-level noise can be an extremely ef-
fective agent of cross-lingual transfer under
certain conditions, while it is not as helpful
in others. Specifically, we explore these dif-
ferences in terms of the nature of the task and
the relationships between source and target lan-
guages, finding that introduction of character-
level noise during fine-tuning is particularly
helpful when a task draws on surface level cues
and the source-target cross-lingual pair has a
relatively high lexical overlap with shorter (i.e.,
less meaningful) unseen tokens on average.

1 Introduction

Contemporary NLP methods such as BERT (Devlin
et al., 2019), with the large amount of knowledge
contained within their parameters, paired with the
relatively low computational power required to fine-
tune them for a downstream task, have taken over
many NLP applications. Indeed, several mono-
lingual and multilingual BERT models are avail-
able that encompass a number of languages (Devlin
et al., 2019). However, the strength of these mod-
els is tied to the availability of data, and the large
amounts of data required to pre-train such models
exclude some languages for which it is difficult to
collect large amounts of written text.

The scarcity of data becomes more severe with
dialects and language varieties. In fact, the very na-
ture of dialects as an evolving form of the language,
often spoken rather than written, with various so-
cial and cultural nuances, can make it difficult to
develop systems tailored to specific dialects. In
many applications, users may span a continuum
of idiolects, some falling into established dialects

and others not. It may therefore be impossible to
train a system on even a small amount of data in
every idiolect. In this paper, we consider zero-shot
cross-lingual transfer, which we define strictly as
any scenario in which the test data is of a language
variety not included in any stage of training. For
instance, we may fine-tune a standard Italian BERT
model on standard Italian sentiment analysis data,
and then perform inference on Neapolitan (a variety
closely related to standard Italian). We call stan-
dard Italian the source language, and Neapolitan
the target language.

The mismatch in BERT’s performance when
evaluating on the source versus target language
can arise for a variety of reasons depending on
the properties of the target language. For example,
some language varieties may have similar morphol-
ogy but different vocabulary, so that BERT may
encounter completely new words when tested on
the dialect. An example of this is the use of “soda”
in some regions of the United States and “pop” in
others to refer to a carbonated beverage; a model
trained only on the “soda” varieties may have diffi-
culty identifying the meaning of “pop” if it appears
in test data.

In other cases, language varieties may have sim-
ilar vocabulary, but phonological, morphological,
or orthographic differences may throw off the sub-
word tokenization method used by the model. A
simple example is the distinction in spelling be-
tween “color” (American English) and “colour”
(British English); if a model were trained exclu-
sively on American English and “colour” was not
part of its vocabulary, at test time, “colour” would
be tokenized differently than “color,” possibly re-
sulting in a different interpretation by the model.

In this work, we focus on the second type of
dialectal variation. Following Aepli and Sennrich
(2022), we study how introducing character-level
noise in training can improve performance for zero-
shot cross-lingual transfer between closely-related
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languages. Aepli and Sennrich’s (2022) method
is a two-step process. The first step is continued
pre-training of BERT on three types of data: tar-
get language data, un-noised source language data,
and noised source language data. The second step
is fine-tuning on noised task data in the source
language. Here, we only use fine-tuning, and we
only use source-language data, making our method
strictly zero-shot. We explore the next questions:
which techniques of character-level noising help
cross-lingual transfer the most, and in which situa-
tions should one expect character-level noising to
work best?

To explore these questions, we fine-tune mono-
lingual BERT models on three sentence-level clas-
sification tasks: intent classification, topic iden-
tification, and sentiment analysis. We introduce
multiple variations on the method of noising in
order to optimize cross-lingual transfer. We test
our methods on an assortment of unseen languages,
some closely-related and some more distant rela-
tives. For the intent classification task, our systems
work almost perfectly, that is, they perform nearly
as well on the target language as on the source
language. We also boost task performance in less
closely-related languages (in the same and differ-
ent families). Furthermore, we find that we can
obtain even bigger improvements by using more
noise, and we find that exposing the model to more
variations of the data during fine-tuning also helps.
Finally, we explore the conditions for cross-lingual
transfer needed for our method to be successful.

2 Background and Related Work

2.1 Fine-tuning BERT for Dialectal NLP

There are many previous findings that fine-tuning a
BERT model on a specific task involving dialectal
data leads to high performance on the task with
dialectal test data. Examples include sentiment
analysis on Arabic dialects (Abdel-Salam, 2022;
Fsih et al., 2022; Husain et al., 2022), hate speech
detection for Egyptian-Arabic (Ahmed et al., 2022),
part-of-speech tagging for North-African Arabizi
(Srivastava et al., 2019), and sentiment analysis
for Hong Kong Chinese (Li et al., 2022). The
success in diverse applications of the general
method informs our decision to stay within the
paradigm of BERT fine-tuning; however, without
task-labeled fine-tuning data available in the test
dialect/language, we must do something else in the
fine-tuning step (in our case, inducing character-

level noise) in order to facilitate zero-shot cross-
lingual transfer.

2.2 Adversarial Learning
Adversarial learning has been employed in the
space of zero-shot cross-lingual transfer with suc-
cess (Ponti et al., 2018; Huang et al., 2019; He
et al., 2020; Dong et al., 2020). However, this line
of work draws on additional learning techniques
and/or model architectures (e.g., BiLSTMs and
GANs), expending extra computation for training,
rather than working within the scope of fine-tuning;
additionally, adversarial attacks are often done in
the embedding space rather than to the words them-
selves. At the same time, it provides an intuition
that inclusion of adversarial examples in training
can be an effective tool in various applications.

2.3 Zero-Shot Cross-Lingual Transfer
In Section 1, we gave a narrow definition of zero-
shot transfer as using no target-language data at
all during training. For example, fine-tuning stan-
dard Italian BERT on standard Italian, then testing
on Neapolitan, would meet our definition. Note
that it is possible for the pre-training data of Ital-
ian BERT to contain Neapolitan text given that the
pre-training data is constructed by scraping various
online sources (Devlin et al., 2019); however, be-
cause the presence of Neapolitan text would likely
be accidental in the pre-training, we do not control
for this. In contrast, if the source language is Italian
and the target language is Spanish, and we were
to use multilingual BERT as the pre-trained model,
we would not consider this zero-shot cross-lingual
transfer, as multilingual BERT includes Spanish as
one of the intentional training languages.

All past work in zero-shot cross-lingual transfer
that we are aware of has used some target-language
data during training, whether by using a multilin-
gual model or by introducing new data from the
target language at some stage. Approaches involv-
ing meta-learning (Nooralahzadeh et al., 2020) and
adapter layers (Vidoni et al., 2020; Parović et al.,
2022) add a component to the model and train
it specifically to the target language. Under the
BERT-based paradigm, Wang et al. (2019) learn
contextual word alignments to align the contextual-
ized embeddings in the source and target language,
which requires parallel text in the source and target
languages. Tian et al. (2021) fine-tune BERT in
the source language, then generate “silver labels”
in the target language and iteratively fine-tune on
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those; although this doesn’t require parallel data,
it still requires target-language data. Huang et al.
(2021) employ adversarial training and random-
ized smoothing for zero-shot cross-lingual transfer;
though their method does not introduce additional
data from the target language during training, they
work with multilingual models that include the tar-
get languages in the pre-training. As described
above (Section 1), the method Aepli and Sennrich
(2022) use is directly related to ours, but is not
strictly zero-shot, because continued pre-training
uses target-language data.

3 Methods

Our experiments focus on fine-tuning monolingual
language models on same-language data, and test-
ing for zero-shot cross-lingual transfer to other
languages, inducing noise in the fine-tuning data
to facilitate this transfer. Building on Aepli and
Sennrich’s (2022) promising finding that character-
level noise can be used as a conduit for cross-
lingual transfer between closely-related languages,
we introduce a range of options for applying char-
acter noise in order to explore how we can better
leverage the benefits of character-level noise for
zero-shot cross-lingual transfer.

3.1 Model

The models we use in our experiments are all
BERT-type models (Devlin et al., 2019) with one
additional fine-tuning layer for sentence-level clas-
sification. We use the base size (12 Transformer
encoder layers) of the relevant monolingual BERT
models for our tasks, topped with a linear classifier
which maps the start-of-sentence CLS token to a
sentence-level class. In our setup, the pre-trained
model is fine-tuned on one of three sentence-level
classification tasks: intent classification, topic iden-
tification, and sentiment analysis. All models used
are the uncased versions for simplicity and consis-
tency. In an effort to minimize computation and
stick to the zero-shot case, a distinction we make
from Aepli and Sennrich’s (2022) work is to limit
experiments to fine-tuning only (no continued pre-
training).

3.2 Noising Technique

Our noising technique is similar to that of Aepli
and Sennrich (2022). We begin with raw text, and
we define a word to be any continuous substring
of letters (identified using Python’s isalpha func-

tion). For each word, with probability p we apply
noise to the word, and with probability 1 − p we
leave the word unchanged. We leave non-words
(for example, numbers, symbols, and punctuation)
unchanged, as we expect variation between closely
related languages to primarily affect words. We
express p as a percentage and refer to it as the noise
level. Noise is applied at a single, randomly se-
lected character position in the word, meaning that
noise can only be applied to a word up to one time.

We include four possible types of character-level
noise in the fine-tuning data. Three are in com-
mon with Aepli and Sennrich (2022): insertion,
deletion, and replacement. We also add swapping
between adjacent letters. We describe the noising
technique below (Section 3.3). All four of these
operations are present in cases of dialectal varia-
tion. For example, American English spells words
like color with an or ending, while the British En-
glish spelling has an insertion of u as in colour
(or vice versa, there is a deletion from British to
American English). Metathesis results in swapping
adjacent sounds (sometimes realized in orthogra-
phy), such as ask in standard English and aks in
some varieties.

As insertion and replacement require inclusion
of an additional character outside those in the word,
the character is chosen from the alphabet of the
language of the noised text. For example, if the text
to apply noise to is in English, the alphabet would
consist of letters a through z, while for German, the
alphabet would also consist of umlaut vowels (ä,
ö, ü) and the eszett (ß). All random selections are
uniform within the set of possibilities. Below, we
exemplify how each type of noise may be applied
by taking the example of the word straw:

• Insert a randomly selected alphabet letter (“j”)
at a randomly selected index of the word (in-
dex 1): sjtraw.

• Delete the letter at a randomly selected index
of the word (index 2): staw.

• Replace the letter at a randomly selected index
of the word (index 3) with a randomly selected
alphabet letter (“o”): strow.

• Swap the letter at a randomly selected index of
the word (not including the final index of the
word) with the subsequent letter of the word:
strwa.

3.3 Noising Variations

Aepli and Sennrich (2022) used 10–15% character-
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level noise in their fine-tuning data and found their
method to be effective in promoting cross-lingual
transfer. Given the promise of their result, we intro-
duce two dimensions along which to vary the noise
application: noise level and composition of fine-
tuning data. In addition to the baseline (0% noise
level), we employ higher levels of noise: 25%,
50%, 75%, and 100% of words.

Because the goal is to expose BERT to differ-
ent spellings and tokenizations of the same word
during fine-tuning, we include multiple copies of
the fine-tuning data, each with some difference in
noise. The more copies we include, the more we
might expect the model to adapt to surface-level
variation in the context of the task.

We tried two possible compositions: joint and
stacked. In the joint composition, we include two
copies of the fine-tuning data: the first copy is the
original data without noise, and the second copy
is noised using all four types of noise in equal
proportion. In the stacked composition, we include
five copies of the fine-tuning data: the first copy is,
once again, the original data without noise, and the
remaining copies are noised with each of the four
types of noise, respectively. Including multiple
copies allows the model to see the same sentences
during fine-tuning with variations in spelling (and
thereby the token sequence).

For reference, assuming a noise level of 50%,
the compositions would appear as follows:

• Joint-composition:
1. Original data (0% noise level)
2. Noised data: 12.5% each of insertion,

deletion, replacement, and swapping
noise.

• Stacked-composition:
1. Original data (0% noise level)
2. Insertion-noised data (50% noise level)
3. Deletion-noised data (50% noise level)
4. Replacement-noised data (50% noise

level)
5. Swapping-noised data (50% noise level)

4 Experiments

In order to evaluate the effectiveness of inducing
character-level noise for zero-shot cross-lingual
transfer under the various settings described in Sec-
tion 3.3, we test on three tasks: intent classification,
topic identification, and sentiment analysis. All
three tasks are sentence-level classification tasks;
however, each task has unique challenges that can

bolster or break compatibility with our approach.
We are interested in seeing how noise can help in
each of these scenarios.

4.1 Tasks

The intent classification task we use is xSID
(van der Goot et al., 2021), a benchmark for cross-
lingual slot and intent detection that includes paral-
lel labeled data in 13 languages. The xSID dataset
was drawn from the English Snips (Coucke et al.,
2018) and cross-lingual Facebook (Schuster et al.,
2019) datasets and translated to the other languages.
We take German (de) and Italian (it) to be the
source languages in our experiments; the training
data consists of 10,000 sentences each, and the val-
idation data consists of 300 sentences each. We
do not use any data from the target languages until
inference; the test data for each language consists
of 300 sentences. There are 18 total intent labels
for classification. For the most part, each sample is
a simple imperative or interrogative (e.g., “Remind
me to wake up around 6 am tomorrow.”). Our in-
tent classification system is included in the 2023
VarDial Evaluation Campaign (Aepli et al., 2023).

The topic identification task we use is MOROCO
(Butnaru and Ionescu, 2019), a Moldavian (ro-MD)
and Romanian (ro) dialectal corpus which consists
of news text from these two language varieties la-
beled by topic. There are five possible topic la-
bels: culture, finance, politics, science, sports, and
tech. There are 21,719 training samples and close
to 6,000 validation and test samples each. In con-
trast to the intent classification data, MOROCO
samples contain much longer multi-sentence text.
In addition, Butnaru and Ionescu (2019) remove
named entities from the data in order to minimize
the ability to use surface level cues to solve the
task. We take Romanian to be the source language
and Moldavian to be the target language for our
experiments.

The sentiment analysis task we use is TASS
2020 (Garciá-Vegaa et al., 2020), a Spanish di-
alectal corpus which consists of tweets from five
varieties of Spanish: Spain (es), Costa Rica (es-
CR), Mexico (es-MX), Peru (es-PE), and Uruguay
(es-UY). Given that much of the pre-training data
for Spanish BERT (Cañete, 2019; Cañete et al.,
2020) comes from European sources, we take the
Spain subset to be the source language, and the
remaining four varieties to be the target languages.
There are three possible sentiment analysis labels:
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positive, neutral, and negative. The Spain training
subset contains 1126 examples. For each variety,
the test data contains close to 1000 examples.

4.2 Fine-Tuning
For each task, we fine-tune the relevant BERT
model on task data from a single source language,
and test on other related target languages. We fine-
tune each model five times with a different ran-
dom initialization each time, and report the average
across the five trials. For intent classification, we
take German and Italian to be the source languages,
fine-tuning German BERT1 on the German subset
of xSID and Italian BERT2 on the Italian subset of
xSID. For topic identification, we take Romanian
to be the source of transfer and fine-tune Romanian
BERT3 (Dumitrescu et al., 2020) on the Romanian
subset of MOROCO. For sentiment analysis, we
take Spain Spanish to be the source of transfer and
fine-tune Spanish BERT (Cañete et al., 2020) on
the corresponding subset of TASS 2020.

We fine-tune the baseline model, as well as eight
variations to facilitate zero-shot cross-lingual trans-
fer for each task. Recall that the baseline model
is fine-tuned only on data from the source lan-
guage, and the possible variations are in terms of
noise level and composition of fine-tuning data.
The eight variations all involve fine-tuning with
noise – we test all combinations of noise level
(25%, 50%, 75%, or 100%) and composition of
fine-tuning data (joint vs. stacked). Because the
stacked composition includes more copies of the
fine-tuning data, we adjust the number of epochs
so that each variation is trained for the same num-
ber of steps. Thus, the intent classification and
sentiment analysis joint-composition models are
fine-tuned for 5 epochs, while the stacked composi-
tion models are fine-tuned for 2 epochs. However,
in the topic identification task, we find that train-
ing for 2 epochs in the joint-classification model
yields better validation performance than 5 epochs,
so we train for 2 epochs in both settings of topic
identification.

4.3 Testing
We evaluate each model on test data from multiple
target languages in order to determine each model’s

1https://huggingface.co/dbmdz/
bert-base-german-uncased

2https://huggingface.co/dbmdz/
bert-base-italian-uncased

3https://huggingface.co/dumitrescustefan/
bert-base-romanian-uncased-v1

effectiveness in supporting zero-shot cross-lingual
transfer. We also test on the source language to
ensure that performance is maintained despite the
introduction of noise. Note that tests are restricted
to languages that share the same script as the fine-
tuning data.

For the German intent classification models, we
test on 2 dialects of German: Swiss German (de-
CH) and South Tyrolean (de-IT); 3 Germanic lan-
guages (phylogenically closest to farthest): Dutch
(nl), English (en), and Danish (da), and 1 non-
Germanic language: Italian (it). For the Italian in-
tent classification models, we test on one dialect of
Italian (Neapolitan, it-NA) and one non-Romance
language (German, de). For the Romanian topic
identification models, we test on Moldavian. For
the Spanish sentiment analysis models, we test on
the four Latin American varieties of Spanish in-
cluded in the TASS 2020 dataset: Costa Rica, Mex-
ico, Peru, and Uruguay.

The results for our experiments (Section 4) are
presented in Table 1 (German intent classification),
Table 2 (Italian intent classification), Table 3 (topic
identification), and Table 4 (sentiment analysis).
Each reported score is the average of five trials
and accompanied by the 95% confidence interval.
Our results demonstrate that our character-level
noise intervention boosts performance anywhere
from 11 to 40 percentage points across all lan-
guage pairs tested for intent classification (except
English), while maintaining or even raising perfor-
mance on the source language. We suspect that the
approach did not work well for English due to the
fact that, unlike the other target languages, English
has much more of a loan-word culture, commonly
using words from several languages of origin. Curi-
ously, our results also show that the character-level
noise intervention was not helpful for the topic
identification and sentiment analysis tasks. Below,
we investigate the reasons behind the performance
boosts in intent classification as they relate to our
noise settings (noise level and composition of fine-
tuning data), as well as the differences in the tasks
(nature of the task and cross-lingual transfer pairs)
that result in such a sharp contrast in the utility of
character-level noise.

5 Results

5.1 Level of Noise

Our intent classification results demonstrate that
noise can be an extremely effective tool in promot-
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Noise
Level

Comp-
osition de de-CH de-IT nl en da it Average

0% N/A 98.2±0.6 74.9±7.4 59.5±8.8 37.0±3.9 78.0±1.4 38.8±4.8 21.3±1.3 58.2±1.7
25% Joint 97.9±0.4 71.2±7.7 67.3±8.0 37.1±3.9 74.1±2.6 39.2±4.4 25.3±4.1 58.9±1.6
50% Joint 98.2±0.8 89.3±2.6 85.7±3.3 67.6±2.0 77.3±1.9 62.5±4.2 34.9±5.6 73.6±1.6
75% Joint 98.7±0.3 92.7±1.3 89.9±2.0 68.5±2.2 79.3±1.0 61.9±4.2 34.5±4.9 75.1±1.7

100% Joint 98.4±0.5 94.6±2.5 90.4±3.9 73.1±1.3 78.2±1.3 65.5±2.2 44.5±5.0 77.8±1.0
25% Stacked 98.8±0.4 91.4±4.5 86.3±1.8 58.1±5.6 77.9±1.4 56.0±5.6 28.9±3.5 71.0±2.5
50% Stacked 99.0±0.4 93.6±2.7 91.7±2.2 66.4±1.4 78.0±3.2 60.4±2.9 37.1±3.5 75.2±1.2
75% Stacked 98.7±0.2 94.1±2.2 90.3±2.6 71.2±5.1 78.0±1.7 64.2±3.8 41.9±4.7 76.9±2.0

100% Stacked 99.0±0.5 95.3±1.7 90.5±2.9 77.0±2.8 77.5±1.3 63.5±2.3 44.4±2.7 78.2±1.1

Table 1: Intent classification results for German BERT with 95% confidence interval measured for five trials. Bold
numbers indicate the highest results (by absolute comparison).

Noise
Level

Comp-
osition it it-NA de Average

0% N/A 97.5±0.6 79.9±0.7 31.7±5.5 69.7±1.7
25% Joint 98.1±0.3 79.9±0.4 33.7±6.0 70.6±1.8
50% Joint 98.0±0.7 90.3±0.2 37.0±2.2 75.1±0.8
75% Joint 97.7±0.3 91.3±1.4 42.3±6.4 77.1±2.1

100% Joint 97.9±0.5 93.1±0.5 45.2±3.1 78.8±1.1
25% Stacked 98.3±0.3 90.0±1.0 34.3±4.1 74.2±1.6
50% Stacked 97.6±0.8 93.2±1.2 43.7±1.8 78.2±1.0
75% Stacked 97.7±0.5 93.4±0.5 42.3±3.3 77.8±1.2

100% Stacked 96.6±0.8 91.0±1.1 44.7±2.5 77.4±0.8

Table 2: Intent classification results for Italian BERT with 95% confidence interval measured for five trials. Bold
numbers indicate the highest results (by absolute comparison).

Noise
Level

Comp-
osition ro ro-MD Average

0% N/A 77.7±0.6 85.7±0.8 81.7±0.5
25% Joint 77.8±0.7 82.2±4.5 80.0±2.5
50% Joint 77.2±0.7 84.9±1.9 81.1±1.3
75% Joint 77.7±0.7 83.1±2.5 80.4±1.1

100% Joint 77.9±0.8 81.6±3.8 79.7±2.1
25% Stacked 75.1±0.5 80.0±3.5 77.5±1.9
50% Stacked 76.3±0.5 83.5±1.6 79.9±0.9
75% Stacked 77.0±0.5 83.8±1.5 80.4±0.9

100% Stacked 77.3±0.5 82.6±3.7 79.9±1.7

Table 3: Topic identification results for Romanian BERT
with 95% confidence interval measured for five trials.

ing zero-shot cross-lingual transfer. While Aepli
and Sennrich (2022) use noise levels of 10% and
15% in their experiments, we use higher noise lev-
els (25%, 50%, 75%, and 100%). Across our intent
classification experiments, we find a trend towards
“the more, the better” when it comes to character-
level noise – 100% noise is the best (comparing the
average scores across all languages). In German
intent classification, for transfer to closely-related
varieties (de-CH) and de-IT), our intervention is
capable of boosting performance very close to the
German performance itself. We also nearly dou-
ble performance for the other, less closely-related

languages tested, including the non-Germanic lan-
guage tested, Italian, though there is still a big
distance to the German performance. Similarly, in
Italian intent classification, we are able to bring
Neapolitan performance close to the Italian source
performance, and we even raise accuracy for Ger-
man, a non-Romance language.

These takeaways from the intent classification
task show that character-level noise can be an ex-
tremely effective agent for cross-lingual transfer
for both close (dialects) and more distant (differ-
ent families) language pairs. However, while it is
nearly enough to bring about comparable perfor-
mance for closely related languages, it is of course
not enough to do the same for more distant lan-
guage pairs.

5.2 Composition of Fine-tuning Data

In conjunction with using higher levels of noise,
we also experiment with two methods of compos-
ing the fine-tuning data, which integrate the noise
differently (joint vs. stacked composition). Re-
call that under both compositions, one copy of the
original fine-tuning data is included; in the joint
composition, we include one additional copy that
contains four types of character-level noise, while
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Noise
Level

Comp-
osition es es-CR es-MX es-PE es-UY Average

0% N/A 66.9±2.2 62.6±1.9 66.6±2.3 49.6±3.0 64.4±1.9 61.5±1.6
25% Joint 67.3±0.7 62.7±1.3 66.9±0.6 47.6±2.0 63.0±1.0 61.2±0.5
50% Joint 65.8±1.5 63.4±1.3 66.9±1.0 49.4±2.6 64.1±1.9 61.4±0.7
75% Joint 67.0±1.7 61.7±1.8 66.1±2.7 48.7±3.0 63.6±2.0 61.0±0.7

100% Joint 66.3±1.8 62.5±1.8 66.0±1.7 49.9±3.0 63.3±0.8 61.3±0.6
25% Stacked 66.3±1.2 61.8±1.4 66.9±1.8 49.1±2.0 63.7±1.7 61.2±0.6
50% Stacked 66.7±1.0 62.7±2.2 66.9±0.9 47.5±1.8 63.7±1.9 61.1±1.2
75% Stacked 66.0±1.9 63.2±1.1 66.0±1.6 48.9±1.8 64.2±1.5 61.2±0.6

100% Stacked 67.2±1.1 61.3±2.3 68.4±0.7 45.3±3.0 62.7±0.9 60.7±1.1

Table 4: Sentiment analysis results for Spanish BERT with 95% confidence interval measured for five trials. Bold
numbers indicate the highest results (by absolute comparison).

Source Target Lexical
Overlap (%)

Average Length
of OOV Tokens

de de 92.5 5.3
de-CH 84.7 4.4
de-IT 89.1 4.8
nl 83.7 4.2
en 79.4 4.3
da 83.7 4.2
it 84.1 4.3

it it 93.2 5.7
it-NA 90.2 5.2
de 87.7 4.4

ro ro 100.0 N/A
ro-MD 97.3 6.3

es es 62.8 5.9
es-CR 63.0 6.0
es-MX 61.5 5.9
es-PE 60.7 6.0
es-UY 61.2 5.8

Table 5: Lexical overlap measures based on the
appropriate test data.

the stacked composition includes four additional
copies, each with a distinct type of noise. Having
more copies of the data, each with varied spelling
and tokenization, allows the model to build robust-
ness to such variation. In addition, though the noise
level within each copy of the data is the same, in-
cluding more copies with noise increases the pro-
portion of noise in the data as a whole (over all
the copies). We find that the stacked-composition
models perform better on average than the joint-
composition models for the intent classification
task (+4 points in German, +1 point in Italian).

5.3 Lexical Overlap
We introduce a lexical overlap metric in order to
aid our analysis when comparing results for source-
target pairs. We measure lexical overlap in terms of
the overlap of the distinct tokens in the fine-tuning
data of the source language and the test data of the
target language. To do so, we apply the subword to-

kenizer of the source language BERT to the source
fine-tuning data and the target test data to obtain
the source and target vocabulary sets, and take the
intersection. Given S, the vocabulary of the source
fine-tuning data, and T , the vocabulary of the target
test data, we define lexical overlap as |S∩T | / |T |.
The lexical overlap measures are found in Table 5.
Romanian and Moldavian have the highest lexical
overlap in the topic identification data, while the
Spanish varieties have the lowest lexical overlap in
the sentiment analysis data. Moreover, while the
overlap between the fine-tuning and test data in the
source language is high for German and a complete
match for Romanian, it is low for Spain Spanish,
indicating that the sentiment analysis task poses
an additional challenge of high lexical variation
within the corpus.

To strengthen our comparison of the source and
target language, we also introduce a measurement
to understand what kinds of tokens are present in
the target vocabulary but absent from the source
vocabulary. We calculate the average length (in
characters) of the out of vocabulary target language
tokens. A shorter average length indicates that the
tokens from the target data that are not present
in the source data are short subwords, while a
longer average length indicates that the target data
includes longer, more meaningful subwords that
are not in the source data. An example from the
data would be the use of “Alarm” in German text
and “Wecker” in Swiss German text; both are in
the vocabulary of German BERT; however, because
the former is seen more often in association with
alarm-related intent labels during fine-tuning, it can
be difficult for the model to recognize “Wecker” in
this context during inference. However, character-
level noise clearly does not address the “Alarm” vs.
“Wecker” case as there is no surface-level resem-
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blance, so we would not expect to see improvement
for language pairs with a longer average length of
out-of-vocabulary tokens. We do expect to see im-
provement for language pairs with a shorter average
length of out-of-vocabulary tokens.

5.4 Nature of the Task

The nature of the task seems to dictate the extent to
which boosting unseen language performance via
noise in fine-tuning is possible. As described above,
success in the intent classification task often comes
down to lexical pattern recognition. For example,
sentences in the data might explicitly include “set
alarm to. . .” when the intent label is set-alarm. As
a result, we are able to reach near-perfect accuracy
in the baseline for German (98%). However, when
it comes to related varieties like Swiss German and
South Tyrolean, despite the variations often being
small in key intent-related words, the baseline is
not able to perform well as it is not robust to such
variation. By including noise in the data, as the
results show, we are able to make the model more
robust to such variation and see large boosts in per-
formance for all languages. An illustrative example
from xSID (van der Goot et al., 2021) is as follows:

English: Is it going to be sunny today?
German: Wird es heute sonnig?
Swiss German: Isches hüt sunnig?

The word “sunny” is likely enough to cue the model
to weather-related intent labels. In German, it is
“sonnig,” while in Swiss German, it is “sunnig.”
This small one-character replacement is enough
to change German BERT’s subword tokens from
“sonn” and “ig” to “sun” and “nig,” and because
embeddings are tied to tokens, this small difference
in spelling can propagate and lead to downstream
errors. Including random character-level noise in
fine-tuning helps the model deal with small varia-
tions like this.

In contrast, the topic identification and senti-
ment analysis tasks are difficult to solve simply by
surface-level cues. The baseline performances are
indicative of this difficulty: Romanian baseline per-
formance is 77.7%, and es baseline performance
is 66.9% (as opposed to the near-perfect German
and Italian intent classification baseline scores).
Recall that the authors of the MOROCO dataset
(Butnaru and Ionescu, 2019) replace all named en-
tities with $NE$ placeholders, so it is intentionally
made difficult to use surface-level cues for topic
identification. Moreover, the low lexical overlap

between the fine-tuning and test data for the source
Spanish variety (es) is indicative of higher lexical
variation within the data, meaning surface-level
patterns learned during fine-tuning would not be
as helpful at inference. Though noise makes the
model more robust to seeing variations at the sur-
face level, these two task settings require deeper
cues, so other techniques may be required to further
facilitate cross-lingual transfer in such cases.

5.5 Source-Target Pairs

The utility of character-level noise for German
and Italian intent classification but not Romanian-
Moldavian topic identification or Spanish senti-
ment analysis can be explained in part by the na-
ture of the tasks themselves. However, we can
learn even more by examining the differences in the
source-target language pairs. Examining the lexical
overlap measures for the language pairs (Table 5),
we see that the pairs with the highest lexical overlap
are Romanian-Moldavian and Italian-Neapolitan,
followed closely by the other German- and Italian-
sourced pairs. The Spanish pairs have the lowest
lexical overlap. Lexical overlap leaves open the
question of what does not overlap – we measure
this in terms of the average length of the target
language tokens that are out of the vocabulary of
the source language, as described in Section 5.3.
Romanian- and Spanish-sourced pairs have higher
average lengths, while German- and Italian-sourced
pairs have lower average lengths.

Lower lexical overlap paired with high average
length suggests that not only does the test data dif-
fer substantially from the fine-tuning data, but the
differences are in the form of longer subword to-
kens that could contribute greatly to the meaning
of the sentence as a whole. As described in Sec-
tion 5.3, character-level noise can only do so much
to help when the differences are on the order of
long subword tokens. As a result, a case where
there is lower lexical overlap as well as high av-
erage length of out-of-vocabulary (OOV) tokens
would not be a good candidate for character-level
noise to be used to promote cross-lingual trans-
fer; the example in our experiments is the Spanish
sentiment analysis task.

In contrast, the Romanian-Moldavian pair has an
extremely high lexical overlap of 97.3%, meaning
that only 2.7% of the tokens in the Moldavian test
data are out of the vocabulary of the fine-tuning
data. As a result, though this pair also has the
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Noise
Level

Comp-
osition de de-CH de-IT nl en da it Average

0% N/A 97.6±0.5 70.7±3.0 91.5±2.3 90.9±1.6 91.3±3.1 82.0±3.6 73.3±3.9 85.3±2.0
25% Joint 97.1±0.8 73.7±4.0 91.7±2.5 88.2±2.4 88.4±0.4 82.3±2.7 71.8±4.1 84.7±1.4
50% Joint 97.8±0.6 82.1±2.1 94.0±2.0 91.2±1.0 86.1±4.1 80.3±2.0 76.4±1.9 86.9±1.2
75% Joint 98.7±0.4 83.2±1.7 95.4±1.3 92.3±1.3 89.4±2.4 82.3±3.0 73.4±3.2 87.8±0.8

100% Joint 98.5±0.6 83.5±5.4 96.3±2.7 89.4±2.4 89.5±4.0 82.4±1.3 74.7±3.4 87.7±1.2
25% Stacked 98.1±0.4 80.9±2.6 95.9±1.1 91.1±1.1 90.1±5.6 85.5±4.1 69.9±3.1 87.4±2.3
50% Stacked 98.5±0.9 86.9±1.6 96.1±1.4 88.4±3.0 87.3±1.9 87.1±0.8 72.1±1.5 88.0±0.4
75% Stacked 98.9±0.3 87.3±1.8 96.4±1.1 87.9±3.4 86.5±2.7 83.5±2.9 70.3±1.9 87.2±1.3

100% Stacked 98.8±0.6 85.7±3.0 95.5±1.3 86.6±3.7 86.1±3.0 82.9±3.0 62.5±7.8 85.4±2.0

Table 6: German intent classification results for mBERT with 95% confidence interval measured for five trials. Bold
numbers indicate the highest results (by absolute comparison).

highest average length of OOV tokens, it does not
pose the same issue as for Spanish because of the
low presence of OOV tokens.

The German- and Italian-sourced pairs strike a
happy balance in terms of having a mid- to high-
range lexical overlap comparatively, while having
the lowest OOV token lengths. Thus, in addition
to the nature of the intent classification task itself
being compatible with the character-level noising
technique, these specific language pairs possess the
ideal properties to see improvement by applying
character-level noise.

5.6 Monolingual vs. Multilingual
We focus on the monolingual models for our
analysis, as those are the cases in which we truly
have zero-shot cross-lingual transfer (target lan-
guage is not included in the pre-training data for
monolingual models). However, we acknowledge
that mBERT can be an effective tool to promote
cross-lingual transfer and test our methods on the
German intent classification task (one of our suc-
cess cases) with mBERT for comparison. We find
that multilingual BERT (Table 6) has a higher base-
line score than monolingual German BERT (Ta-
ble 1) for all languages except Swiss German. Ger-
man, Dutch, English, Danish, and Italian are all
included in mBERT’s pre-training, contributing to
their higher baseline performance. However, the
monolingual German model has a higher baseline
score for Swiss German than mBERT.

For intent classification, our noise intervention
boosts the mBERT baseline scores for all language
pairs (except English, once again). The trend of
the more noise the better applies here as well; the
mBERT model fine-tuned with 100% noise under
the joint composition performs the best across the
languages. Though mBERT achieves better per-
formance on seen languages than German BERT,

the Swiss German results demonstrate that Ger-
man BERT may be better for related but unseen
varieties.

6 Conclusion

In this work, we explore two questions: first, when
is it a good idea to use character-level noise in fine-
tuning as an agent for zero-shot cross-lingual trans-
fer, and second, in cases where inducing character-
level noise is helpful, which noising techniques
work the best? We fine-tune monolingual BERT
models on three sentence-level classification tasks,
each with a different source language, introducing
several variations in the method of noising for the
fine-tuning data. We test on a medley of unseen
dialects, closely-related languages, and distant rel-
atives. We find that one of our test settings lends
itself particularly well to our method, while the
other two do not. This distinction comes down
to the nature of the task and the relationship (in
terms of lexical overlap) between the cross-lingual
source-target pair tested. Our extensions in the
space of noising variations allow us to optimize
zero-shot cross-lingual transfer to the unseen target
languages for the the success case, yielding a boost
in performance not only for closely-related pairs,
but also for more distant pairs.

Limitations

Though we make an effort to maintain the rigor of
our methods and analysis, there are some limita-
tions in our approach which could be addressed in
future work. First, beyond the nature of the task
data itself, a possible reason that character-level
noise would not be appropriate for the Spanish sen-
timent analysis task is that the TASS 2020 dataset
contains considerably fewer training examples than
the other two tasks’ datasets, so we may not be
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able to achieve the optimal performance on this
task under the BERT fine-tuning paradigm. In ad-
dition, to stay authentic to the raw data, we do
not apply any special preprocessing (like remov-
ing mentions or hashtags from the Spanish Twitter
data); however, it is possible that such factors con-
tribute to success in the task. Furthermore, our
analysis involves three dimensions of comparison:
the nature of the task, lexical overlap, and average
length of out of vocabulary words. To validate our
analysis, we would have liked to expand the ex-
periments to incorporate all possible combinations
of the three factors; however, we were unable to
due to limited availability of task-labeled dialect
data. Similarly, though we test several variations of
the noising scheme, there are many more possible
and we can’t say definitively whether some other
character-level noising scheme would work well
for the topic identification and sentiment analysis
tasks. Finally, we are able to offer anecdotal in-
sight into why introduction of noise contributes
to improvements; however, without a formal error
analysis we cannot say for sure. We would like to
conduct a thorough error analysis in future.

Ethics Statement

Because our project deals with existing datasets and
models, and our method involves synthetic genera-
tion of noise, our research process itself does not
inherently involve ethical concerns. However, as
with any new development, there can always be
potential implications of the work that raise ethical
concerns. For instance, we discuss methods of ap-
plying synthetic noise to text, which could also be
used in adversarial attacks. Our method is intended
for a zero-shot setting in which a user is using a
nonstandard variety related to some standard lan-
guage. This can be a valuable tool; however, one
can imagine a scenario in which a code language
is developed un-monitored online communication,
but with extensions of our method, performance
for a variety of tasks could improve on the code
language, enabling undesired monitoring.
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Abstract
We present lemmatization experiments on the
unstandardized low-resourced languages Low
Saxon and Occitan using two machine-learning-
based approaches represented by MaChAmp
and Stanza. We show different ways to increase
training data by leveraging historical corpora,
small amounts of gold data and dictionary in-
formation, and discuss the usefulness of this
additional data. In the results, we find some
differences in the performance of the models
depending on the language. This variation is
likely to be partly due to differences in the cor-
pora we used, such as the amount of internal
variation. However, we also observe common
tendencies, for instance that sequential models
trained only on gold-annotated data often yield
the best overall performance and generalize bet-
ter to unknown tokens.

1 Introduction

Lemmatization consists in finding the base form of
a given inflected form. The definition of the base-
form for a grammatical category can vary across
languages. It can include, e.g., finding the mascu-
line singular for an adjective (bèlas ‘beautiful.F.PL’
> bèu ‘beautiful.M.SG), or finding the infinitive for
a verb (atten ‘eat.3PL.IND.PRES’ > eaten ‘eat.INF’).
The main benefit of lemmatization lies in reduc-
ing data sparsity by grouping together all surface
forms stemming from the same lemma. It is espe-
cially useful for morphologically rich languages,
for which the high number of surface forms leads
to lower token – type ratios. For such languages,
lemmatization is systematically used as a prepro-
cessing step for downstream tasks such as pars-
ing, and it is essential for building efficient corpus
querying systems.

We approach this task from the perspective of
two low-resourced, non standardized minority lan-
guages: Occitan and Low Saxon. In the case of
non standardized varieties, acquiring even mini-
mal amounts of manually lemmatized data can

be difficult. One of the reasons is the definition
of lemmatization itself: in the absence of a com-
mon standard, which approach to lemmatization
should be adopted? Should lemmatization respect
different levels of variation (lexical, morphological,
orthographic) which are present in multi-dialect
datasets? Or should one variety be chosen for
lemmatization purposes and used across all di-
alects? The former solution allows for the preserva-
tion of dialectal differences, but limits the positive
impact of lemmatization on data sparsity. The latter
is more effective in this respect but it compounds
lemmatization and normalization, arguably mak-
ing the task more difficult. Furthermore, it can
be deemed problematic by the speakers of the lan-
guage in question.

In this paper, we explore both of these ap-
proaches: our Low Saxon dataset adopts an in-
terdialectal lemmatization approach, whereas the
Occitan dataset’s lemmas are dialect-specific. We
evaluate the effects of using small, manually an-
notated datasets for training lemmatization models
vs relying on a larger, automatically preannotated
corpus. We investigate the utility of developing one
general model for all dialects vs training dialect-
specific models. Since lemmatization typically re-
lies on PoS information to aid the processing of
ambiguous tokens, we look into different ways of
using this annotation layer in our corpora by eval-
uating two learning paradigms: joint learning and
classical, sequential learning for PoS-tagging and
lemmatization.

2 Related Work

Lemmatization methods based on machine learn-
ing can be divided into edit tree-based approaches
and string transduction methods. The edit tree-
based algorithms (ges; Grzegorz Chrupala and van
Genabith, 2008; Müller et al., 2015) derive the se-
quence of edit operations needed to transform the
inflected form into the lemma. The edit tree is
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used as a label for each wordform – lemma pair.
The model learns to predict the edit tree and not
the lemma itself, thus treating lemmatization as a
classification task.

With the advent of neural methods, lemmati-
zation has been recast as a string-transduction
task (e.g. Bergmanis and Goldwater, 2018; Man-
javacas et al., 2019). Currently, the main contribu-
tion of these approaches to the state of the art seems
to be better generalization capacities, measured as
the model’s ability to correctly lemmatize unseen
wordforms. Bergmanis and Goldwater (2018) re-
port an important improvement on unknown tokens
over non-neural approaches, and similar observa-
tions are made by Manjavacas et al. (2019). How-
ever, both works remark that the neural networks do
not seem to outperform edit tree-based approaches
on ambiguous tokens. In general, the capacity to
deal with ambiguous tokens is believed to depend
on the availability of contextual information, which
is supposed to facilitate disambiguation. Bergma-
nis and Goldwater (2018) use a sliding character
window as context, and Manjavacas et al. (2019)
condition the decoder on sentence-level embed-
dings. These efforts to include contextual informa-
tion do not seem sufficient to beat the edit-based
methods on this type of tokens.

The well-suitedness of one type of lemmatiza-
tion algorithm over the other may also depend on
the linguistic properties of a given language. Man-
javacas et al. (2019) note that, when evaluating
on modern languages, the edit tree-based method
outperforms the neural model on both West Eu-
ropean and Uralic languages, whereas for Slavic
languages the neural model yields better results.
These results would, however, need to be con-
firmed, since Ljubešić and Dobrovoljc (2019) find
that the edit tree-based approach beats the neural
model on South Slavic languages they investigate.

Lemmatization is often paired with PoS (Part of
Speech) tagging. Since inflected forms can be am-
biguous as to their lemma, relying on PoS-tags can
help the disambiguation process. This information
can be exploited as part of joint multi-task learn-
ing (Kondratyuk et al., 2018; Manjavacas et al.,
2019; van der Goot et al., 2021) or, more tradition-
ally, in a sequential approach, in which the models
for two tasks are learned separately, but the lem-
matizer relies on the morphological information
during training and prediction (e.g. Qi et al., 2020).
Vatri and McGillivray (2020) compare lemmatizers

for Ancient Greek based on dictionary lookup that
exploit PoS information to distinguish ambiguous
tokens. Alternatively, some approaches do not rely
on this type of information at all (e.g. Bergmanis
and Goldwater, 2018), which may simplify lemma-
tization for low-resource languages.

More generally, lemmatization in the low-
resource setting has also received attention in re-
cent work. Bergmanis and Goldwater (2018) eval-
uate their models both on the full amount of avail-
able data and on 10k samples. Saunack et al. (2021)
explore the lower bound for training data size on
Indian languages: they compare a standard set-
ting with low-resource settings with only 500 and
100 training instances, in which they rely on data
augmentation techniques. Saurav et al. (2020) in-
vestigate cross-lingual approaches for lemmatizing
low-resourced Indian languages.

In this work, we are particularly interested in
the low-resource setting, since the gold standard
datasets available for Low Saxon and Occitan are
limited in size. We also experiment with the cross-
lingual and cross-lectal approach by using histori-
cal data and related languages. We opt for neural
models since we expect a high proportion of un-
known tokens in our datasets due to the fact that
we are dealing with non standardized languages.
We examine both the joint and sequential learning
in an attempt to identify the optimal approach to
exploit the PoS tagging information present in our
datasets.

3 Languages

3.1 Low Saxon

Low Saxon is a West Germanic language spoken by
approximately 4.8 million people primarily in the
north-eastern Netherlands and northern Germany
(Moseley, 2010). Despite official recognition in
both countries, no interdialectal standard variety
has been established so far.

Dialect classification of Low Saxon is normally
more finegrained than the three-fold subdivision
we use here. Dutch Low Saxon is traditionally
divided into Gronings, Stellingwerfs, Drents, Sal-
lands, Twents, Veluws, Achterhoeks and Urkers
(Bloemhoff et al., 2019, 20), but due to scarcity of
data we treat it as one group. The traditional clas-
sification of German Low Saxon (see for instance
Schröder, 2004 and Stellmacher, 1983) assumes
an East-West division based on, among others, the
history of settlement and the plural suffix of verbs
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in the present tense. However, we have not found
this traditional division to correspond to overall
dialect similarity in our previous dialectometric
experiments. Therefore, we instead adopt a north-
south division following Lameli (2016) and our
own observations. The northern group consists of
North Saxon and Mecklenburgish - West Pomera-
nian, and the southern group of Westphalian and
Eastphalian. We excluded Brandenburgish, East
Pomeranian and Low Prussian due to data scarcity.

Compared with Middle Low Saxon, the number
of inflectional categories has decreased, and there
is dialectal variation in the number of categories
preserved. For instance, while nouns in Middle
Low Saxon inflected for four cases, nominative,
genitive, dative and accusative (Lasch, 1974), only
a few of the southern varieties in Westphalia and
Eastphalia still distinguish the dative and accusative
(Lindow et al., 1998). Most Low Saxon varieties
in Germany distinguish the nominative and the ac-
cusative, whereas Dutch Low Saxon typically does
not. Usage of the genitive is very restricted in all
Low Saxon varieties.

At the phonological level, we find noticeable
variation in the number of distinct vowel phonemes
preserved and in the ways vowel phonemes have
merged. A typical example is the merger of Proto-
Germanic *â and lengthened *a1 that has occurred
outside of Westphalia (Niebaum, 2008; Bloemhoff
et al., 2019). As a result, we find the same
phoneme in Spraak2 ‘language’ and Water ‘water’
in the north-western dialects, while Westphalian,
here Münsterlandic, shows distinct phonemes in
Spraoke and Water.

In addition to the dialectal variation, there is
considerable orthographic variation as most Low
Saxon writers follow regional writing traditions to
different degrees or might devise their own spelling
systems. These regional or personal spellings of-
ten draw some inspiration from the majority lan-
guage orthographies. This can be seen, e.g., in
the frequent capitalization of nouns by German
Low Saxon writers and in the representation of the
voiced sibilant /z/ with the grapheme <z> by Dutch
Low Saxon writers, while German Low Saxon writ-
ers commonly use <s> for the same phoneme.

Our corpus reflects this orthographic and dialec-

1This lengthening happened relatively regularly in open
syllables.

2Notice the apocope of final -e that has occurred in most
northern dialects. Vowel length is often marked by doubling
the letter in closed syllables.

tal variation that poses significant challenges to
NLP.

3.2 Occitan

Occitan is Romance language which belongs to
the Gallo-Romance group. It is closest to Catalan,
with which it forms a subgroup called occitano-
roman (Bec, 1970). It is spoken in southern France
(except in the Basque and Catalan areas), in sev-
eral valleys of the Italian Piedmont and in the Val
d’Aran in Spain. When it comes to its linguistic
properties, Occitan is a null subject language with
tense, person and number inflection marks on fi-
nite verbs. Number and gender are marked on all
components of the noun phrase in many dialects.

The most widely accepted classification pro-
posed by Bec (1995) includes 6 major dialec-
tal groups: Auvernhat, Gascon, Lengadocian,
Lemosin, Provençau and Vivaroaupenc3, each of
them with areas of greater or lesser variation. Ge-
ographic variation affects all levels of linguistic
structure. In this paper we focus on Lengado-
cian, Gascon, Provençau and Lemosin, due to the
availability of annotated material for these dialect
groups. Geographical variation affects all levels
of linguistic structure. Different phonological pro-
cesses have resulted in series of wordforms specific
to each dialect group, e.g. the word son translates
to hilh in Gascon, filh in Lengaodcian and Lemosin,
and fiu in Provençau. On the lexical level, the word
potato corresponds to mandòrra, whereas it is tr-
ufa/trufet or patana/patanon in Lengadocian. On
the morpho-syntactic level, verb inflection varies
from one dialect to another, and there is also an
important degree of intra-dialectal variation. To
illustrate, we are corresponds to èm in Gascon,
sem in Lemosin, sèm in Lengadocian and siam in
Provençau based on the most frequent paradigm
for each dialect group.

This situation is further complicated by the exis-
tence of several orthographic norms, out of which
two seem to dominate today: the so-called Mis-
tralian orthography, inspired by French writing
conventions, and the classical orthography, closer
to the medieval troubadours’ spelling (Sibille,
2002). The data used in our experiments is lim-
ited to the classical orthography.
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Dataset Sent. Tok. Types Sent. len.
L

ow
Sa

xo
n SMALL All dialects 904 19258 6000 21.30

Dutch LS 310 6716 2297 21.66
North Ger. LS 265 5415 1961 20.43
South Ger. LS 326 7127 2635 21.86

LARGE All dialects 126359 2431944 166625 19.25

O
cc

ita
n

SMALL All dialects 1522 26122 6196 17.16
Gascon 255 4170 1429 16.35
Lengadocian 1113 19315 4499 17.35
Lemosin 77 1344 596 17.45
Provençau 77 1293 583 16.79

LARGE - 100000 2037723 147070 20.38

Table 1: SMALL and LARGE dataset information for
Low Saxon and Occitan

4 Datasets

For both languages, we use two basic datasets: the
SMALL dataset is manually annotated and it was
available for both languages at the beginning of the
experiments reported here. The LARGE datasets
are an order of magnitude greater than their SMALL

counterparts, but contain only automatic preannota-
tion with PoS-tags and lemmas. In the experiments
presented here, the SMALL datasets were used for
initial training of our models, and we make use of
their dev and test splits for training and for evalua-
tion. The LARGE datasets were used as additional
training material in various setups in an attempt to
improve model accuracies. In the remainder of this
section, we provide some quantitative details and
descriptions of each dataset. Note that the LARGE

datasets were not annotated at the beginning of
our work. The strategies used to palliate this are
described in Section 6.

In the case of Low Saxon, both the SMALL and
the LARGE dataset stem from the same corpus, de-
scribed in Siewert et al. (2020), and contain several
genres, for instance fiction texts such as fairytales
or novels, and non-fiction texts such as letters, an-
nouncements or political speeches. The Low Saxon
dataset is roughly split into two time periods: 1800–
1939 and 1980–2022. The distribution within the
dialect groups is as follows: Dutch Low Saxon 20%
and 80%, North German Low Saxon 87% and 13%,
South German Low Saxon 44% and 56%.

For Occitan, the SMALL dataset is based on the
treebank presented in Miletic et al. (2020) and con-
tains predominantly literary texts. The LARGE Oc-
citan corpus contains Occitan Wikipedia articles

3Names of dialects are given in Occitan (each one in its
dialect) as there is no standardized orthographic form for those
names in English.

from 2021, taken from the Leipzig Corpora Collec-
tion4.

For both languages, the gold dataset has also
been stratified into dialect groups in order to exam-
ine the usefulness of dialect-specific training data
and evaluate model performance for different di-
alects. The gold sets are split into train, test and
development sets (except in the case of Occitan, for
which two dialect groups do not have a dev set, the
total amount of annotated data being too small)5.
A quantitative overview of gold splits is given in
Table 2. The unknown and ambiguous tokens are
defined in relation to the gold annotated train set
including all dialects.

5 Tools

We make use of two training paradigms: multi-task
learning applied to PoS-tagging and lemmatization,
in which both tasks are learned as part of the same
model, and traditional sequential learning, in which
a separate model is trained for each task. We ex-
plore the former with MaChAmp (van der Goot
et al., 2021) and use the Stanza NLP pipeline (Qi
et al., 2020) for the latter.

5.1 MaChAmp

MaChAmp is a toolkit that allows for easy fine-
tuning and joint learning of a wide range of NLP
tasks, including PoS-tagging, lemmatization, pars-
ing, masked language modelling and text genera-
tion. MaChAmp takes a pretrained contextualized
model as the initial encoder and fine-tunes it accord-
ing to a given set of downstream tasks. Each task
has its own decoder for task-specific predictions.
The tool also allows an initial round of training
on a specific task, and then fine-tune it in a sec-
ond round of training. We put this functionalty
to test in our lemmatization experiments. As the
default embeddings, MaChAmp uses mBERT (De-
vlin et al., 2019). For a detailed description of
the tool and the model it is based on, the reader is
referred to van der Goot et al. (2021)

5.2 Stanza

Stanza is a Python NLP pipeline currently support-
ing 66 languages (which do not include Occitan
and Low Saxon). The tool supports tokenization,

4https://corpora.uni-leipzig.de/en?corpusId=
oci_wikipedia_2021

5Since the original corpus did not have dev splits, the
corpus was re-split into train, dev and test for the needs of the
experiments we describe.
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Dataset train test dev
Sent. Tok. Types Sent. Tok. Types Unk. (%) Amb. (%) Sent. Tok. Types Unk. (%) Amb. (%)

L
ow

Sa
xo

n All dialects 723 15346 5083 91 1972 1020 26.88 36.76 90 1940 930 26.29 32.84
Dutch LS 249 5072 1878 31 925 469 24.54 37.73 30 719 410 23.5 32.55
North German LS 213 4447 1683 26 391 241 24.3 37.6 26 577 352 25.12 33.62
South German LS 262 5827 2220 32 656 407 31.71 34.91 32 644 406 30.43 32.45

O
cc

ita
n

All dialects 1196 20551 5292 202 3179 1054 22.11 28.18 124 2392 1009 16.39 31.77
Gascon 195 3258 1173 35 421 230 26.37 23.28 25 491 267 19.35 33.60
Lengadocian 884 15494 3937 130 1920 577 19.64 27.50 99 1901 814 15.62 31.30
Lemosin 56 919 434 16 413 211 27.76 31.76 - - - - -
Provençau 61 880 424 16 413 211 23.49 32.69 - - - - -

Table 2: SMALL dataset split into train, dev and test

multi-word token expansion, lemmatization, PoS
and morphological feature tagging, dependency
parsing, and named entity recognition. In this
work, we utilize its PoS-tagger, based on a biL-
STM model, and its lemmatizer, a neural seq2seq
model. For more details, please see Qi et al. (2020).

6 Strategies for Creating Large(r)
Amounts of Annotated Data

One of the dimensions of lemmatization we ex-
plored in this work relates to the size and the nature
of the training material. Specifically, we compared
the performance of tools trained on small amounts
of gold-annotated data with using larger corpora
that were automatically preannotated. As men-
tioned in Section 1, the corpora we used as our
LARGE datasets were not annotated at the outset of
the experiments presented here. There were, to the
best of our knowledge, no freely available models
based on neural approaches for the PoS-taggging
and the lemmatization of Low Saxon and Occitan.
The first round of our experiments was therefore
dedicated to creating initial models for both tasks
which would allow us to produce reliable automatic
preannotation. For Low Saxon, we leveraged an
existing historical corpus of Middle Low Saxon to
train models that were then transferred to Modern
Low Saxon. This had the advantage of using a cor-
pus that was larger than the available gold standard
in Modern Low Saxon. For Occitan, no compara-
ble historical corpus was available. We therefore
relied on bootstrapping using the SMALL dataset.

6.1 Leveraging a Historical Corpus for the
Preannotation of Modern Text

The initial preannotation of the Low Saxon lemmas
was done with MaChAmp and the reference cor-
pus Middle Low German6 / Low Rhenish (Peters,

6Called “Middle Low German” in the official English name
of the reference corpus; We otherwise refer to this language

2017). The reference corpus uses a tagset specifi-
cally designed for the needs of Middle Low Saxon.
Therefore, we instead made use of the automatic
PoS annotation provided by Siewert et al. (2022).

The reference corpus consists of two parts:
an annotated part that comes with supradialec-
tal lemmatization following primarily the Mittel-
niederdeutsches Handwörterbuch by Lasch et al.
and the one by Lübben (1995 - 1888) and a tran-
scribed part without annotation. We converted the
annotated part to the ConLLU-format required by
the tools we used. The MaChAmp lemmatization
model achieved an accuracy of 89.9% on this data.
This model was subsequently finetuned on a small
set of manually annotated modern data in order to
annotate the rest of the corpus.

Our modern Low Saxon gold annotated dataset
does not employ the Middle Low Saxon dictio-
nary spelling, but the Nysassiske Skryvwyse7 ‘New
Saxon spelling’, an interregional spelling based on
historical sound correspondences and used by, for
instance, the Dutch Low Saxon Wikipedia. As this
spelling does not reduce all dialectal variation, the
lemma form is, as far as possible, chosen based on
the Middle Low Saxon dictionary form, attested
Old Saxon forms or Proto-Germanic reconstruc-
tions. For future comparisons with the historical
corpus, it would be desirable to add a Middle Low
Saxon lemmatization layer to the modern data.

The final pretrained MaChAmp model for mod-
ern Low Saxon achieved a lemma accuracy of 87%,
and a PoS accuracy of 94% on the manually anno-
tated development set. These relatively good re-
sults (compared with our later experiments) might
be explained by some overfitting as we used the
same development set in two consecutive training
steps: Original lemmatization finetuning and later
joint training of lemmatization and PoS tagging.

as “Middle Low Saxon”.
7https://skryvwyse.eu
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6.2 Bootstrapping Using a Small Gold
Standard Corpus and a Lexicon

For Occitan, we used MaChAmp in order to train
a PoS-tagger and a lemmatizer which would allow
us to preprocess the LARGE dataset. Since this was
a preliminary experiment with the tool on this lan-
guage, we opted for training independent models
for each of the tasks in order to evaluate the base-
line performance for each task on gold data. In this
scenario, we did a single training run on the full
SMALL dataset, using the default embeddings.

The PoS-tagger achieved global accuracy of
92.26% on the test set comprised of all dialects,
the highest being 92.97% on Lengadocian and the
lowest 89.10% on Provençau.

The lemmatizer’s global accuracy reached
89.30%, ranging from 88.6% on Gascon to 93.33
on Lengadocian and Lemosin (detailed results for
the global evaluation are available in Table 6, and
for the dialect-specific evaluation in Table 7).

These models were ensembled with the morpho-
logical lexicon Loflòc (Vergez-Couret, 2016; Bras
et al., 2020). If a wordform was present in the lexi-
con and only had one entry, it was annotated with
information found in the lexicon. Otherwise, the
models’ predictions were used. Around a third of
the wordforms received lexicon-based annotations.

The preannotated corpus was used as the LARGE

dataset in the experiments described in the sections
below.

7 Large Preannotated Corpora and Small
Gold Datasets

Following the creation of additional annotated ma-
terial, we trained new models with both MaChAmp
and Stanza.

With MaChAmp, we used the LARGE datasets
for the initial round of training, and the SMALL

dataset for the fine-tuning of the model. The fine-
tuning was done both with the full SMALL dataset
and using dialect-specific subsets of it. We trained
for lemmatization and PoS-tagging jointly, result-
ing in one model capable of performing both tasks.

With Stanza, we trained lemmatizers both on
the SMALL dataset on its own and on a combined
dataset, concatenating SMALL and LARGE datasets.
This approach was chosen because the current ver-
sion of Stanza does not support retraining. We
leveraged the available morphological information
in the training process. We also trained the corre-
sponding PoS-tagging models: they are used to ap-

proximate a pipeline setup and evaluate the Stanza
lemmatizers on predicted PoS-tags.

Additionally, we trained a lemmatizer that does
not rely on morphological annotation with both
tools. These models were intended as a baseline,
but they also correspond to a real-life usecase in
which a lemmatized corpus for a given language is
available, but contains no PoS tags.

The global lemmatization results are given in
Table 6, whereas the dialect-specific results are
available in Tables 7 and 8. We report mean ac-
curacy and standard deviation over three training
runs on the test set8. In addition to results on the
full evaluation set, we also report performance on
unknown and ambiguous tokens. We consider as
unknown tokens those that do not appear in any
of the training material. We define as ambiguous
all tokens having more than one possible lemma in
the training material. In the case of dialect-specific
evaluations, we evaluate the dialect-specific model
trained using MaChAmp along with the general
models trained with both tools. Our goal is to as-
sess if dialect-specific training is useful even if it
entails using less training data than for the general
model.

7.1 General results
As an overall tendency, Occitan seems to be easier
to lemmatize than Low Saxon, with the former’s
accuracy ranging often around 10% higher than the
latter’s. In case of the unknown tokens, the differ-
ence is even bigger. Given the greater orthographic
variation in our Low Saxon dataset, this does not
come as a surprise.

The sequential approach of the Stanza pipeline
most of the time yields the best results for both
Low Saxon and Occitan. Surprisingly, we found
the MaChAmp base model9 to perform best for
Low Saxon, with an almost 5% advantage over
the finetuned model. On Occitan, finetuning the
MaChAmp model does bring an improvement, al-
beit a small one (around 1.5%)

Large automatically annotated corpora seem to
bring some benefit for the overall accuracy but they
do not generally outperform the smaller Stanza
models which have access to the PoS information.
In the case of unknown tokens in particular, we
see that the Stanza model trained only on gold data
with gold PoS performs best.

8The results on the dev set are available in Appendix A.
9Only trained on a large corpus of automatically annotated

data, no finetuning on gold data.

168



Tool Training set Task Train cond. Test cond. ALL UNK AMB
O

cc
ita

n

MaChAmp SMALL LEM no POS, gold LEM no POS 91.28±0.42 72.22±1.55 96.23±0.37

LARGE POS+LEM pred. POS+LEM no POS 91.77±0.23 68.54±1.86 92.19±0.14

L+S POS+LEM pred. POS+LEM no POS 92.16±0.25 67.2±0.33 93.05±0.45

Stanza SMALL LEM no POS no POS 90.35±0.42 66.86±1.85 95.78±0.0

SMALL LEM gold POS+LEM pred. POS 93.21 ±0.09 78.43 ±0.41 96.69 ±0.0

COMB LEM pred. POS+LEM pred. POS 92.49±0.08 68.4±0.98 92.63±0.0

L
ow

Sa
xo

n

MaChAmp SMALL LEM no POS, gold LEM no POS 70.74±0.09 17.47±0.48 88.63±0.26

LARGE POS+LEM pred. POS+LEM no POS 83.42 ±0.21 30.19±1.33 85.19±0.47

L+S POS+LEM pred. POS+LEM no POS 78.14±0.31 20.44±1.18 81.2±0.22

Stanza SMALL LEM no POS no POS 75.33±0.11 36.41±0.42 82.03±0.0

SMALL LEM gold POS+LEM pred. POS 80.52±0.43 45.66 ±1.59 89.42 ±0.0

COMB LEM pred. POS+LEM pred. POS 81.31±0.05 20.12±0.89 82.16±0.0

Table 3: Global Lemmatization Accuracy for Occitan and Low Saxon

Gascon
Tool Train ALL UNK AMB

MaChAmp L+S 89.66±0.52 57.01±1.24 90.28±0.57

MaChAmp L+GAS 88.86±0.41 54.38±1.24 89.58±0.98

Stanza SMALL 90.71 ±0.75 77.78 ±2.79 91.49 ±0.0

Stanza COMB 90.06±0.11 67.54±1.24 89.58±0.0

Lemosin
Tool Train ALL UNK AMB

MaChAmp L+S 90.91 ±0.2 74.42 ±1.9 94.35±0.46

MaChAmp L+LEM 87.64±0.57 64.34±1.1 92.66±0.8

Stanza SMALL 90.59±0.41 72.6±0.8 99.22 ±0.0

Stanza COMB 89.79±0.23 66.67±1.09 92.66±0.0

Lengadocian
Tool Train ALL UNK AMB

MaChAmp L+S 93.08±0.48 69.91±0.33 92.76±0.69

MaChAmp L+LEN 92.56±0.6 68.29±0.33 92.29±0.8

Stanza SMALL 94.42 ±0.13 81.35 ±0.9 96.54 ±0.0

Stanza COMB 93.72±0.11 71.53±1.5 92.98±0.0

Provençau
Tool Train ALL UNK AMB

MaChAmp L+S 91.67±0.0 54.67±1.89 95.14±0.44

MaChAmp L+PRO 86.6±0.11 52.0±0.0 89.55±0.25

Stanza SMALL 92.81 ±0.31 74.92 ±1.28 98.51 ±0.0

Stanza COMB 92.08±0.12 54.67±1.89 93.51±0.0

Table 4: Dialect-Specific Lemmatization Accuracy on Occitan

7.2 Dialect-Specific Results

When testing on individual dialects, too, the se-
quential approach of the Stanza model most often
yields a higher accuracy for both Low Saxon and
Occitan. As in case of the general tests, we do not
find the automatically annotated data to benefit the
model performance on Occitan. However, for both
North and South German Low Saxon, we observed
an improvement of the overall accuracy. Further-
more, we find MaChAmp to generalise particularly
well to Lemosin.

When comparing the performance of the gen-
eral and the dialect-specific MaChAmp models, the
finetuning on a small dialect-specific dataset does
not bring any improvement except for unknown to-
kens in German North Low Saxon. The MaChAmp
models in fact consistently show a better overall
accuracy when finetuned on the general gold train
data. Since the general gold train data combines
all the dialect-specific train sets, it is reasonable
to suppose that these results are driven by the size
difference between the finetuning datasets.

For Stanza, a more focused approach – here ex-

clusive training on gold data without adding auto-
matically annotated data – leads to a higher accu-
racy for lemmatizing unknown tokens. This holds
true for both Low Saxon and Occitan, with the
exception of Lemosin.

8 Discussion and Conclusion

The overall accuracy results for Low Saxon are
noticeably lower than for Occitan, around 10% on
average. One possible explanation could be the
greater orthographic variation that is likely the rea-
son behind the higher percentages of unknown and
ambiguous tokens in Low Saxon seen in Table 2.
While our Occitan corpus makes use of the same
spelling convention throughout, the Low Saxon cor-
pus contains various writing systems even within
the same dialect group. Furthermore, we trained
the models for Occitan on major dialects, whereas
we used groups of major dialects for Low Saxon.
Another reason might be found in the different di-
achronic structure of the datasets: Whereas the
Occitan data mostly comes from the 20th and 21st

century, the Low Saxon dataset covers the period
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Dutch Low Saxon
Tool Train All Unk Amb

MaChAmp L+S 77.46±0.24 11.11±1.13 82.39±0.22

MaChAmp L+DLS 76.31±0.23 10.65±0.66 81.16±0.08

Stanza SMALL 80.41 ±0.81 21.3 ±4.72 84.45 ±0.66

Stanza COMB 78.93±0.11 14.35±1.31 81.98±0.0

(German) North Low Saxon
Tool Train All Unk Amb

MaChAmp L+S 86.77±0.8 30.55±3.93 90.35 ±0.62

MaChAmp L+NLS 82.65±0.32 33.33 ±6.81 85.35±0.79

Stanza SMALL 84.79±0.92 33.33 ±6.81 89.01±1.08

Stanza COMB 89.6 ±0.12 30.55±3.93 89.01±0.0

(German) South Low Saxon
Tool Train All Unk Amb

MaChAmp L+S 73.97±0.22 45.45±0.00 74.49±0.26

MaChAmp L+SLS 72.74±0.54 42.42±4.29 73.57±0.62

Stanza SMALL 78.15±0.56 46.97 ±2.14 79.42 ±1.22

Stanza COMB 79.68 ±0.08 33.33±2.14 78.44±0.0

Table 5: Dialect-Specific Lemmatization Accuracy for Low Saxon

from the 19th century to the 21st.

This greater variation might be the reason why a
sequential approach proves particularly useful for
Low Saxon. As a result of the dialectal and ortho-
graphic variation, there are many ambiguous tokens
that need to be lemmatized differently depending
on the writing system and dialect. For instance, the
character string doe typically refers to the feminine
or masculine definite article in eastern Westphalian,
where it should be lemmatized as de, whereas it
should be lemmatized as du in Gronings, where it
represents the pronoun of the second person sin-
gular. In addition, this string can stand for the 1st

person singular in the present tense of the verb
doon ‘to do’ in many dialects throughout the lan-
guage area. PoS-tagging effectively disambiguates
these three usages.

When it comes to Occitan, we noted that the
Stanza model trained only on the gold data per-
forms better than its counterpart trained on both
preannotated and gold data. This may be due to the
genre mismatch between the gold corpus (which is
predominantly literary) and the automatically anno-
tated corpus (which is extracted from Wikipedia).
MaChAmp’s finetuning approach seems to be more
robust to this, since the model trained on both pre-
annotated and gold data achieves better general
results than the the one limited to the gold dataset.

The different model behaviour we have observed
in our two low-resourced languages also warrants
a more general question: How faithfully can low-
resource scenarios be simulated by using small
amounts of data from standardized high-resource
languages? As this seems to be a relatively com-
mon practice, it would be worth investigating how
this approach actually compares to the task it is
supposed to simulate.

In conclusion, we found that the sequential ap-
proach implemented by Stanza was a good fit for
both languages. The amount of training data also
seemed to have more of an impact than dialect-
level specificity, given that the MaChAmp models
finetuned on the full gold dataset systematically
outperformed the dialect-specific models.Another
common tendency for both languages is the posi-
tive effect of using only gold data for training on
the performance of the Stanza model over unknown
tokens. This is a particularly interesting finding be-
cause it could be expected that a larger amount of
training would make the model generalize better. It
seems that in our case the reliability of the training
data was more important.

Data Access

The new annotated corpora created as part of this
work are distributed on Zenodo.

The datasets for Low Saxon are avail-
able here: https://doi.org/10.5281/zenodo.
7777282.

The large dataset for Occitan is available
here: https://doi.org/10.5281/zenodo.
7777340.

Limitations

The MaChAmp and Stanza results are not fully
comparable as we did not present the performance
of dialect-specific Stanza models here. Since
Stanza does not allow finetuning, we do not ex-
pect the small individual dialect-specific train sets
to have a strong effect compared with the much
larger amount of automatically annotated data. We
defer testing this hypothesis to future work.
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A Complementary Evaluation Results

Tool Training set Task Train cond. Test cond. ALL UNK AMB

O
cc

ita
n

MaChAmp SMALL LEM no POS, gold LEM no POS 93.57±0.06 78.74±1.14 95.08±0.28

LARGE POS+LEM pred. POS+LEM no POS 93.32±0.09 76.07±0.5 91.94±0.15

L+S POS+LEM pred. POS+LEM no POS 94.24±0.17 73.49±0.74 93.47±0.29

Stanza SMALL LEM no POS no POS 92.84±0.14 75.43±0.84 93.1±0.0

SMALL LEM gold POS+LEM pred. POS 94.68±0.03 83.16±0.21 94.86±0.0

COMB LEM pred. POS+LEM pred. POS 93.53±0.06 74.01±1.11 91.19±0.0

L
ow

Sa
xo

n

MaChAmp SMALL LEM no POS, gold LEM no POS 74.72±0.62 25.48±1.67 91.84±0.44

LARGE POS+LEM pred. POS+LEM no POS 86.69±0.31 52.01±0.89 89.14±0.46

L+S POS+LEM pred. POS+LEM no POS 81.64±0.43 56.74±0.58 83.41±0.38

Stanza SMALL LEM no POS no POS 78.7±0.23 42.38±0.9 85.09±0.0

SMALL LEM gold POS+LEM pred. POS 82.4±0.16 47.64±0.61 92.15±0.0

COMB LEM pred. POS+LEM pred. POS 83.54±0.17 55.79±2.34 83.95±0.0

Table 6: Global Lemmatization Accuracy for Occitan and Low Saxon. Dev set.

Gascon
Tool Train ALL UNK AMB

MaChAmp L+S 93.6±0.36 69.1±1.15 93.55±1.11

MaChAmp L+GAS 92.83±0.1 69.1±2.3 92.14±0.22

Stanza SMALL 94.29±0.2 79.65±0.99 96.15±0.0

Stanza COMB 90.4±0.0 68.29±0.0 87.26±0.0

Lengadocian
Tool Train ALL UNK AMB

MaChAmp L+S 94.4±0.14 75.58±0.95 93.45±0.1

MaChAmp L+LEN 94.12±0.13 74.03±1.09 93.25±0.11

Stanza SMALL 94.78±0.02 84.29±0.16 94.51±0.0

Stanza COMB 94.33±0.08 76.75±1.65 92.16±0.0

Table 7: Dialect-Specific Lemmatization Accuracy on Occitan. Dev set (there are no dialect-specific dev sets for
Lemosin and Provençau.)

Dutch Low Saxon
Tool Train All Unk Amb

MaChAmp L+S 83.64±0.75 60.0±1.26 86.57±0.61

MaChAmp L+DLS 81.35±0.13 52.31±0.00 84.77±0.35

Stanza SMALL 84.2±0.5 50.26±2.62 87.55±0.11

Stanza COMB 84.11±0.35 55.9±3.84 84.52±0.0

(German) North Low Saxon
Tool Train All Unk Amb

MaChAmp L+S 84.49±0.46 60.49±1.74 86.7±0.49

MaChAmp L+NLS 80.96±0.22 60.49±3.49 83.42±0.37

Stanza SMALL 83.97±0.46 45.68±1.75 87.39±0.95

Stanza COMB 87.96±0.08 65.43±1.75 88.08±0.0

(German) South Low Saxon
Tool Train All Unk Amb

MaChAmp L+S 76.82±0.07 50.34±0.96 77.63±0.11

MaChAmp L+SLS 74.25±0.71 48.3±1.92 74.68±0.88

Stanza SMALL 78.96±0.34 42.86±0.0 81.41±0.49

Stanza COMB 78.91±0.15 50.34±1.92 79.82±0.0

Table 8: Dialect-Specific Lemmatization Accuracy for Low Saxon. Dev set.
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Abstract
The study of low-resourced East Slavic lects
is becoming increasingly relevant as they face
the prospect of extinction under the pressure
of standard Russian while being treated by
academia as an inferior part of this lect. The
Khislavichi lect, spoken in a settlement on the
border of Russia and Belarus, is a perfect ex-
ample of such an attitude.

We take an alternative approach and study East
Slavic lects (such as Khislavichi) as separate
systems. The proposed method includes the
development of a tagged corpus through mor-
phological tagging with the models trained on
the bigger lects. Morphological tagging results
may be used to place these lects among the
bigger ones, such as standard Belarusian or
standard Russian.

The implemented morphological taggers of
standard Russian and standard Belarusian
demonstrate an accuracy higher than the accu-
racy of multilingual models by 3 to 15%. The
study suggests possible ways to adapt these tag-
gers to the Khislavichi dataset, such as tagset
unification and transcription closer to the actual
sound rather than the standard lect pronuncia-
tion. Automatic classification supports the hy-
pothesis that Khislavichi is a border East Slavic
lect that historically was Belarusian but got rus-
sified: the algorithm places it either slightly
closer to Russian or to Belarusian.

1 Introduction

Automatic classification of lects that are both
closely related and low-resourced has been the tar-
get of dialectology studies for the last two decades,
because it provides insights on the linguistic varia-
tion, used both for developing language tools and
language studies (Nerbonne et al., 1999) (Gooskens
and Heeringa, 2004) (Snoek, 2013) (Campos et al.,
2020b). However, the morphological tagging re-
sults were rarely considered to be the basis for
automatic classification. The main goal of this re-
search is to develop a morphological tagger for a

low-resourced East Slavic lect of Khislavichi with
the help of the lects that possess significantly more
resources, standard Russian and standard Belaru-
sian. After the tagger is built, the morphologi-
cal variation becomes the main subject of study:
what differences between standard Russian, stan-
dard Belarusian, and Khislavichi stop the tagger
from the correct cross-prediction between these
lects? The automatic classification of standard Rus-
sian, standard Belarusian, and Khislavichi lects
with distance-tree matrix (Bapat, 2010) demon-
strates how it is possible to specify the position
of a low-resourced lect in the context of much big-
ger lects that are phylogenetically connected to it.

The neutral term lect is used instead of dialect
and/or language because the latter often imply a
hierarchy of subjugation and one lect being consid-
ered as an inferior part of the other. The distinction
between a language and a dialect is significantly
more connected to the sphere of sociolinguistics
rather than pure linguistic variation (Otheguy and
Stern, 2011). As language classification studies
operate in terms of language distance and not lan-
guage hierarchy, all three lects are studied as equal.

Avoiding the language/dialect distinction, par-
ticularly in the study of the Khislavichi lect, is
a requisite, as its current research is heavily in-
fluenced by extralinguistic factors. By now, it is
safe to assume that Khislavichi is an East Slavic
lect, phylogenetically more closely connected to
standard Belarusian while being heavily influenced
by standard Russian as a part of the process of
an intense russification (Ba̧czkowski, 1958). This
process continues now and affects lesser Russian
lects (Daniel et al., 2019), East Slavic lects (Naza-
Accent, 2023), and the lects of ethnic groups of
diverse origins in Russia (Liberty, 2023). Even the
very name Khislavichi is transcribed into English
as Khislavic̀i (IPA: [hIsëavItCI]), with the letters ch
representing the Russian voiceless alveolo-palatal
affricate c̀ and not the native voiceless postalveolar
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affricate č which is more similar to Belarusian.

In this paper, which deals with the issue of lin-
guistic variation and classification in relation to
morphological tagging, Khislavichi lect is treated
as a separate entity equally connected to standard
Belarusian and standard Russian. Therefore, auto-
matic language classification will provide data on
its possible grouping with the other two, not its po-
sition within the language hierarchy or its inclusion
into either standard Russian or standard Belarusian.
However, while making conclusions, we should not
ignore the historical context, mainly the intensive
russification the Khislavichi lect has undergone.

Treating Khislavichi as a separate lect opens the
road to its fully independent study, as it will no
longer be considered a part of the Russian language
(Zaharova and Orlova, 2004), contrary to its place-
ment within the Russian lect in the earlier research.
This study requires the development of natural lan-
guage processing tools (NLP). The first tool in this
pipeline is generally a morphological tagger. Mor-
phological tagging is a process (and a product of
this process) that includes assigning universal part-
of-speech tags and morphological features to the
tokens (Toleu et al., 2022). Morphological tagging
is employed to get basic information on the gram-
mar structure of the lect under study. Afterwards,
it is utilised in both further processing, such as
lemmatisation or masked language modelling, and
the research of a lect, for instance, in the creation
of a lect grammar. Some studies suggest that the
results of lect automatic processing may also be
used for its classification (Campos et al., 2020b).
Morphological tagging was not considered to be
the best candidate in comparison with perplexity
(Campos et al., 2020a). However, morphological
tagging seems to be useful for the preliminary clas-
sification that presents general information on the
relationship between a small lect and the larger
ones that surround it or influence it.

The classification of lects is a process of
grouping lects by some meaningful characteris-
tics. Among such characteristics may be the his-
torical differentiation (Gooskens and Heeringa,
2004) or typological similarities (Hammarström
and O’Connor, 2013) (McGregor, 2013) (Wälchli
and von Waldenfels, 2013). The classification may
give some insights into the development of a lan-
guage or signal of a currently occurring intense
language change. In this paper, the suggestion is
to classify the lects based on the differences that

cause problems in the work of a morphological tag-
ger. The optimal algorithm is a distance-tree matrix
(Bapat, 2010). To build a tree from a triangular dis-
tance matrix collected from the models accuracy
scores we use a statistical method, UPGMA(Sokal
and Michener, 1958), implemented via biopython
package (Cock et al., 2009). It is generally used in
evolutionary biology, and probably may be success-
fully adapted for language study, as the whole idea
of tree classification had been (Schleicher, 1863).

The second section is dedicated to the previous
research on the topics of morphological tagging,
Khislavichi lect studies, and classification methods,
including the automatic ones. The third section
details the methods of morphological tagging (bi-
LSTM neural network) and automatic classifica-
tion (a distance matrix-based tree) that are going to
be implemented in the experiments. The fourth
section contains information about the datasets
used for training, evaluation, and tests of taggers.
The fifth section presents experiments and their
analysis, performed on Russian, Belarusian, and
Khislavichi material. The conclusion wraps up the
research with the final analysis of the morpholog-
ical tagger prediction efficiency and provides an
outline for future research of the Khislavichi lect
and the classification methods.

2 Related Work

The variation within the low-resourced closely-
related territorially close lects, often joined un-
der the term dialect, has been intensely studied
for the last two decades (Nerbonne et al., 1999)
(Arhangel’skij, 2021). Different methods have
been used to study the lect variation. The most
frequent, though heavily criticised (Prokić and
Moran, 2013), is the edit distance group of meth-
ods (Kosmajac and Keselj, 2020), mainly repre-
sented by using Levenshtein distance on a certain
list of words (Nerbonne and Heeringa, 1997) (Ner-
bonne et al., 1999) (Gooskens and Heeringa, 2004),
generally the Swadesh list items (Nerbonne and
Heeringa, 1997). Recent years, however, witnessed
some changes in this situation. The Swadesh list
items are no longer the ultimate solution, some
other, topic-restricted, wordlists are used (Sax-
ena and Borin, 2013) (Snoek, 2013). The meth-
ods changed as well: phonetical approach (Sax-
ena et al., 2022), the perplexity of large language
models on the task of masked language mod-
elling (Campos et al., 2020b), sequence alignment
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approach (List, 2011), linguacultural approach
(Lewandowska–Tomaszczyk, 2021), information
theory approach (Wettig et al., 2013), and interdis-
ciplinary approach (Carling et al., 2013). Morpho-
logical taggers generally were not used to measure
language variation, but most were claimed to ben-
efit from it (Magistry et al., 2019). This article
inquires about the possible reverse situation when
language variation is measured by the results of
morphological tagging.

Automatic morphological tagging is an NLP
task that has existed for a long time (Spyns, 1996)
(Aduriz et al., 1996) (Branco and Silva, 2003)
(Berdičevskis et al., 2016) (Sierra Martínez et al.,
2018) (Ljubešić and Dobrovoljc, 2019). There
are different approaches to it, especially when
low-resourced lects are considered. Currently,
the dominating approaches are the rule-based, ad-
justed for the needs of a particular language (Gam-
bäck, 2012), and the more universal one based
on recurrent neural networks (Straka et al., 2016).
The current shift into the direction of language-
independent morphological tagging (Toleu et al.,
2022) leads to the development of taggers that can
deal with close lects (Obeid et al., 2022), which
is an essential problem, for instance, for Arabic
(Inoue et al., 2022) (Fashwan and Alansary, 2022).
Low-resourced morphological tagging is gaining
increasing recognition (ImaniGooghari et al., 2022)
(Wiemerslage et al., 2022). Now a lot of attention
is paid to the selection of data to train, evaluate,
and test a tagger on (Muradoglu and Hulden, 2022).
The old models (Qi et al., 2018) (Qi et al., 2020)
are adjusted (Scherrer, 2021) to meet the new re-
quirements of efficient training on low-resourced
closely-related lects.

Low-resourced closely-related East Slavic lects
are currently undergoing extinction (Daniel et al.,
2019), with Khislavichi being no exception (Ryko
and Spiricheva, 2022). The Khislavichi lect is a
lect of the Khislavichi settlement, which is located
on the border between Russia and Belarus. It used
to be a part of Belarusian territories until the be-
ginning of the XX century, but became a part of
Russia in 1924 (Ryko and Spiricheva, 2020). Its
study began at the beginning of the XX century
when it was characterised as a Northern Belaru-
sian dialect (Karskij, 1903) (Durnovo et al., 1915)
(though it is important to state that the Belarusian
language itself was then considered a dialect of
Russian by the “colonial scientists” from the Rus-

sian Empire). Since the 1960s Khislavichi was
considered to be a Russian dialect with Belarusian
elements becoming less and less prominent (Za-
harova and Orlova, 2004). The current consensus is
that the Khislavichi lect is a borderline lect between
Russian and Belarusian, sharing key features with
both these languages (Ryko and Spiricheva, 2022).
Yet the Russian features are mostly borrowed or in-
flicted upon this lect, and Belarusian features form
its historical core (Ryko and Spiricheva, 2022). The
question of its classification remains uncertain. For
a review of the historical and contemporary state
of the Khislavichi lect and its overall linguistic de-
scription, one should refer to Ryko and Spiricheva
(2022).

There are different ways to produce a classifi-
cation of lects (Holman et al., 2008). The idea of
splitting lects into non-hierarchical groups by per-
forming hierarchical clustering became prevalent
during the last decade (Buch et al., 2013). The clus-
tering is made automatically, as recent years have
witnessed an increasing use of quantitative meth-
ods for classification (Pastorelli, 2017) (Mironova,
2018). The algorithms that provide visualisations
for the clusters were developed as well (Korkiakan-
gas and Lassila, 2018). Some clustering solutions
are distance-based (Rama and Kolachina, 2013).

3 Method

The research is split into three parts. The mod-
els for Russian and Belarusian are prepared via
training and evaluation on the respective language
datasets to get a general picture of their perfor-
mance. After that, a cross-evaluation is performed
to see the ability of both models to generalise based
on the knowledge they have previously acquired.
Next, the predictions on the Khislavchi lect mate-
rial are made and evaluated manually. The final
stage includes the automatic classification of the
lects based on the results of the tagging evaluation.

There are different models, including the multi-
lingual pre-trained ones, that are used for the mor-
phological tagging of heterogeneous lects (Straka
and Straková, 2017) (Kondratyuk, 2019) (Kan-
erva et al., 2021). However, for this experiment,
the model for training should be as unaware of
the potential structure of Russian, Belarusian, or
Khislavichi as possible. At the same time, after
training on one lect, it should still not know the
others while possessing the ability to generalise
its previous findings for their tagging. One more
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requirement is that the model should preserve some
level of consistency while being trained on the cor-
pora that are not significantly low-resourced but
yet do not achieve the old national corpus standard
of 1 million words. The models stated previously
are either universal or underprepared for the low-
resource scenario. One possible pick that satisfies
all the requirements is the Stanza tagger, developed
at Stanford for Universal Dependencies tagging
(Qi et al., 2018) (Qi et al., 2020). It was recently
modified to use bidirectional character-level LSTM
by default, and specifically adjusted to the aims of
part-of-speech tagging, the starting point for low-
resource NLP (Scherrer, 2021). This fork is used
in this paper.

After the model is chosen, the training phase
begins. It consists of two subsequent runs of the
code, yielding two trained models, one for Rus-
sian, and one for Belarusian respectively. These
models should satisfy the requirements for overall
accuracy, overcoming the basic threshold of 50%,
and, optimistically, getting close to the threshold
of 85 – 90% overall accuracy. To exclude overfit-
ting, the additional evaluation of the model on the
previously chosen part of the dataset is performed.
The models are also compared to the previous re-
sults of morphological tagging for the Russian and
Belarusian languages to check whether their ability
to tag is not significantly lower. In the latter case,
the shift to the other language model is probably
going to be necessary.

When the conditions are met, the models are
cross-evaluated. The model that was trained on
the Russian material is evaluated on the Belarusian
material, and vice versa. This helps to evaluate the
ability of both models to generalise before the final
run is performed. There can be no expectations at
this stage, as both the Russian and the Belarusian
models are going to be trained on the monolingual
corpora. However, as both lects are East Slavic,
the models are probably going to demonstrate at
least a 20 to 30 per cent level of accuracy. At this
stage, a manual analysis by the researcher must
be performed to highlight some common mistakes
that can be made by the model that switches from
Russian to Belarusian tagging and the other way
around as well.

The final run of both models is going to be per-
formed on the Khislavichi material. As it is with
cross-evaluation runs, there is no particular thresh-
old that the models are expected to overcome. And

for Khislavichi tagging there is an additional obsta-
cle of the gold dataset absence. So, the evaluation is
performed only by overall accuracy, and both mod-
els are getting the easiest possible treatment: they
may not guess all the tags, however, if the tags they
assign are correct, they get a point. Their perfor-
mance, thus, may seem to get significantly boosted,
though, in fact, it is going to remain at the same
level as in the cross-evaluation stage. The main
expectation here is that predictions of both models
demonstrate a close accuracy score, as Khislavichi
lect is generally supposed to be located just in the
middle of the spectre between standard Russian
and standard Belarusian. If the expectation is not
met, the reasons should be provided. This leads to
the analysis of the errors the models make on the
Khislavichi material, as well as to possible expla-
nations of the most common mistakes. And if one
of the models performs abnormally well (getting
close to the monolingual evaluation level of accu-
racy, or dealing particularly well with some classes
of units), or abnormally bad (getting close to the
bilingual evaluation level of accuracy, or coping
particularly badly with some classes of units) the
rationale is also going to be given. If the results of
the two models contrast in some meaningful man-
ner, clarification is expected. The analysis should
provide recommendations for developing future
datasets and taggers for the Khislavichi dataset.

After all the accuracy scores are acquired,
the overall analysis for the whole picture of
Russian-Belarusian continuum morphological tag-
ging should be provided.

The research finishes with an attempt to automat-
ically classify the three lects of standard Russian,
standard Belarusian, and Khislavichi. For this, the
standard method of distance-tree matrix (Bapat,
2010) is applied. This method has been previously
successfully used in phylogenetic studies in biology
(Fitch and Margoliash, 1967) (Gilbert and Parker,
2022) (de Vienne et al., 2011). The borrowing of
the automatic classification method from biology
is justified, as the evolution of language and the
evolution of life share a lot of similarities (Pasquini
et al., 2023), which have been highlighted recently
(Ladoukakis et al., 2022), and the concept of lin-
guistic phylogeny tree is borrowed from biology
(Schleicher, 1863). This may lead to a new po-
tential way of lect classification, a possibility to
clusterise lects with the same computational meth-
ods as species (Wattel, 1996) (Bapat, 2010). When
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the classification is performed, the resulting trees
are drawn by a Python script that employs these
methods. The resulting trees demonstrate the clus-
terisation of the standard Russian, standard Be-
larusian, and Khislavichi lects predicted through
morphological tagging.

4 Data

Three datasets are employed for the experiments.
The first one is the corpus of the Khislavichi lect
(Ryko and Spiricheva, 2020). The second one is the
Belarusian-HSE corpus, the Belarusian Universal
Dependencies one (Shishkina and Lyashevskaya,
2021). The third one is the Taiga corpus, one of
the Russian Universal Dependencies datasets (Lya-
shevskaya et al., 2017) (Shavrina and Shapovalova,
2017).

As the Khislavichi lect and its relationship to
standard Russian and standard Belarusian form the
centre of the research, the entirety of the currently
available data should be investigated. These data
in the corpus have been collected and digitised by
A. Ryko and M. Spiricheva (Ryko and Spiricheva,
2020). These are transcribed recordings of the
interviews with the native speakers of this lect, all
born between the late 1920s and the late 1960s.

The Khislavichi data is heterogeneous. Not all
texts are presented as transcriptions, most of them
are edited into a cross between a transcription and
a standard Russian text: only the differentiating
lexemes are given in parentheses. For instance, in
kak (�k) ‘how’, kak is a standard Russian form,
and �k is a Khislavichi form. For some texts, how-
ever, transcription is available as well. Additional
complications arise from the fact that the lect was
under the process of intense russification during
the Soviet period, which manifests in the speakers
born in the late 1920s and the late 1960s speak-
ing in different manners. The common features
persist (such as using č, more similar to Belaru-
sian, and not c̀, more similar to Russian, in words
like Hislaviqah ‘Khislavichi’), however, some
radical changes in lexis start manifesting (for exam-
ple, using luk instead of cybul� for onion). The
texts are interviews, with interviewers speaking in
standard Russian.

With these issues in mind, the Khislavichi
dataset is additionally preprocessed. The latter is-
sue is resolved by the exclusion of the interviewers’
lines from the final dataset. The issue of an in-
lect heterogeneity is treated as a matter of fact, no

additional splits are performed. Where the tran-
scriptions are available, they are taken. If a pair
of standard Russian lexemes and a differentiating
Khislavichi lexeme in parentheses is met in the
texts made to resemble standard Russian, only the
differentiating Khislavichi lexeme is taken. The re-
sulting set of texts is transferred into the CoNLL-U
format, which turns it into a corpus of nearly 100
000 tokens. This corpus is split into the training,
evaluation, and test datasets (80 000, 10 000, and
10 000 tokens respectively). As the research does
not imply training the model for the Khislavichi
lect, only the test dataset is going to be used for
the later evaluation of the models trained on the
Belarusian and Russian material.

The Belarusian-HSE corpus (Shishkina and Lya-
shevskaya, 2021) is chosen to get the model able
to perform morphological tagging for Belarusian.
While there are some much larger corpora, for
instance, Belarusian N-corpus (N-corpus, 2023),
their tagging is not disambiguated and thus is im-
possible to be used for training. Additionally, these
corpora are not in open access. The Belarusian-
HSE corpus, in turn, is available in CoNLL-U for-
mat from the start and was designed with the tagger
training in mind, as this is the requirement for the
Universal Dependencies corpora. This corpus con-
sists of different text genres, from the newspapers
to the Telegram messages and community posts, so
it may safely be called a balanced representation
of the modern Belarusian language (Shishkina and
Lyashevskaya, 2021). The size of the corpus is
305 000 tokens, which makes it sufficient for the
modern taggers to be trained on, especially for the
ones that are well-adjusted for the Universal De-
pendencies low-resourced datasets (Qi et al., 2018).
The corpus is split into the training, evaluation, and
test parts in 80/10/10% proportion, as is generally
the case with the Universal Dependencies datasets.
In contrast to the Khislavichi dataset, training and
evaluation parts are going to be used in the train-
ing phase to get the model for tagging Belarusian
texts. The test part is going to be used for the fi-
nal evaluation of this model, as well as for testing
the ability of the model trained for the tagging of
Russian texts, which subsequently will aid the au-
tomatic classification of standard Russian, standard
Belarusian, and Khislavichi lects.

The Russian corpus, in its turn, should meet one,
but a very strict condition. It should match the
Belarusian-HSE corpus in size, the precision of
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manual tagging, and adjustment for the taggers that
are designed for the data in Universal Dependen-
cies (CoNLL-U) format. Again, there are giant
corpora, consisting of billions of words, such as the
Russian National Corpus (Corpus, 2023), but they
are not in open access, and, what is much more
important, their tagging is not fully disambiguated.
There is even a big Universal Dependencies corpus,
1.5 million words SynTagRus (Droganova et al.,
2018). However, its use is going to give an advan-
tage to the Russian model. It is going to train better
on a significantly bigger corpus. So, a smaller
corpus should be used. The Taiga corpus (Lya-
shevskaya et al., 2017) (Shavrina and Shapovalova,
2017), with an overall size of 197 000 tokens, is
proposed as a suitable candidate. This corpus is
prepared in a Universal Dependencies format and
designed specifically for tagging tasks. It is smaller,
though not greatly, than the Belarusian-HSE cor-
pus. It is also balanced, and quite representative
of modern Russian, containing blog texts, news
texts, fiction (including poetry) texts, Wikipedia
articles, as well as different texts from social me-
dia (Lyashevskaya et al., 2017). It is split into the
training (80%), evaluation (10%), and test (10%)
parts. As with Belarusian, the model is going to be
trained with the use of the training and the evalu-
ation parts of the dataset. After this, the test part
of the dataset will be used for the evaluation of
the trained model as well as the model trained on
the Belarusian dataset, supplying the data for the
automatic classification of the lects.

Both Belarusian-HSE and Taiga contain a signifi-
cant amount of texts from social media, a genre that
is as close to the main Khislavichi corpus genres,
everyday talks and events retelling. This should
eliminate genre elements from affecting accuracy
scores of the models.

5 Experiments and Analysis

The starting point is testing the models in the lan-
guages they were trained on. Thus, the first exper-
iment includes testing the model that was trained
on the standard Russian Taiga corpus on the test
subset of this corpus, and testing the model that
was trained on the standard Belarusian corpus on
the test subset of its corpus.

After that, cross-evaluation is performed: the
model that was trained in standard Russian is tested
on the test dataset from the Belarusian corpus, and
vice versa. The evaluation highlights the main dif-

Model PoS + Feats PoS UFeats
UD 63.0% 86.4% 69.2%

Stanza(m) 92.99% 96.96% 83.81%

Table 1: Comparison of morphological tagging for
Belarusian-HSE by UDPipe (Straka and Straková, 2017)
and modified Stanza (Scherrer, 2021). The best results,
here and afterwards, are given in bold.

ficulties the models face while tagging a closely-
related lect.

In the last experiment, both these models are
tested on the restricted test dataset from the
Khislavichi lect, with an in-depth analysis of the
reasons why each of the models succeeds in tag-
ging of particular language units and fails in others.
Some preliminary predictions on how the classifi-
cation may look like are made at this stage.

The final analysis includes the comparison and
the discussion of the experiments results, putting
each of them in the general context of the research.
Two possible ways for the following automatic clas-
sification of lects, based on the morphological tag-
ging evaluation results, are suggested and realised.
The pro et contra for both of them is given.

5.1 Monolingual Experiments
The first model to train was a Belarusian one. It
achieved an almost perfect part-of-speech tagging
accuracy of 97% and morphological features tag-
ging accuracy of close to 85%. The results of the
model run on the test part of the dataset were com-
pared to UDPipe, a multilingual morphological
tagging model presented in Straka and Straková
(2017). The comparison is performed by PoS +
Feats (both morphological features tagging and
part-of-speech match), PoS (part-of-speech match),
and UFeats (morphological tagging exact match).
The summary of this comparison is presented in
Table 1.

A modified Stanza tagger provides a more effec-
tive tagging than UDPipe. However, UDPipe is a
multilingual model, and this Stanza version was
specifically trained for Belarusian, so it is incorrect
to make a direct comparison. For this research,
it is enough to state that the model is sufficiently
trained, and does not overfit.

The next model to train was a Russian one. It
achieved the part-of-speech tagging accuracy of
94%, and 76% accuracy for morphological features.
The results for the Russian model were compared
to the results of the UDPipe model on the Taiga
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Model PoS + Feats PoS UFeats
UD 86.4% 75.8% 74.0%

Stanza(m) 87.98% 93.63% 76.45%

Table 2: Comparison of morphological tagging for
Russian-Taiga by UDPipe (Straka and Straková, 2017)
and modified Stanza (Scherrer, 2021).

Direction PoS +
Feats

PoS UFeats OOV

Ru >
Bel

56.47% 67.46% 43.83% 73.84%

Bel >
Ru

58.9% 68.07% 51.63% 60.8%

Table 3: Comparison of morphological tagging for
Belarusian-HSE by the model trained on Taiga (Ru >
Bel) and morphological tagging for Taiga by the model
trained on Belarusian-HSE (Bel > Ru). The architecture
of both models is the modified Stanza (Scherrer, 2021).

corpus. The comparison is given in Table 2.
The modified Stanza tagger again outperformed

the UDPipe one (and proved its ability to efficiently
operate under the lacking lect resources - both
Taiga and Belarusian-HSE are not particularly big
corpora), though this time not by a huge margin.
This may be due to the fact that the training ma-
terial for UDPipe run on Russian included more
data than the training material for UDPipe run on
Belarusian, or to the inner workings of the modi-
fied Stanza tagger, which was unable to train on the
Taiga corpus. In any case, as this tagger beat the
multilingual one, its results for Russian may also
be called sufficient for further experiments.

5.2 Cross-evaluation between Russian and
Belarusian

The next experiment was the run of the Belarusian-
HSE-trained model on the test set of Taiga, and
the run of the Taiga-trained model on the test set
of Belarusian-HSE. This was conducted to evalu-
ate the generalisation ability of the models and to
detect whether some specific factors make cross-
prediction between the lects easier or harder. The
results are presented in Table 3.

The out-of-vocabulary (OOV) rate of the Belaru-
sian model is smaller than the out-of-vocabulary
rate of the Russian model, which is probably due
to the Russian influence on Belarusian, and overall
heterogeneuity of the Belarusian corpus. The size
of the corpus hardly matters: the model, trained

on downsampled Belarusian corpus, showed the
same results in cross-evaluation experiments. In
each possible category of comparison this model
is slightly better, which is especially obvious in
morphological features tagging. However, its accu-
racy falls more significantly (for instance, 34.09%
against 31.41% in the exact morphological tagging
category), which may indicate that it is overfitting
for the Belarusian language.

Not all the errors that the Belarusian model
makes support this theory. There are some strange
ones, like tagging ) as a punctuation mark and not a
symbol when it is used as a smile. This is clearly an
annotation schema difference. Sometimes not all
glosses are used: for instance, Tense=Pres (the one
that denotes present tense) is missing from the tag-
ging of verb rexaets� ‘solve-PRES.3SG.REFL’.

However, most errors are connected to the fact
that the model was trained on the monolingual
dataset. There are cases of words unknown in
Belarusian but very frequent in Russian, such
as otliqno ‘excellently’ consistently tagged as
nouns. Words that end with t~ are often verbs in
Belarusian, yet in Russian, there are words like
pust~ ‘let it be’, which are not verbs but particles,
and this confuses the model. One more type of
error that is connected with language interference:
the model tags da ‘and’ as a preposition ‘to’, which
it is in Belarusian.

The errors that the Russian model makes while
tagging the Belarusian dataset are of the similar
type. For instance, it incorrectly adds glosses
like NameType=Geo ‘geographical proper name’
to the words like Ey̌rasa�za‘European Union.-
GEN.SG’. A lot of mistakes are connected to the
difference in the alphabets. Thus, Belarusian i and
Russian i both mean ‘and’, which are pronounced
in basically the same way, but due to the graphic
differences i is not tagged as a coordinative con-
junction and is tagged as a noun instead.

The errors of the Russian model put the errors of
the Belarusian model in context. The bigger vocab-
ulary of the Belarusian model leads to a higher level
of language interference in this model, and thus its
generalisation ability seemed to be worse than that
of the Russian one. In fact, though, the generali-
sation ability of both the models is not great, both
models fail in tagging a completely different lect
in comparison to tagging the lect they were trained
on. However, they retain a level of accuracy in
which it is preferable to use them instead of the
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Direction Accuracy
Ru > Khi 70.06%
Bel > Khi 54.75

Table 4: Comparison of morphological tagging for the
Khislavichi dataset by the models trained on Taiga (Ru >
Khi) and Belarusian-HSE (Bel > Khi). The architecture
of both models is the modified Stanza (Scherrer, 2021).

random assignment of parts of speech and mor-
phological features (which would get 40 to 60%
accuracy score). It is true for all the cases of the
Belarusian model; the Russian model fails in the
exact morphological features match task, yet it is
often due to the tagset differences. Russian model
tends to overtag, assigning more tags than there are
in the original dataset. Sometimes it may be even
treated as a correct assignment: PronType=Dem,
demonstrative pronoun tag, for g�ta ‘that’. Thus,
the Russian and the Belarusian models both may
be used for preliminary tagging of closely-related
East Slavic lects. The Khislavichi lect is a suit-
able candidate due to its strong connection to both
standard Russian and standard Belarusian.

5.3 Evaluation on the Khislavichi Dataset

The last run of the models was conducted on the
test part of the Khislavichi dataset, consisting of
nearly 8000 tokens.

The issue with the Khislavichi dataset is that
there are no gold data for it, and thus the evaluation
had to be done manually, which may have led to
some errors and inconsistencies, as any kind of hu-
man validation is going to. The only criterion of the
evaluation was the total accuracy. As these models
were previously proven to not perform efficiently
on the lects they had not been trained on, the cri-
terion is made to be very soft. It is enough for a
model to not make an overt error to score. A model
may not guess all the glosses, due to the annotation
schema differences, but if all the glosses that model
predicted are correct, it scores. The results of the
experiments on Belarusian and Russian models are
presented in Table 4.

These results seemingly differ from the ones that
were acquired previously. Here, the Russian model
demonstrates a much higher level of accuracy than
the Belarusian. Its score is closer to its part-of-
speech score in Belarusian, while the Belarusian
model score is closer to its joined part-of-speech
and morphological feature tagging score in Russian.
What does this mean?

Input /
Target
lect

Rus-
sian

Bela-
ru-
sian

Khi-
slavichi

Russian 0.88
Belarusian 0.59 0.93
Khislavichi 0.55 0.7 0

Table 5: Russian-centred distance matrix

Input /
Target
lect

Bela-
ru-
sian

Rus-
sian

Khi-
slavichi

Belarusian 0.93
Russian 0.57 0.88
Khislavichi 0.7 0.55 0

Table 6: Belarusian-centred distance matrix

The models do not perform in an unusual way
for them, even statistically. The ability of the Rus-
sian model to generalise is enough to get 70% of
part-of-speech tags correctly in at least some East
Slavic lects. The Belarusian model may meet a
higher concentration of its faux amis in the dataset,
as it has a bigger vocabulary. The Russian model,
however, also meets a lot of language interference.
Thus, both models are confused with the afore-
mentioned word da. In the Khislavichi dataset, it
mostly takes an interjection role and the meaning
‘yes’. The Russian model treats it as a coordinative
conjunction, and the Belarusian one – as a preposi-
tion. Both are mistaken.

Both models are sometimes fined due to the fea-
tures of the Khislavichi dataset. Thus, //, which
is meant to be a punctuation mark of a big pause
in the speech, is consistently tagged by both mod-
els as a symbol. The same may be said about all
the fragmentary tokens, denoted with the = sign at
the end of the word. They should be tagged as X,
non-word, yet the datasets the models were trained
on do not possess examples of such cases, so the
models fail in tagging these particular units.

Nearly 80% of the Khislavichi dataset is pre-
sented not as a transcription, but almost as a trans-
lation into the Russian language, so it is signifi-
cantly easier for the Russian model to tag. When
it meets raw transcribed tokens, such as zahoqyt~
‘want-FUT.3.SG’ (which it tags as an infinitive),
it often does not score. In contrast with the Rus-
sian model, the Belarusian one, while facing these
transcribed tokens of Khislavichi origin, success-
fully tags them: the transcription often makes
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Figure 1: Belarusian-centered distance tree, built with
UPGMA (Sokal and Michener, 1958)

Khislavichi tokens look more similar to Belarusian.
The Belarusian model meets the same kind of

issues with the words that contain <w> (the labio-
velar approximant transcription, designated as <y̌>
in Belarusian. It does not correctly tag these words
due to the alphabet differences. The same may be
said for the items like iG ‘them’, which is written
as ix and ih in Belarusian and Russian respectively.

There are few mistakes connected to the sys-
temic differences between Russian or Belarusian
and Khislavichi. They are mostly sparse and hidden
by writing system-based errata. There are, however,
some common issues. Belarusian-trained model
often predicts nouns like bol~ ’pain’ as mascu-
line, which they are in Belarusian. Russian-trained
model assigns Aspect=Perf to words like l��yt

in the contexts where they are Aspect=Cont. This
preference probably comes from the perfective con-
texts being more frequent in Russian.

Contrarily to the first impression, the attempt
at tagging Khislavichi did not create an anomaly.
There are two key reasons for the Russian-trained
model performance boost, and the Belarusian-
trained model performance remaining at the same
level: the Khislavichi dataset transcription is forced
to a form resembling standard Russian, and the
sounds that Khislavichi and Belarusian share are
transcribed differently in the dataset. It produces a
lot of noise that interferes in the actual results.

5.4 Automatic Classification

The experiments results are grouped into the two
possible distance matrices, presented in Table 5
and Table 6. The first matrix is centred around
the standard Russian model, and the second one -
around the standard Belarusian one. The per cent
values of accuracy are replaced by a floating-point
value. Khislavichi do not have gold data, so the
accuracy score of the model, trained on it, is 0.

Using these two matrices, two distance trees
are built with UPGMA (Sokal and Michener,
1958). They are presented in figures 1 (Belarusian-
centered) and 2 (Russian-centered). The trees are

Figure 2: Russian-centered distance tree, built with
UPGMA (Sokal and Michener, 1958)

very similar. When the focus is on the failures of
a model trained on one of the standard Russian
and standard Belarusian lects, it shifts the other
one closer to the Khislavichi lect. For the classifi-
cation to be more precise, grapholinguistic issues
should be resolved and an additional model should
be trained on the Khislavichi material.

6 Conclusion

The models for morphological tagging of Russian
and Belarusian, based on the architecture provided
in Scherrer (2021), beat the previous results set
by the multilingual models by a significant margin
for both Belarusian and Russian. Both models
demonstrated the ability to perform a moderately
successful tagging of the closely-related lects.

The cross-evaluation results and the results of
evaluation on the Khislavichi dataset show that
the Russian and Belarusian models may be used
for the preliminary tagging of closely related low-
resourced East Slavic lects. The classification by
the results of morphological tagging retains the
same uncertainty level of the Khislavichi lect posi-
tion among the other East Slavic lects as the classi-
fications reviewed in Ryko and Spiricheva (2022).
In the current dataset orthography state, the rea-
sonable conclusion is the Khislavichi dataset be-
ing classified as borderline between Russian and
Belarusian datasets, not the Khislavichi lect - as
borderline between Russian and Belarusian (the
same notion for Italian presents Davis (2017)).

We are going to modify and implement the
presented automatic classification method for the
bigger number of lects, and use the transformed
and tagged Khislavichi corpus for the further
Khislavichi lect processing. The corpus probably
will later become a Universal Dependencies part.
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Nikola Ljubešić and Kaja Dobrovoljc. 2019. What does
neural bring? analysing improvements in morphosyn-
tactic annotation and lemmatisation of Slovenian,
Croatian and Serbian. In Proceedings of the 7th
Workshop on Balto-Slavic Natural Language Pro-
cessing, pages 29–34, Florence, Italy. Association for
Computational Linguistics.

Olga Lyashevskaya, Victor Bocharov, Alexey Sorokin,
Tatiana Shavrina, Dmitry Granovsky, and Svetlana
Alexeeva. 2017. Text collections for evaluation of
Russian morphological taggers. Journal of Linguis-
tics/Jazykovedný casopis, 68:258–267.

Pierre Magistry, Anne-Laure Ligozat, and Sophie Ros-
set. 2019. Exploiting languages proximity for part-
of-speech tagging of three French regional languages.
Language Resources and Evaluation, 53:865–888.

William B. McGregor. 2013. Comparing linguistic sys-
tems of categorisation. In Approaches to Measur-
ing Linguistic Differences, pages 387–428, Berlin,
Boston. De Gruyter Mouton.

Dina M. Mironova. 2018. Avtomatizirovannaja klassi-
fikacija drevnih rukopisej : na materiale 525 spiskov
slavjanskogo Evangelija ot Matfeja XI - XVI vv. :
avtoreferat dis. ... kandidata filologicheskih nauk :
10.02.21. SPbU, Saint-Petersbourg.

Saliha Muradoglu and Mans Hulden. 2022. Eeny,
meeny, miny, moe. how to choose data for morpho-
logical inflection. In Proceedings of the 2022 Con-
ference on Empirical Methods in Natural Language
Processing, pages 7294–7303, Abu Dhabi, United
Arab Emirates. Association for Computational Lin-
guistics.

Belarusian N-corpus. 2023. Belarusian N-corpus.

NazaAccent. 2023. Rosstat: From 2010 to 2021, There
are One Million Fewer Ukrainians in Russia. Naza-
Accent.

J. Nerbonne and Wilbert Heeringa. 1997. Measur-
ing dialect distance phonetically. In Computational
Phonology. Third Meeting of the ACL Special Interest
Group in Computational Phonolby., pages 11 – 18.
Association for Computational Linguistics (ACL).

John Nerbonne, Wilbert Heeringa, and Peter Kleiwig.
1999. Edit distance and dialect proximity. In Time
Warps, String Edits and Macromolecules: The The-
ory and Practice of Sequence Comparison, 2nd Ed.,
pages i–xviii. CSLI, Stanford, CA.

184

https://doi.org/doi:10.1515/9783110305258.329
https://doi.org/doi:10.1515/FLIN.2008.331
https://doi.org/doi:10.1515/FLIN.2008.331
https://aclanthology.org/2022.emnlp-main.102
https://aclanthology.org/2022.emnlp-main.102
https://doi.org/10.18653/v1/2022.findings-acl.135
https://doi.org/10.18653/v1/2022.findings-acl.135
https://doi.org/10.18653/v1/2022.findings-acl.135
https://doi.org/10.1017/S1351324920000224
https://doi.org/10.1017/S1351324920000224
https://doi.org/10.1017/S1351324920000224
https://doi.org/10.18653/v1/W19-4203
https://doi.org/10.18653/v1/W19-4203
https://doi.org/10.18653/v1/W19-4203
https://doi.org/10.46298/jdmdh.4472
https://doi.org/10.46298/jdmdh.4472
https://doi.org/10.46298/jdmdh.4472
https://doi.org/10.1109/infoteh48170.2020.9066277
https://doi.org/10.1109/infoteh48170.2020.9066277
https://doi.org/10.1002/bies.202100216
https://doi.org/10.1002/bies.202100216
https://www.idelreal.org/a/32210928.html
https://www.idelreal.org/a/32210928.html
https://www.idelreal.org/a/32210928.html
https://www.idelreal.org/a/32210928.html
https://doi.org/10.18653/v1/W19-3704
https://doi.org/10.18653/v1/W19-3704
https://doi.org/10.18653/v1/W19-3704
https://doi.org/10.18653/v1/W19-3704
https://doi.org/10.1515/jazcas-2017-0035
https://doi.org/10.1515/jazcas-2017-0035
https://doi.org/10.1007/s10579-019-09463-7
https://doi.org/10.1007/s10579-019-09463-7
https://doi.org/doi:10.1515/9783110305258.387
https://doi.org/doi:10.1515/9783110305258.387
https://aclanthology.org/2022.emnlp-main.492
https://aclanthology.org/2022.emnlp-main.492
https://aclanthology.org/2022.emnlp-main.492
http://bnkorpus.info
https://nazaccent.ru/content/39786-rosstat-s-2010-po-2021-god-v-rossii-stalo-na-million-menshe-ukraincev.html
https://nazaccent.ru/content/39786-rosstat-s-2010-po-2021-god-v-rossii-stalo-na-million-menshe-ukraincev.html


Ossama Obeid, Go Inoue, and Nizar Habash. 2022.
Camelira: An Arabic multi-dialect morphological
disambiguator. In Proceedings of the The 2022 Con-
ference on Empirical Methods in Natural Language
Processing: System Demonstrations, pages 319–326,
Abu Dhabi, UAE. Association for Computational
Linguistics.

Ricardo Otheguy and Nancy Stern. 2011. On so-called
Spanglish. International Journal of Bilingualism -
INT J BILING, 15:85–100.

Michele Pasquini, Maurizio Serva, and Davide Vergni.
2023. Gradual modifications and abrupt replace-
ments: Two stochastic lexical ingredients of language
evolution. Computational Linguistics, pages 1–23.

David Pastorelli. 2017. A Classification of Manuscripts
Based on A New Quantitative Method. The Old Latin
Witnesses of John’s Gospel as Text Case. Jour-
nal of Data Mining & Digital Humanities, Numéro
spécial sur le traitement assisté par ordinateur de
l‘intertextualité dans les langues anciennes.
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Abstract

We introduce DIATOPIT, the first corpus specif-
ically focused on diatopic language variation in
Italy for language varieties other than Standard
Italian. DIATOPIT comprises over 15K geolo-
cated social media posts from Twitter over a
period of two years, including regional Italian
usage and content fully written in local lan-
guage varieties or exhibiting code-switching
with Standard Italian. We detail how we tack-
led key challenges in creating such a resource,
including the absence of orthography standards
for most local language varieties and the lack
of reliable language identification tools. We as-
sess the representativeness of DIATOPIT across
time and space, and show that the density of
non-Standard Italian content across areas cor-
relates with actual language use. We finally
conduct computational experiments and find
that modeling diatopic variation on highly mul-
tilingual areas such as Italy is a complex task
even for recent language models.1

1 Introduction

Italy is one of the most linguistically-diverse coun-
tries in Europe. Despite its relatively small geo-
graphical area, it exhibits a notable profusion of
linguistic variation, “hold[ing] especial treasures
for linguists” (Maiden and Parry, 1997). Therefore,
the study of diatopic linguistic variation in Italy has
constantly been a focal point in linguistics (Bartoli
et al., 1995; Jaberg et al., 1987, inter alia).

On the other hand, little attention has been given
so far to this matter in the natural language pro-
cessing community. Indeed, most work in NLP
still focuses on Standard Italian (ita; the official
national language), considering it as a “monolithic
language”. However, a large number of local lan-
guages, dialects, and regional varieties of Standard
Italian (i.e., regional Italian)2 shape the Italian lin-

1Repository: https://github.com/dhfbk/diatopit
2Geographical differentiation of Standard Italian due to

influences by languages and dialects of Italy (Avolio, 2009).

(a) chiov’ tutt a jurnat’, ce serv’ o mbrell’
en. it’s raining all day, we need an umbrella

(b) ho così sonno che me bala l’oeucc
en. I’m so sleepy that my eye trembles

(c) da caruso anche io ci andavo spesso!
en. I used to go there often as a kid too!

Table 1: Examples from DIATOPIT, with non-Standard
Italian content in green. (a) posts fully written in local
language varieties (here, Neapolitan [nap]); (b) posts
code-switched with Standard Italian (here, Lombard
[lmo]); (c) posts including regional Italian usage (here,
“caruso” from the Sicilian [scn] “carusu”). Posts have
been slightly redacted to preserve users’ anonymity.

guistic landscape (Ramponi, 2022). Computational
studies of diatopic variation can ultimately help to
enrich and complement linguistic atlases, as well as
to provide insights on actual use of local language
varieties (e.g., adherence to orthography standards)
and their vitality (e.g., code-switching as a sign of
language replacement (Cerruti and Regis, 2005)).
The ever-growing number of people who interact
on social media offers opportunities in this direc-
tion, since user-generated texts are indeed infor-
mal, featuring linguistic patterns from spoken lan-
guage (Eisenstein, 2013; van der Goot et al., 2021).

In this paper we introduce DIATOPIT, the first
corpus of geolocated social media posts from Twit-
ter with a focus on diatopic variation in Italy for
language varieties3 other than Standard Italian. DI-
ATOPIT comprises 15,039 posts with content fully
written in local language varieties (cf. Figure 1,
(a)), exhibiting code-switching with Standard Ital-
ian (cf. Figure 1, (b)), or including regional Ital-
ian (cf. Figure 1, (c)). Compared to other exist-
ing datasets with geolocation information (Han
et al., 2016; Gaman et al., 2020; Chakravarthi et al.,

3For brevity, we use “language varieties” to refer to local
languages and dialects of Italy as well as regional Italian,
whereas we add “local” to specifically refer to the former.
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2021), DIATOPIT is focused on Italy and on non-
standard language use. We describe how we tack-
led challenges in the corpus creation process, such
as the lack of reliable, variation-informed language
identification tools and the absence of orthogra-
phy standards for most local varieties (Section 2),
and provide detailed analyses over time and space,
also highlighting the density and function of non-
Standard Italian content across Italian regions (Sec-
tion 3). Finally, we show that modeling diatopic
language variation is a difficult task even for state-
of-the-art language models (Section 4).

The corpus is meant to encourage research on
diatopic variation in Italy, study code-switching
and divergences in orthography for local language
varieties, and serve as a basis for responsible devel-
opment of annotated resources for Italy’s varieties.

2 Corpus Creation

Building a corpus of social media posts written
in language varieties of Italy other than Standard
Italian is a tough task, especially in the absence of
reliable language identification tools.4 Most lan-
guages and dialects of Italy – see Ramponi (2022)
for an overview – are primarily oral and have no
established orthography, and standards that have
been proposed for a fraction of them are rarely
adopted by their speakers. Indeed, when those lan-
guage varieties are transposed into writing, speak-
ers typically write “the way words sound” (Ram-
poni, 2022). The language functions of those va-
rieties – most of which are endangered (Moseley,
2010) – are increasingly restricted, resulting in fre-
quent code-switching with Standard Italian, a sign
of language replacement (Cerruti and Regis, 2005).

In this section we describe how we tackle these
challenges to build the DIATOPIT corpus. We de-
tail all stages, from data collection (Section 2.1)
and sampling for non-Standard Italian content (Sec-
tion 2.2), to content curation and data augmentation
of under-represented speaking areas (Section 2.3).
Data statements (Bender and Friedman, 2018) for
DIATOPIT are presented in Appendix A.

2.1 Collection of Geolocated Posts in Italy
For our initial collection, we use the Twitter APIs
to retrieve geolocated tweets in Italy over a period
of two years, from 2020-07-01 to 2022-06-30.

4Language identification tools for (a subset of) language
varieties of Italy are mostly trained on Wikipedia, a very spe-
cific domain that does not reflect how those languages and
dialects are typically used by their speakers (Ramponi, 2022).

This ensures that coordinates of tweets fall within
the Italian territory, and thus that content exhibit-
ing linguistic variation is relevant to Italy. More-
over, the large time frame mitigates potential bi-
ases in the corpus about exceptional or occasional
events, whereas the presence of the same number
of months across years avoids over-representing
recurring events, both local (e.g., the Italian Song
Festival, February) and global (e.g., Christmas).

We then sample posts that have been classified as
“it” by Twitter, due to the frequent code-switching
of local language varieties with Standard Italian
(cf. Section 2) and the absence of dedicated lan-
guage classifiers. In addition, we observed that
content (partially and even fully) written in lan-
guage varieties of Italy is typically classified as it
by the Twitter language identifier.5 We obtain over
10 million geolocated tweets for further filtering.

2.2 Sampling Non-Standard Italian Posts

To construct a representative sample of social me-
dia posts written in language varieties of Italy other
than Italian, we take our initial collection (Sec-
tion 2.1) and further filter it to contain non-Standard
Italian content. We deliberately avoid using prede-
fined lexicons for sampling, since (i) their coverage
is typically low in terms of both vocabulary and
representation of local variants, and (ii) using them
for sampling could bias our corpus towards stan-
dard orthographies, thus excluding variation due
to speakers’ lack of knowledge of written conven-
tions (if any). We instead adopt a complementary
approach in which lexical units for sampling natu-
rally emerge from their actual use on social media.

We analyze the whole collection of tweets, com-
puting frequencies of out-of-vocabulary (OOV) to-
kens.6 We consider a token as OOV if it is not a
special token (i.e., hashtag, punctuation, number,
emoji) nor is part of the Aspell dictionary for Ital-
ian.7 Additionally, we do not consider as OOV all
tokens that are part of the English dictionary8 to
avoid including international discourse in our cor-
pus. We inspect the resulting token frequencies and
further exclude common interjections (e.g., boh,
en: I don’t know), elongated words (e.g., ciaoo,
en: helloo), words in Italian with wrong diacritics

5Nonetheless, in future work we plan to extend the corpus
with the fraction of relevant content classified as non-it, too.

6Tokenization of posts has been performed by using the
it_core_news_sm model by spaCy (https://spacy.io).

7http://aspell.net: aspell6-it-2.2_20050523-0.
8http://aspell.net: aspell6-en-2020.12.07-0.
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(e.g., perchè; en: why/because), youth language and
slang words (e.g., xke, en: why/because [ABBR.];
buongiornissimo, en: good morning [SUP.]), to-
kenization errors (e.g., ∼il, en: ∼the), tokens in
foreign languages (e.g., gracias, en: thank you),
tokens in Italian or English that are not included in
Aspell dictionaries (e.g., quest’, en: this [CONTR.];
t-shirt), and tokens that explicitly refer to named en-
tities (e.g., soccer players, singers, brands, cities).

We use tokens t ∈ Toov with a frequency F (t) ≥
k as our search keywords, and retain from the col-
lection all tweets that contain at least one of such
terms. To avoid including social media posts with
tokenization errors and rare typos, we empirically
set k = 48, which corresponds to an average token
frequency of 2 occurrences per month. We obtain
over 100K tweets with 953 search tokens. Search
tokens are made available in our repository.

2.3 Corpus Curation and Augmentation

Posts that match at least one OOV token do not
necessarily contain lexical items of local language
varieties or signal of interest for diatopic studies.
Indeed, our initial exploration revealed that a frac-
tion of matched posts were spam messages or still
contained no signal due to the ambiguity of some
search terms. Moreover, we found occasional mis-
matches between the geolocation attached to posts
and the language varieties used within them.9

Motivated by these factors, we focus on the sub-
set of posts matching at least 2 OOV tokens (i.e.,
roughly 20K tweets) and conduct a manual cura-
tion process. Two curators with good knowledge of
language varieties of Italy and background in NLP
and sociolinguistics identified all user IDs whose
posts contain (i) spam content or (ii) content in lan-
guage varieties that are not spoken in the area of
the geolocated position (e.g., due to tourism or relo-
cation). We then removed all the tweets posted by
spam users, the subset of posts with clearly incon-
gruous content and geolocation, as well as matched
tweets exhibiting no diatopic signals.

To mitigate the under-representation in our cor-
pus of some areas in which local language varieties
are scarcely spoken, we additionally conducted two
steps of data augmentation. In the first step, the
curators manually checked the remaining subset
of posts with just a single matched OOV token

9Although language and mobility is an interesting topic, it
goes beyond the purpose of this work. We leave the study of
this phenomenon as future direction for research.

for all regions with ≤ 1% posts over the total.10

During the whole process, cases of doubt were
managed by the curators by consulting dictionaries
and asking native speakers for clarification. Posts
containing content in non-Standard Italian were
then added to the corpus. In the second step, we
took the set of tweets from all regions except the
over-represented ones (i.e., Lazio and Campania;
cf. Figure 2a) and employed the lexical artifacts
package (Ramponi and Tonelli, 2022) to compute
a ranking of the highly-discriminative tokens for
each region in a one-vs-rest scheme. A list compris-
ing the top 50 OOV tokens of each region, totalling
820 unique keywords, was then used to sample
additional tweets from the initial collection (Sec-
tion 2.1). The curators then manually checked these
sets, adding relevant tweets to the corpus. Finally,
we deduplicated the corpus by removing tweets
that had the same content and author ID.11

3 Corpus Analysis

In this section we present detailed analyses on the
DIATOPIT corpus. We first provide summary statis-
tics (Section 3.1). Then, we discuss the corpus
distribution across time and space (Section 3.2).
Lastly, we show that the density of non-Standard
Italian tokens across regions correlates with the ac-
tual use of languages varieties in Italy, and that lan-
guage functions of the most indicative tokens per
region are good indicators of vitality (Section 3.3).

3.1 Summary Statistics

In Table 2 we present summary statistics and den-
sity information about the corpus. DIATOPIT com-
prises 15,039 posts with geolocation information
across all 20 administrative regions of Italy, ac-
counting for a total of 388,069 tokens, 54,635 of
which are OOV (i.e., 14.1%). Posts have an aver-
age length of 25.8 tokens and have been written by
3,672 authors (i.e., 4.1 posts per author on average).

By a closer look, Lazio (LAZ) and Campania
(CAM) are the most represented regions in the
corpus, with 39.2% and 21.5% instances, respec-
tively. All other regions comprise from 0.1% to
5.9% posts, with those with ≤ 1.5% instances rep-
resenting territories with a small population or in
which local language varieties are little spoken.

10We refer the reader to Appendix B for additional details.
11Indeed, we do not consider a tweet with the same content

but posted by different authors as a duplicate, but rather a
useful signal for diatopic studies and language vitality assess-
ments, especially if posted from different locations.
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Instances Tokens Authors Density
I (#) I (%) Tall T unique

all Toov T unique
oov A Tall/I I/A Toov

Tall
(%)

ABR 166 1.1% 3,939 1,495 523 370 86 23.7 1.9 13.3%
BAS 49 0.3% 1,166 575 164 141 30 23.8 1.6 14.1%
CAL 336 2.2% 7,683 2,626 1,399 872 101 22.9 3.3 18.2%
CAM 3,240 21.5% 78,233 11,627 13,185 3,889 645 24.2 5.0 16.9%
EMI 395 2.6% 9,861 2,902 1,020 589 173 25.0 2.3 10.3%
FRI 270 1.8% 6,851 2,360 1,008 652 83 25.4 3.3 14.7%
LAZ 5,895 39.2% 162,532 19,379 19,031 4,635 987 27.6 6.0 11.7%
LIG 273 1.8% 6,378 1,853 819 434 82 23.4 3.3 12.8%
LOM 803 5.3% 20,966 5,125 3,139 1,535 327 26.1 2.5 15.0%
MAR 197 1.3% 5,035 1,821 679 432 96 25.6 2.1 13.5%
MOL 35 0.2% 692 364 111 90 21 19.8 1.7 16.0%
PIE 288 1.9% 6,498 2,094 750 434 127 22.6 2.3 11.5%
PUG 320 2.1% 8,000 2,558 1,254 733 157 25.0 2.0 15.7%
SAR 440 2.9% 11,711 3,513 2,665 1,504 129 26.6 3.4 22.8%
SIC 720 4.8% 16,780 4,355 3,050 1,444 240 23.3 3.0 18.2%
TOS 506 3.4% 13,640 3,449 1,459 700 194 27.0 2.6 10.7%
TRE 61 0.4% 1,434 670 153 111 37 23.5 1.6 10.7%
UMB 150 1.0% 4,129 1,425 512 284 49 27.5 3.1 12.4%
VAL 14 0.1% 420 260 44 42 14 30.0 1.0 10.5%
VEN 881 5.9% 22,121 5,093 3,670 1,593 252 25.1 3.5 16.6%

ALL 15,039 100.0% 388,069 40,744 54,635 16,482 3,672 25.8 4.1 14.1%

Table 2: Summary statistics for the DIATOPIT corpus. Region names (left) are presented with their first three letters
(see Figure 2a for full names and location). Columns (top). I: instances (#: raw number; %: percentage); Tall:
tokens; Tunique

all : unique tokens; Toov: OOV tokens; Tunique
oov : unique OOV tokens; A: authors; Tall/I: average

tokens per instance; I/A: average instances per author; Toov/Tall (%): average density of OOV tokens within posts.

Regions vary a lot in terms of average density
of OOV tokens within posts (Toov/Tall). Sardinia
(SAR), Sicilia (SIC), Calabria (CAL), Campania
(CAM) and Veneto (VEN) are the regions in which
lexical items of language varieties of Italy other
than Standard Italian are used more frequently.12

Lastly, LAZ, CAM, and VEN are the regions in
which the ratio of instances per author (I/A) is
higher, a sign of a more confident use of local lan-
guage varieties by their speakers.

3.2 Distribution Across Time and Space

In order to assess the potential presence of temporal
biases in our corpus, we examine the distribution
of social media posts across time, and compare it
with that of the initial collection (cf. Section 2.1).
Figure 1 shows the percentage of tweets for each
month within the 2-year time span for the DIATO-
PIT corpus and the reference (i.e., the initial collec-
tion). We observe that the number of posts in DI-

12Note that multiple local languages and dialects are often
spoken within a region, and they often cross administrative
borders. Refer to Pellegrini (1977) for a linguistic map.
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Figure 1: Distribution of social media posts over time
in both DIATOPIT and the initial collection (reference).

ATOPIT closely follows the distribution of the ref-
erence, with the only exception for the period from
2021-10 to 2021-12. We examined tweets posted
within this time span and we positively found that
the small peak is due to some users posting more
than average about a wide range of topics rather
than due to period-specific biases.

As regards the spatial dimension, in Figure 2
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(a) Tweets by administrative region. (b) Tweets by geographical coordinates.

Figure 2: Distribution of social media posts in the DIATOPIT corpus by administrative region and coordinates.

we present the distribution of tweets in our cor-
pus. While Figure 2a contextualizes across space
the per-region instances presented in Table 2, Fig-
ure 2b shows a fine-grained distribution of so-
cial media posts by geographical coordinates. As
expected, a large number of posts comes from
densely-populated cities and coastal and lowlands
areas. Rural and mountain areas are instead weakly
represented. Although the resident population is
a good indicator for the amount of content that is
posted online within a particular area, the density
of non-Standard Italian content can diverge a lot be-
tween regions (cf. Section 3.1). Moreover, densely-
populated areas do not always exhibit a high pro-
portion of tweets. This is the case of e.g., Piemonte
(PIE), a region of northwest Italy (cf. Figure 2a)
with a population of > 4.2M, for which there exists
a relatively low number of tweets containing non-
Standard Italian content (1.9%, cf. Table 2) due to
the limited use of local varieties (Figure 3).

3.3 Density and Functions of OOV Tokens

We hypothesize that geographical areas in which
local language varieties are spoken the most are
likely to exhibit a lower degree of mixing with
Standard Italian compared to areas in which those
are gradually disappearing. Indeed, the less a va-
riety is used, the more lexical items that belong to
Standard Italian would be employed.

Figure 3: Pearson correlation coefficient (r) between
the density of OOV tokens (Toov/Tall) for each region
and the actual usage of language varieties other than
Standard Italian in those regions (ISTAT, 2017).

To test this hypothesis and assess the represen-
tativeness of DIATOPIT, we take the results of the
most recent national survey on the actual use of lan-
guages and dialects in Italy divided by region (IS-
TAT, 2017) and check if the proportion of OOV to-
kens (Toov/Tall) in our corpus for those regions cor-
relates with it (cf. Appendix C). We calculated the
Pearson correlation coefficient r and found a sub-
stantial correlation (r = 0.51). As shown in Fig-
ure 3, there is a high correlation for most regions,
with the exception of Trentino-Alto Adige (TRE)
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CAL CAM EMI LAZ LOM
token score token score token score token score token score

u 1.00 o⋆ 1.00 soccia 1.00 na 1.00 i⋆ 1.00
ccu 0.91 e⋆ 1.00 cinno 0.96 de 0.97 el 0.99
i⋆ 0.90 tutt 0.94 maroni 0.94 pe 0.97 ratt 0.99
frica 0.85 nun 0.90 cagher 0.91 je 0.94 ciapa 0.96
ca 0.84 stu 0.88 mond 0.85 er 0.89 inscì 0.93

PUG SAR SIC TOS VEN
token score token score token score token score token score

lu 1.00 su⋆ 1.00 u 1.00 diaccio 0.96 ghe 1.00
sule 0.83 sa 0.99 bonu 0.93 pigliá 0.91 xe 1.00
ientu 0.82 tottu 0.97 ca 0.89 tope 0.89 el 0.96
trmon 0.74 itte 0.95 cu 0.88 gliè 0.88 no⋆ 0.83
trimone 0.72 unu 0.93 semu 0.87 boja 0.86 ga 0.81

Table 3: Top-5 most indicative tokens and associated scores (in [0, 1]) for regions with ≥ 2% instances in the
DIATOPIT corpus. Tokens marked with ⋆ are those that are typically included in stopword lists for Standard Italian.

and Sardegna (SAR). While results for TRE can
be justified by highly-spoken German varieties in
the South Tyrol province that are little represented
in our corpus (cf. Limitations section), we argue
that results for SAR are due to the long-established
speakers’ awareness of the prestige status of their
varieties (i.e., Sardinian: srd, Sassarese: sdc, and
Gallurese: sdn). Indeed, the survey by ISTAT
(2017) mostly framed questions using the word
“dialect”, a term that historically carries negative
connotations in Italy (Avolio, 2009).

Besides the raw density of non-Standard Italian
content, the function of the most indicative OOV to-
kens for each region can give insights into language
use and vitality, too. Intuitively, the more language
varieties are spoken in a region, the higher is the
likelihood that non-content tokens that are neces-
sary to form articulated sentences (e.g., articles,
prepositions and conjunctions) are used.

To the goal, we employ the lexical artifacts pack-
age (Ramponi and Tonelli, 2022) and compute the
most discriminative tokens for each region in a one-
vs-rest scheme, i.e., unveiling lexical items that
are more frequently used in the region of interest
compared to all other regions. We present the top-5
most indicative tokens for all regions with ≥ 2%
instances over the total13 in Table 3.

Regions in which local varieties are spoken the
most (i.e., CAL, CAM, SIC, VEN; cf. Figure 3, top)
mostly present non-content tokens as the most in-

13This allows us to ground the discussion based on the
subsets for which the PMI-based computation (Fano, 1961)
behind the lexical artifacts package is more reliable.

formative, confirming our hyphothesis. Both CAL

and SIC have “u” (en: the [M. SG.]) and “ccu/cu”
(en: with) among the most indicative terms, as well
as “i” (CAL; en: the [M. PL.]), and “semu” (SIC;
en: we are), amongst others. Relevant examples for
CAM and VEN also include “o” and “el” (en: the
[M. SG.]), “stu” (CAM; en: this), “ghe” (VEN;
en: there is), and “xe” (VEN; en: is). SAR also
shows non-content tokens as the most informative,
e.g., “su” (en: the [M. SG.]), “sa” (en: the [F. SG.])
and “unu” (en: a/an/one), confirming that the high
density of OOV terms for this region is due to a
confident use of local varieties by their speakers.

On the other hand, regions from Table 3 in which
languages and dialects are spoken the least (i.e.,
EMI, LOM, TOS; cf. Figure 3, bottom) show a
higher fraction of non-content tokens, a sign of the
increasingly restricted function of language vari-
eties. As prototypical examples, we can find “cinno”
(EMI; en: kid), “ratt” (LOM; en: rat(s)), and “diac-
cio” (TOS; en: icy/frozen/very cold).

Exceptions on the ends are represented by PUG

and LAZ (cf. Figure 3, mid-top and mid-bottom,
respectively). PUG exhibits both content and non-
content tokens, e.g., “lu” (en: the [M. SG.]), “ientu”
(en: wind), and “trmon” (en: stupid), whereas
LAZ only comprises non-content tokens, e.g., “na”
(en: a/an [F. SG.]), “de” (en: of ), and “pe” (en: for).
While for PUG this can be ascribable to the small
size of its subset and thus to the diversity of lan-
guage included in it, the situation of LAZ is to
be considered an outlier. Specifically, varieties
spoken in LAZ are highly used indeed, but they
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are considered “ways of speaking” or “accents” of
Standard Italian rather than proper language vari-
eties (De Mauro, 1989). This has probably had an
impact on the results of the aforementioned survey
by ISTAT (2017) and justifies this divergence.

4 Experiments

In this section we present our experiments on the
DIATOPIT corpus. Our objective is to understand
how difficult it is to model diatopic language vari-
ation in Italy, i.e., by identifying coarse- and fine-
grained geographical areas of a post based solely
on its textual content.14 Ultimately, this will help
in building tools to reliably identify content for lan-
guage varieties of Italy from social media, and thus
to better represent them in NLP. We first introduce
the experimental setup (Section 4.1) and the base-
lines we employed (Section 4.2). Then, we present
the results and provide a discussion (Section 4.3).

4.1 Experimental Setup

Tasks We cast the problem of identifying the area
from which a tweet has been posted into two tasks
of increasing complexity: (i) coarse-grained geolo-
cation (CG), i.e., predict the administrative region
from which a tweet has been posted (classification
task), and (ii) fine-grained geolocation (FG), i.e.,
predict latitude and longitude coordinates for the
post (double-regression task). For each task we pro-
vide several experimental baselines (Section 4.2).

Data splits For training and testing the models,
we divide the corpus into train, dev, and test
sets. Given the highly-unbalanced distribution of
instances across regions (cf. Table 2), for dev and
test sets we draw a number of posts per region ac-
cording to a smoothed distribution. Specifically, for
each region r we take its raw number of instances
Ir and we calculate a smoothed value

√
Ir, fur-

ther adjusted by a multiplication factor λ to control
the proportional size of the resulting dev and test
sets.15 This ensures a more reliable evaluation due

14This is in contrast to standard language/dialect identifica-
tion tasks, in which the goal is to categorize texts into uniform
language/dialect categories rather than identify areas where
those are spoken – thus taking microvariation into account.
Our formulation also differs from the Italy’s language and di-
alect identification task (Aepli et al., 2022), in that we also deal
with naturally occurring code-switched content and regional
varieties of Standard Italian. Moreover, we model language
from social media which is more spontaneous and does not
necessarily adhere to orthography standards.

15We use λ = 1.50 and λ = 2.25 for dev and test, respec-
tively, i.e., making the size of the test 3/2 that of dev. For

to a higher percentage of instances in dev and test
sets for under-represented regions. Moreover, we
deliberately avoid sampling those instances at ran-
dom, since this process could lead to a limited
coverage of linguistic phenomena and microvari-
ation in dev and test. We instead ask curators
to manually select dev and test instances from a
50% random sample for each region16 to be as rep-
resentative as possible of a wide range of linguistic
phenomena and microvariation. Additionally, we
also ask them not to include instances that explic-
itly cite others (e.g., “as my grandma says: ‘X’”) to
focus our evaluation on actual language use. Once
the predefined smoothed value for each region was
reached, we added the rest of the examples to the
remaining 50% (i.e., train). Due to the very low
number of instances for some regions, and thus
scarcity of data for properly evaluating those, we
decided to keep posts for the top-13 regions (≥ 200
instances) for development and the top-17 regions
(≥ 50 instances) for testing (cf. Table 2), while
leaving all 20 regions for training. This led to
13,669 examples for train, 552 examples for dev,
and 818 examples for test, distributed as shown
in Appendix D.

Evaluation metrics Since the distribution of in-
stances per region is highly imbalanced, for the CG

task we use macro-averaged scores so that each
region in the evaluation set (either dev or test) is
factored equally into the metric. Specifically, we
employ macro-averaged precision (P), recall (R),
and F1 score. For the FG task, we instead use the
mean error of the predicted coordinates from actual
coordinates in kilometers (km), calculated using
the Haversine formula.17

4.2 Baseline Models

We use several baseline models in order to provide
reference points for future work using our corpus.

Naïve baselines For task CG we use a most-
frequent baseline that always predicts the most fre-
quent region in the training set (i.e., LAZ). For the
FG task we instead employ a centroid baseline that
computes the center point from training instances
and predicts it for all test instances.

regions for which instances are extremely scarce, we simply
draw the same number of dev instances for the test portion.

16This further ensures that train is not deprived of impor-
tant signal since it was left untouched in this process.

17https://github.com/mapado/haversine
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Machine learning models For both tasks we
train two traditional models: for the CG task, we
train a logistic regression (LR) and a support vector
machine (SVM) classifier, whereas for FG we train
a regression model based on k-nearest neighbors
(kNN) and a decision tree (DT) regressor. We use
the scikit-learn18 count vectorizer for feature
extraction and employ default hyperparameters.

Pretrained language models We fine-tune two
monolingual and two multilingual transformer-
based (Vaswani et al., 2017) models for each
task. The monolingual models we use are Al-
BERTo (Polignano et al., 2019), a BERT-based (De-
vlin et al., 2019) model pre-trained on Italian text
data from Twitter, and UmBERTo (Parisi et al.,
2020), a RoBERTa-based (Liu et al., 2019) model
pre-trained on the Italian portion of the OSCAR
web-crawled corpus (Suárez et al., 2019). While
DIATOPIT comprises non-Standard Italian content,
we hypothesize that the pre-training material that
has been used by those models (i.e., social media
texts and raw data) may include content in language
varieties of Italy due to the over-prediction of Ital-
ian of current language identifiers (cf. Section 2.1).

The multilingual models we use are instead mul-
tilingual BERT base (mBERT; Devlin et al., 2019),
which is pre-trained on Wikipedia texts in 104 lan-
guages, and XLM-Roberta base (XLM-R; Conneau
et al., 2020), which is pre-trained on the filtered
CommonCrawl raw corpus in 100 languages. In
addition to Italian, mBERT pre-training material
includes Wikipedia content for some language vari-
eties represented in DIATOPIT, i.e., Lombard [lmo],
Piedmontese [pms] and Sicilian [scn], albeit it re-
flects an artificial use of language (Ramponi, 2022).

We use default Huggingface (Wolf et al., 2020)
TrainingArguments hyperparameters, setting the
learning rate to 5e−5 and training models for 10
epochs. For the CG task we use a batch size of
32 and cross-entropy loss, whereas for the FG task
we train models using a batch size of 64 and mean
squared error (MSE) loss. We use MSE loss instead
of mean absolute error (MAE) loss as it assigns
higher penalties to large errors.

4.3 Results and Discussion
In this section we report the results obtained by
our baselines for both tasks. Results are averaged
across 5 runs using different random seeds for shuf-
fling the data and initializing the models.

18https://scikit-learn.org/stable/index.html

Method P R F1

Most frequent 4.47±0.0 21.15±0.0 7.38±0.0

LR 60.36±0.0 45.92±0.0 49.29±0.0

SVM 63.83±0.0 51.04±0.0 53.95±0.0

AlBERTo 62.52±2.3 56.98±1.2 58.43±1.5

UmBERTo 58.97±2.4 55.86±2.2 56.19±2.2

mBERT 59.71±3.1 56.48±2.2 57.29±2.4

XLM-R 57.73±3.0 51.35±1.3 51.86±1.9

Table 4: Test set results for the CG task. We report
average precision (P), recall (R), and macro F1 scores
across 5 runs (±: std dev). Best results are in bold.

4.3.1 Coarse-Grained Geolocation

Results on the CG task are presented in Table 4.
The best-performing baseline is AlBERTo, with a
macro F1 score of 58.43, while – besides the most
frequent baseline – the lowest score is obtained
by LR, with a macro F1 score of 49.29. Inter-
estingly, the SVM classifier is a strong baseline
even though it is far less computationally expen-
sive than transformer-based models, performing
better (+2.09) than XLM-R. A potential reason for
traditional models to be competitive against large
language models (LLMs) is that the variation of lex-
ical items across varieties makes them very infor-
mative features. Furthermore, LLMs could suffer
from suboptimal subword tokenization, given that
tokenizers for these models are not optimized for
the language varieties in our corpus. Overall, it ap-
pears that transformer-based models might benefit
from being trained on in-domain data (i.e., Twitter
for AlBERTo) or data containing a subset of the
varieties represented in DIATOPIT (e.g., mBERT).

The CG task is generally challenging, not only
because it represents a very unbalanced multi-class
classification problem (cf. Table 2), but also be-
cause there are some language varieties that are
very close across regions, especially in border areas.
In Figure 4 we present the confusion matrix for our
best-performing baseline (i.e., AlBERTo), showing
the effect of these challenges on model predictions.
For instance, the high class imbalance causes the
model to perform better (especially with regards
to recall) on highly represented regions (e.g., LAZ

and CAM), while regions with a lower percentage
of instances in the corpus tend to be predicted less
frequently. Specifically, regions that are scarcely
represented in training data are often confused with
neighboring regions and/or regions where a simi-
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Figure 4: Confusion matrix for AlBERTo on the CG test
set. Each row is normalized so that its sum is 100%.

lar variety is spoken. This is the case of e.g., FRI

and TRE, in which varieties of Venetian [vec] are
spoken (amongst others), and thus instances are
often misclassified as VEN, the region in which
vec is predominantly used. Similarly, PUG is of-
ten confused with CAM, but also with SIC, despite
not being near to it. This is because of language
varieties spoken in the southern part of PUG (i.e.,
Salentino varieties), which are close to those of
SIC, being both part of extreme southern varieties
(cf. Pellegrini (1977) for more details). Results by
region for all methods are in Appendix D.

Despite the aforementioned challenges, in part
due to the simplification entailed in framing di-
atopic variation across space as a classification task
in which the labels are administrative regions, the
error analysis shows that models tend to confound
regions that actually share common linguistic traits.
This seems to indicate that DIATOPIT does reflect
the actual distribution of language varieties in Italy.

4.3.2 Fine-Grained Geolocation
Results on the FG task for all baselines are pre-
sented in Table 5. Similarly to the coarse-grained
geolocation task, the best-performing model is Al-
BERTo, with a mean average error of 151.54 km.
Interestingly, DT performs similarly to AlBERTo
(152.45 km; +0.91), even though it requires a frac-
tion of the computational cost. Other transformer-
based models have much higher error rates than
AlBERTo, as well as a very large standard devia-
tion across runs. This indicates that they are not
sufficiently robust for modeling fine-grained geolo-
cation. We hypothesize that the stability of results

Method Avg dist (km)

Centroid 281.04±0.0

kNN 245.60±0.0

DT 152.45±1.4

AlBERTo 151.54±7.8

UmBERTo 207.65±41.3

mBERT 211.51±39.4

XLM-R 266.32±23.8

Table 5: Test set results for the FG task. We report
the average distance in kilometers across 5 runs (±: std
dev). Best results are in bold (the lower, the better).

by AlBERTo compared to UmBERTo, mBERT,
and XLM-R is due to the in-domain nature of tex-
tual data used during pre-training. Moreover, the
good results obtained by DT suggest that current
transformer-based models are rather limited for
modeling language variation over space in highly
multilingual areas such as Italy due to an insuffi-
cient vocabulary coverage. In future work we plan
to experiment with token-free models (Xue et al.,
2022; Clark et al., 2022; Tay et al., 2022) to assess
if the vocabulary issue can be mitigated.

More generally, the improvement achieved by
our best baseline over the centroid baseline for the
FG task is comparable or better than the improve-
ments obtained by the best-performing models in
the Social Media Variety Geolocation (SMG) task
at the 2020 VarDial Evaluation Campaign (Gaman
et al., 2020), focused on the geolocation of social
media posts in different geographical areas. While
our best model’s mean error improves by 46.08%
over the centroid baseline, the models in the SMG
task showed mean error improvements over the cen-
troid baselines of 40.41%, 16,96%, and 47.97%.

5 Conclusion

We present DIATOPIT, the first corpus focused
on diatopic variation in Italy for language vari-
eties other than Standard Italian. Our analyses
and experiments show that DIATOPIT is highly
representative of actual use of Italy’s language vari-
eties, and can thus be used to advance research
in the area. We plan to study divergences in
orthography and code-switching in future work,
in order to further assess vitality across varieties.
Data and relevant materials (e.g., search terms)
are available to the research community at https:
//github.com/dhfbk/diatopit.
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Ethics Statement and Limitations

We release the corpus in the form of tweet IDs to
be hydrated, in compliance to the Twitter developer
policy. The corpus contains content that may be
offensive or upsetting due to the occasional use of
swear words by users. Latitude and longitude coor-
dinates do not correspond to specific places within
cities, but instead represent cities as a whole (i.e.,
posts within the same city have the same coordi-
nates). Curators are part of the authors of this paper,
and did the curation as part of their work. The cor-
pus is meant to study diatopic language variation
in Italy and can be used for research purposes only.

DIATOPIT includes content in regional varieties
of Standard Italian as well as content written in
the following local language varieties (ISO 639-
3): egl, fur, lij, lmo, nap, pms, rgn, scn, sdc,
sdn, srd, and vec, albeit with different amounts
of data. Rare instances for aae, Algherese Catalan
and Calabrian Greek are also present. Germanic
varieties (e.g., cim, mhn, wae, South Tyrolean), frp,
lld, and svm are instead mostly absent due to either
the very low number of speakers or the sampling
procedure. As regards to the latter, we plan to
further extend the corpus with relevant samples
classified as other than it by the Twitter language
identifier to further mitigate under-representation
of certain language varieties due to orthographic
reasons or language branch.
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Appendix

A Data Statements

We present the data statements (Bender and Fried-
man, 2018) for DIATOPIT in the following.

CURATION RATIONALE. DIATOPIT consists of
social media posts (partially and fully) written in
language varieties of Italy other than Standard Ital-
ian, and is thus meant to encourage research on
diatopic variation in Italy, study code-switching
and divergences in orthography for local language
varieties, and serve as a basis for responsible devel-
opment of annotated resources for Italy’s varieties.
Details on corpus creation are given in Section 2.

LANGUAGE VARIETIES. The corpus includes
content in regional varieties of Standard Italian
(ita), as well as content written in the following
local language varieties (ISO 639-3 codes, wher-
ever available): egl, fur, lij, lmo, nap, pms, rgn,
scn, sdc, sdn, srd, and vec, albeit with different
amounts of data. Rare instances for aae, Algherese
Catalan and Calabrian Greek are also present. Or-
thographic variation is common due to the sponta-
neous written speech of social media posts and the
lack of standardization of most language varieties.

SPEAKER DEMOGRAPHIC. The corpus consists
of anonymized social media posts, and thus user
demographics are not known.

ANNOTATOR DEMOGRAPHIC. Two curators na-
tive to Italy with good knowledge of Italy’s lan-
guage varieties and background in NLP and soci-
olinguistics. They identify themselves as a woman
and a man, with age ranges 20–30 and 30–40, and
native speakers of ita, srd, and vec. Additional
native speakers who have been consulted during
curation in the presence of doubtful cases greatly
vary in terms of demographic characteristics.

SPEECH SITUATION AND TEXT CHARACTER-
ISTICS. The interaction is mainly asynchronous
and the intended audience is everyone. The modal-
ity is (spontaneous) written text, the genre is social
media without any particular topical focus due to
the sampling procedure (cf. Section 2). Social me-
dia posts have been produced between 2020-07-01
and 2022-06-30, and collected in September 2022.

PREPROCESSING AND DATA FORMATTING.
All posts have been anonymized by replacing user

mentions, email addresses and URLs with place-
holders (i.e., [USER], [EMAIL] and [URL], respec-
tively). Additionally, explicit location mentions de-
rived from cross-posting have been replaced with
the [LOCATION] placeholder. Newline characters
have been replaced with single spaces. Latitude
and longitude coordinates have been computed by
taking the central point from the 4-point bounding
box of city areas as provided by the Twitter APIs.

B Corpus Augmentation

Step 1 Data augmentation for geographical re-
gions with ≤ 1% instances I over the total has
been carried out based on their initial amount of
data (cf. Table 6, top). For regions with I < 0.5%
posts (i.e., severely under-represented), all the posts
matching at least an OOV token have been man-
ually curated for inclusion (N = 4,606). For re-
gions with 0.5% ≤ I ≤ 1.0% posts (i.e., mod-
erately under-represented), a random 10% of the
posts matching at least an OOV token have been
manually curated for inclusion (N = 6,107). This
led to 718 extra posts across all those regions, and
notably an increment of more than 2× instances for
some regions (e.g., EMI: 0.99% → 2.41%; FRI:
0.70% → 1.70%; LIG: 0.62% → 1.37%).

Step 2 All regions except the over-represented
LAZ and CAM (i.e., those with I ≤ 20.0%
posts over the total) were used to calculate highly-
discriminative tokens for further sampling of posts
(cf. Table 6, bottom). This led to N = 4,384 social
media posts, 1,961 of which have been included in
the final corpus after curation.

C Details about the Correlation Analysis

For the correlation analysis in Section 3.3 we took
data from Table 1 of the survey by ISTAT (2017) on
the usage of languages and dialects across Italy’s
administrative regions. Specifically, for our cal-
culation we relied on percentages indicating the
use of languages and dialects with friends, which
is typically the case for spontaneous and informal
social media content that includes local language
varieties of Italy. Nevertheless, we found a similar
correlation when considering the family context.

D Additional Details on the Experiments

The distribution of instances for the experiments is
in Table 7, whereas results for the CG task divided
by region and method are presented in Table 8.
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Step I (%) Regions (relative percentage)

1
[0.5%, 1.0%] EMI (0.99%), MAR (0.90%), ABR (0.85%), PIE (0.82%), FRI (0.70%), LIG (0.62%)

< 0.5% TRE (0.23%), BAS (0.19%), MOL (0.15%), VAL (0.03%)

2 ≤ 20.0%
VEN (4.19%), LOM (3.79%), SIC (3.08%), TOS (2.56%), EMI (2.41%), PUG (1.86%),
FRI (1.70%), CAL (1.57%), SAR (1.51%), PIE (1.49%), LIG (1.37%), MAR (1.35%),
ABR (1.11%), UMB (1.09%), TRE (0.39%), BAS (0.35%), MOL (0.25%), VAL (0.09%)

Table 6: Geographical regions (and their relative percentages at the beginning of each stage) that have been selected
for the two steps of data augmentation, i.e., step 1 (top) and step 2 (bottom).

ABR BAS CAL CAM EMI FRI LAZ

151 / – / 15 49 / – / – 282 / 27 / 27 3,027 / 85 / 128 320 / 30 / 45 220 / 25 / 25 5,607 / 115 / 173

LIG LOM MAR MOL PIE PUG SAR

223 / 25 / 25 696 / 43 / 64 181 / – / 16 35 / – / – 238 / 25 / 25 266 / 27 / 27 362 / 31 / 47

SIC TOS TRE UMB VAL VEN

620 / 40 / 60 421 / 34 / 51 52 / – / 9 136 / – / 14 14 / – / – 769 / 45 / 67

Table 7: Distribution of train / dev / test instances by region for the sake of computational experiments.

Region Method
Abbr. Full name LR SVM AlBERTo UmBERTo mBERT XLM-R

ABR Abruzzo 0.00±0.0 21.05±0.0 27.28±14.7 31.06±12.4 44.28±10.1 15.95±4.7

CAL Calabria 61.90±0.0 57.14±0.0 67.22±2.2 56.98±8.5 58.08±5.0 41.42±6.7

CAM Campania 80.14±0.0 81.75±0.0 89.52±1.7 91.02±1.1 89.68±1.5 89.73±1.4

EMI Emilia Romagna 47.06±0.0 55.26±0.0 62.04±6.4 63.18±2.6 56.60±4.9 56.88±2.7

FRI Friuli-Venezia Giulia 36.36±0.0 30.00±0.0 28.62±4.5 36.81±5.0 25.24±4.9 24.78±8.5

LAZ Lazio 72.29±0.0 78.47±0.0 87.47±0.5 88.95±1.4 85.87±0.8 87.01±1.3

LIG Liguria 48.65±0.0 66.67±0.0 68.95±4.8 69.72±5.2 76.84±2.6 78.22±1.8

LOM Lombardia 59.84±0.0 60.80±0.0 70.06±1.7 72.44±4.8 71.97±1.9 70.70±3.2

MAR Marche 26.09±0.0 25.00±0.0 20.96±5.0 21.57±10.5 25.75±5.7 14.21±5.8

PIE Piemonte 75.56±0.0 74.51±0.0 73.21±3.7 65.46±5.6 71.70±1.5 65.48±6.8

PUG Puglia 40.00±0.0 38.89±0.0 41.33±5.3 39.97±6.0 37.13±7.6 29.07±5.3

SAR Sardegna 78.16±0.0 80.95±0.0 80.91±3.8 80.19±2.5 80.45±3.1 76.53±2.6

SIC Sicilia 74.38±0.0 74.80±0.0 78.42±2.3 79.76±2.6 82.13±3.8 78.82±3.2

TOS Toscana 62.50±0.0 74.23±0.0 67.36±3.4 70.71±1.1 69.28±3.4 68.37±4.5

TRE Trentino-Alto Adige 0.00±0.0 0.00±0.0 4.72±6.5 0.00±0.0 10.30±15.1 0.00±0.0

UMB Umbria 0.00±0.0 23.53±0.0 46.75±7.2 5.17±7.1 10.20±11.8 7.11±10.2

VEN Veneto 75.00±0.0 74.17±0.0 78.38±2.4 82.32±2.3 78.35±3.6 77.29±1.5

Table 8: Test set results for the CG task by region. We report average macro F1 scores across 5 runs (±: std dev).
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Abstract
Language label tokens are often used in
multilingual neural language modeling and
sequence-to-sequence learning to enhance the
performance of such models. An additional
product of the technique is that the models learn
representations of the language tokens, which
in turn reflect the relationships between the lan-
guages. In this paper, we study the learned
representations of dialects produced by neural
dialect-to-standard normalization models. We
use two large datasets of typologically differ-
ent languages, namely Finnish and Norwegian,
and evaluate the learned representations against
traditional dialect divisions of both languages.
We find that the inferred dialect embeddings
correlate well with the traditional dialects. The
methodology could be further used in noisier
settings to find new insights into language vari-
ation.

1 Introduction

Starting with Johnson et al. (2017), multilingual
neural models have become increasingly popu-
lar for both language modeling and sequence-to-
sequence learning tasks. The most common type of
multilingual model makes use of language labels
that are prepended to the training and test instances
to inform the model about the language being pro-
cessed. The embeddings of the language models
can then be analyzed to find emerging properties
of the relationships between the languages (Östling
and Tiedemann, 2017).

In this paper, we apply the same idea to a smaller
granularity of linguistic variation, namely dialectal
variation within a language area, and we use dialect-
to-standard normalization as the modeling task. Fo-
cusing on two typologically different languages,
we experiment with large datasets of Finnish and
Norwegian dialects. We study the inferred dialect
embeddings with different dimensionality reduc-
tion algorithms to see whether the neural normal-
ization models learn dialectal differences. We find

that the learned representations correlate well with
the traditional dialect classifications.

2 Related Work

2.1 Representation Learning in Multilingual
and Multidialectal Settings

Johnson et al. (2017) present a simple approach to
multilingual machine translation that relies on addi-
tional input tokens signalling the model which tar-
get language it is supposed to generate. While they
find interesting benefits of this approach (e.g., zero-
shot translation), they do not specifically analyze
the internal representations of the language labels.
In contemporary work, Östling and Tiedemann
(2017) analyze the structure of the language embed-
ding space obtained from a multilingual language
model. They find for example that the inferred clus-
tering of Germanic languages corresponds closely
to the established genetic relationships.

Abe et al. (2018) combine these two lines of
research and apply them to dialectal data. Their
training material includes texts from 48 Japanese
dialects, each of which is aligned with the standard
variety. They introduce a multi-dialectal neural
machine translation model translating between the
dialects and standard Japanese. Besides the practi-
cal benefits of dialect-to-standard and standard-to-
dialect translation, the induced dialect label embed-
dings can be used for dialectometric analyses. For
instance, they find that the clusters inferred from
the dialect embeddings correspond to the major
dialect areas of Japan. In this work, we apply a
similar method to Finnish and Norwegian dialects.

Instead of training multi-dialectal translation or
language models, Hovy and Purschke (2018) use
a topic modelling approach to learn continuous
document representations of cities in a large corpus
of online posts from the German-speaking area.
These city embeddings reflect the major German
dialect areas according to earlier dialectological
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research.

2.2 Dialect-to-Standard Normalization

The dialect-to-standard translation task, often also
referred to as dialect normalization, has been inde-
pendently researched for a number of dialect areas,
e.g., Swiss German (Scherrer and Ljubešić, 2016;
Honnet et al., 2018), Finnish (Partanen et al., 2019)
or Estonian (Hämäläinen et al., 2022). Most com-
monly, statistical or neural character-level machine
translation models are used for this task.

Methodologically, dialect normalization is
closely related to historical text normalization, and
recent work in this field has notably investigated
the optimal word segmentation strategies and hy-
perparameters (Bollmann, 2019; Wu et al., 2021;
Bawden et al., 2022). We take these recent findings
into account in our experiments.

2.3 Finnish and Norwegian Dialects

Both Finnish and Norwegian boast differing di-
alects which are used in everyday speech. There
is also a long dialectological tradition for both lan-
guages, which is visible in the amount of available
dialect corpora. In addition to the datasets used in
this work (see Section 3), there are, for instance,
the LiA corpus of historical dialect recordings in
Norwegian (Hagen et al., 2021) and the Finnish
Dialect Syntax archive (University of Turku and
Institute for the Languages of Finland, 1985).

The dialects of Finnish are traditionally divided
into Eastern and Western dialects (see Figure 1)
and to eight more fine-grained dialect areas. The
division is mostly based on Kettunen (1940) and
explicitly defined in e.g., Itkonen (1989). We use
this eight-dialect division for the evaluation of our
representation learning.

The dialects of Norwegian are divided into four
dialect areas: Western, Eastern, Central (or Trøn-
dersk) and Northern dialects (Hanssen, 2010 -
2014), which in turn have several subgroups. We
use the four-dialect division for evaluation. The
dialect divisions for both languages are presented
in Figure 1.

3 Data

3.1 Samples of Spoken Finnish

The Samples of Spoken Finnish corpus (fi. Suomen
kielen näytteitä, SKN) is a collection of interviews
conducted mostly in the 1960s (Institute for the

Languages of Finland, 2021).1 The corpus includes
99 interviews from 50 locations (2 for each loca-
tion, with one exception) and presents the dialects
of Finnish comprehensively. The key figures of the
dataset are described in Table 1.

The interviews have been transcribed with the
Uralic Phonetic Alphabet (UPA) on two levels of
precision: a detailed transcription with diacritics
and a simplified version which relies mostly on
standard Finnish characters. We use the simpli-
fied transcriptions and only the utterances of the
interviewees, not the interviewers. The transcrip-
tions have been manually normalized to standard
Finnish. The detailed transcriptions have been used
for dialect-to-standard normalization in Partanen
et al. (2019).

3.2 Norwegian Dialect Corpus
The Norwegian Dialect Corpus (Johannessen et al.,
2009) consists of interviews and informal conversa-
tions recorded in Norway between 2006 and 2010.2

The corpus was collected as part of a larger study
focusing on the dialectal variation of the North
Germanic languages. The recordings come from
111 locations, with 438 speakers appearing in total.
The same speakers appear in interviews and conver-
sations with each other. We use the utterances of
both contexts. The size of the dataset is described
in Table 1.

The recordings have been phonetically tran-
scribed and normalized to Bokmål (one of the stan-
dard languages for Norwegian). The normalization
has been conducted semi-automatically: first with
an automatic tool and thereafter manually checked.

The publicly available transcriptions and nor-
malizations are not well aligned: the number of
utterances is not identical, only one of the two lay-
ers contains quotation marks, and the orthographic
transcriptions for some utterances are missing. We
automatically re-align the transcriptions and nor-
malizations before using them in our experiments.3

4 Experimental Setup

4.1 Preprocessing
We remove punctuation and pause markers from
the transcriptions and normalizations, and exclude

1http://urn.fi/urn:nbn:fi:lb-2021112221, Li-
cence: CC-BY

2http://www.tekstlab.uio.no/scandiasyn/
download.html, Licence: CC BY-NC-SA 4.0.

3The re-aligned version of NDC is available at https:
//github.com/Helsinki-NLP/ndc-aligned.
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Speakers Locations Texts Sentences Words

SKN (Samples of Spoken Finnish) 99 50 99 41,407 630,665
NDC (Norwegian Dialect Corpus) 438 111 684 126,460 1,684,059

Table 1: The sizes of our two datasets.

Dialect mie poikain kans olen kahen teäl
Standard minä poikani kanssa olen kahden täällä

Dialect-BPE <SKN34_Markkova> mi@@ e po@@ i@@ ka@@ in kan@@ s ol@@ en ka@@ h@@ en te@@ ä@@ l
Standard-BPE minä po@@ i@@ ka@@ ni kan@@ ssa ol@@ en ka@@ hd@@ en tä@@ ä@@ llä

English gloss ‘Me and my son are alone here.’

Table 2: An example sentence from the Finnish dataset, with the source and target on top, preprocessed source
and target (i.e. BPE-encoded and source label added) in the middle, and an English gloss below. The label in the
beginning of the source identifies the speaker, and the embeddings learned on these label tokens are used for the
analyses.

utterances that only include filler words (such as
mm, aha, for instance). For NDC, we substitute all
anonymized name tags with a capital X. The names
in SKN are not anonymized, and we thus leave
them as they are. Each speaker’s utterances are
split so that 80% of sentences are used for training,
10% of sentences are used for the development, and
10% of sentences are set aside for testing.

Following recent findings in historical text nor-
malization (e.g., Tang et al., 2018; Bawden et al.,
2022), we work on subword tokens instead of char-
acters. We segment our data with the byte-pair
encoding (BPE; Sennrich et al., 2016) algorithm.
The number of merge operations is set to 200, fol-
lowing Gutierrez-Vasques et al. (2021). The vocab-
ulary is shared between the source and the target.
This results in a vocabulary of 336 tokens for SKN
and 360 tokens for NDC. The vocabularies were
evaluated qualitatively and they include meaningful
units such as case markers and other morphological
units for Finnish, as well as frequent words such as
pronouns for both languages. Further tuning of the
vocabulary size could anyhow enhance the results.

We add a speaker label at the beginning of each
utterance. Note that labels generally indicate the
target variety, whereas in our setup they represent
the source variety. The target variety is fixed to
be the standard. Therefore, the labels are not nec-
essary for successful normalization, but we use
them here to infer the speaker representations. An
example of our preprocessing is shown in Table 2.

4.2 NMT Model Setup
Our NMT model is a classical Transformer with 6
encoder and decoder layers, vector size 512, and 8
attention heads each (Vaswani et al., 2017). We en-
abled position representation clipping because we
found it to be beneficial in preliminary experiments.
The models were trained for 100,000 steps with a
batch size of 5000 tokens and gradient accumula-
tion over 8 batches, and an initial learning rate of
4. The models were trained with the OpenNMT-py
(Klein et al., 2017) toolkit with the default settings
for all other parameters.4

4.3 Dimensionality Reduction
After training the NMT model, we obtain the em-
bedding vectors for each of the speaker labels. This
results in a matrix with 99 (SKN) or 438 (NDC)
rows and 512 columns.

We run three dimensionality reduction methods
on the matrices: a principal component analysis
(PCA; Hotelling 1933), a k-means clustering (Mac-
Queen, 1967), and hierarchical agglomerative clus-
tering with Ward linkage (Ward, 1963). All meth-
ods are run on the scikit-learn toolkit (Pedregosa
et al., 2011).

The PCA is used to visualize the dialect con-
tinuum (see 4.4). Because the visualization relies
on three color channels (red, green, and blue), the
PCA is run with three components, each being rep-
resented by one color. Both k-means and Ward
clustering are run with the number of clusters rang-
ing from 2 to 20, and the clusterings are evaluated

4We did initial testing with an RNN-based model as well,
but the results were considerably better with the Transformer.
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with the methodology described in Section 4.5. The
number of clusters was defined by preliminary ex-
periments, which showed that increasing the num-
ber above 20 did not enhance the results. K-means
clustering is averaged over five runs, since it is
known to fluctuate.

4.4 Visualization

The PCA weights are normalized to values between
0 and 1 and used to present the red, green and
blue colors in a map visualization (Nerbonne et al.,
1999). For example, having values such as 0.5 for
PC1, 0.25 for PC2, and 0.75 for PC3 would trans-
late to 128 on the red channel, 64 on the green
channel, and 192 on the blue channel, since the
maximum value per color is 256. Having a color
channel for each of the three components therefore
translates to a single color (purple in the exam-
ple case). The method is used to create Figure 2.
A similar approach has been presented in Hovy
and Purschke (2018), and an often used technique
in dialectometry called multidimensional scaling
(MDS) functions on the same principle but with
distance matrices (Nerbonne et al., 1999; Leinonen
et al., 2016).

The best clustering results are also presented
on maps. The map visualizations are created with
QGIS (QGIS Development Team, 2023). For the
Ward clustering results, we present the dendro-
grams (see Figure 6), which show the relations
between clusters. The dendrograms are created
with scipy (Virtanen et al., 2020) and matplotlib
(Hunter, 2007) toolkits.

4.5 Evaluation

We evaluate the normalization performance on the
development sets to ensure that our models are
working as expected. We compare our results to
Partanen et al. (2019), who produce a good base-
line for the SKN dataset, even though they use the
detailed transcriptions and different preprocessing5

in their work. Since they evaluate their model per-
formance on word error rate (WER), we use the
same metric for the comparison.6

We evaluate the clusters produced by k-means
and Ward primarily with V-measure (Rosenberg

5On top of the different transcriptions, they use a
character-level neural machine translation model with an
RNN-architecture, and split the data to chunks of three words
(non-overlapping trigrams).

6We use https://github.com/nsmartinez/WERpp for
calculating the WER, as do Partanen et al. (2019).

and Hirschberg, 2007). V-measure is the harmonic
mean of homogeneity (how homogeneous the pro-
duced clusters are in terms of predefined classes)
and completeness (how well the predefined classes
stay complete in the clustering). Completeness is
typically higher with fewer clusters (there are less
clusters for the classes to spread out into) and homo-
geneity with a higher number of clusters (the clus-
ters do not include as many classes). V-measure
can thus be seen as an equivalent of F1-score and
homogeneity and completeness as precision and
recall. The difference is that V-measure does not
expect there to be an exact right number of clusters.
The V-measure score is between 0 and 1, with 1
being a perfect match between the gold labels and
the clustering solution.

As a more traditional metric, we also present the
adjusted Rand index (Rand, 1971). As V-measure,
the adjusted Rand index tries to compute the sim-
ilarity between the gold labels and the predicted
labels of a clustering algorithm. Mathematically,
Rand index presents the probability that a randomly
chosen pair of elements from the gold labels and
the predicted labels will agree. The adjusted Rand
index (ARI) is typically used instead of the plain
version, as it is corrected for chance. The ARI
score is between -1 and 1, with 0 being a random
prediction and 1 being a perfect match. Scores be-
low 0 are worse than the random baseline. Both
V-measure and ARI are computed with the scikit-
learn toolkit (Pedregosa et al., 2011).

We evaluate the clusterings against traditional
dialect divisions. For Finnish, we use the eight-
way classification presented in Itkonen (1989). For
Norwegian, the ground truth is the four-way divide
presented in Hanssen (2010 - 2014). The dialect di-
visions are presented in Figure 1. We compare our
results to a geographically and administratively de-
fined baseline, namely the regional units of Finland
(NUTS3 in European Union Nomenclature), and
the counties used in Norway from 1972 to 2018.7

5 Results

5.1 Normalization Performance

The word error rates for our models and for Parta-
nen et al. (2019) are presented in Table 3. Our SKN
model produces a similar, albeit slightly worse,
score than in their work. As far as we are aware,
there is no existing work on the normalization of

7The number of counties was reduced from 19 to 11 in
2018.

203

https://github.com/nsmartinez/WERpp


SKN NDC

Partanen et al. (2019) 5.73 —
This work 6.11 4.89

Table 3: Word error rates (↓) for Partanen et al. (2019),
our SKN model, and our NDC model.

the NDC dataset, and thus the score can not be
compared. Achieving a similar score as Partanen
et al. (2019) for Finnish, and a lower one for Nor-
wegian, does not indicate issues with the model
performance, and the learned representations of the
speakers can therefore be used for further analysis.

5.2 Principal Component Analysis
Dialects create a continuum, with either subtle tran-
sitions from one area to another, or stronger borders
between them. For instance in Finnish dialectol-
ogy, a strong border is seen between the Western
and Eastern dialects and smaller differences inside
these large areas. To analyze whether the neural
models have learned such differences, we run a
three-component principal component analysis on
the learned speaker embeddings.

Three components are chosen for visualization
purposes, as each of the three components are pre-
sented with their own color on a map visualization.
The speakers’ locations are plotted on the map, and
the degree of each component in each speakers’
interview is presented as red, green, and blue col-
ors, as explained in Section 4.4. Thus, similar hues
indicate linguistic similarity of the speakers, and
the degree of color change from one area to an-
other indicates the degree of linguistic difference.
The results of the principal component analysis are
presented in Figure 2. The Finnish and Norwe-
gian results are presented in the same figure for
convenience, but the analysis is separate for both
languages.

The explained variance of the principal compo-
nent analysis model is low for both languages (14%
for Finnish and 9% for Norwegian). We hypothe-
size this is due to the used data: we are working on
the embedding space of the normalization model,
which may include manifold variation, for example
relating to the actual normalization task. The ex-
plained variance may thus not be as good a measure
here as it is for multi-dimensional scaling, for in-
stance, which works on distance matrices. Limiting
the model to three components due to visualization
might also affect the explained variance.

We commence with an analysis of the Finnish
speakers in Figure 2. There are clearly differing
areas in the South-West (bright green), South-East
(light green), South-East Häme (blue), and Savo
(red). The South-West, South-East, and Savo are
traditional dialect areas, but South-East Häme has
been traditionally seen as a part of a larger Häme
area (dark blue in Figure 2). The shade of the
blue thus indicates that South-East Häme, although
related to the rest of Häme, is somewhat different
from it. Regarding the transitions from one area
to another, there is a clear difference between East
and West in the South and center of the country
(from blue to red), but not as big a difference in
the North. This reflects the understanding that the
Northern dialects are a combination of Western and
Eastern influence (e.g., Leino et al. 2006).

For Norwegian, the color changes in Figure 2 are
more subtle than for Finnish, indicating transitional
areas between the dialects. There is a clearly red
area (PC1) around Oslo, a purple cluster (PC1 and
PC3) in the center of the country and dark hues in
the West. The Trøndersk area in the middle has
a cyan quality (PC2 and PC3), which turns green
(PC2) in the North and yellow in the far North
(Finnmark). Regarding the four-way division of
Eastern, Western, Trøndersk, and Northern dialects,
the map shows that there is internal variation in the
areas.

5.3 Clustering Evaluation

We run k-means clustering and agglomerative clus-
tering with Ward linkage on the learned speaker
representations to examine whether the method-
ology captures similar divisions as in traditional
dialectology. We evaluate each clustering with the
number of clusters ranging from 2 to 20, and com-
pare them to dialect divisions presented in the past,
as explained in Section 4.5. We use V-measure and
adjusted Rand index as metrics, and a geographi-
cally and administratively defined baseline against
which to compare the clustering performance. The
results for both methods and datasets are presented
in Figure 3 and Figure 4. In case of ambiguity be-
tween the V-measure and adjusted Rand index, we
prefer the V-measure.

Figure 3 and Figure 4 show that agglomerative
clustering with Ward linkage outperforms k-means
on both datasets, with the difference being clearer
for Finnish. Similar findings have been reported be-
fore (Heeringa, 2004; Prokić and Nerbonne, 2008;
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Figure 1: The dialect areas used as gold labels. The Norwegian division is based on Hanssen (2010 - 2014) and the
Finnish one on Itkonen (1989).

Figure 2: Visualization of a three-component principal component analysis. The Norwegian speakers are presented
with circles and Finnish speakers with triangles. The dialect areas that are used as ground truth are presented with
thin grey lines. The first principal component is presented as red, second as green, and third as blue. The color
shade of each speaker is thus a combination of these three colors. Note that the PCA is different for both languages,
and they are presented side by side because of geographical proximity. Also note that there are two locations of
Finnish in Sweden (in the North and in the far West, close to the Norwegian border.)
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Figure 3: Evaluation of the clustering methods on the
SKN dataset. K-means averaged over five runs. Base-
line is presented as a horizontal line.

Hovy and Purschke, 2018). The scores are also gen-
erally worse for Norwegian, with the models barely
outperforming the V-measure baseline. The best
V-measure scores are achieved with Ward having
8 clusters for both languages. For Finnish, the 8-
cluster solution also achieves the clearly best Rand
index score. For Norwegian, the 8-cluster solution
is on par with a 5-cluster solution on the adjusted
Rand index. The 8-cluster solutions with Ward for
both languages are presented in Figure 5.

For k-means, the scores differ between the two
metrics: best scores are achieved with 5 (Rand) or
7 (V-measure) clusters for Norwegian, and with 4
(Rand) or 8 (V-measure) clusters for Finnish. Since
the k-means scores are generally worse, they are
presented in Appendix A in Figure 7.

5.4 Ward Clustering

The 8-cluster solutions for agglomerative cluster-
ing with Ward linkage are presented on a map in
Figure 5 and as dendrograms in Figure 6. The
colors and cluster labels are shared between the

2 4 6 8 10 12 14 16 18 20

0.4

0.6

0.8

1

V
-m

ea
su

re

K-means
Ward
Baseline

2 4 6 8 10 12 14 16 18 20

0.2

0.4

0.6

0.8

NDC – Number of clusters

A
dj

us
te

d
R

an
d

In
de

x

Figure 4: Evaluation of the clustering methods on the
NDC dataset. K-means averaged over five runs. Base-
line is presented as a horizontal line.

figures.
The 8-cluster solution for Finnish presented in

Figure 5 manages to capture five of the eight tradi-
tional dialect areas completely. The South-Western
dialects are presented in cluster number 3 (hereafter
C3; presented in purple), Southern Ostrobothnia in
C5 (brown), Central and Northern Ostrobothnia in
C6 (pink), Savo in C0 (orange8) and South-East in
C4 (green). The Far North is also homogeneously
presented in C1 (yellow), but some speakers from
the South are in the same cluster. Häme is divided,
with the South-East Häme generating its own clus-
ter (C2 / red; rest of Häme in C7 / grey). The divi-
sion of Häme seemed apparent also in Figure 2 and
has been reported in dialectometry before (Leino
and Hyvönen, 2008). Overall, the learned repre-
sentations correspond to the traditional dialects
of Finnish very well, which was evident in the
V-measure and ARI scores in Figure 3.

The dendrogram in Figure 6 further presents the
8Värmland in Western Sweden was inhabited by immi-

grants from Savo.
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Figure 5: Agglomerative clustering (Ward linkage) based on highest V-measure. Eight clusters for both languages.
Norwegian speakers are presented with circles and Finnish speakers with triangles.

Figure 6: Dendrograms for the agglomerative clustering (Ward linkage). SKN on the left and NDC on the right.
The dendrogram for NDC has been truncated for clarity. Cluster labels and colors match those of Figure 5.
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relations between the clusters. The first division
happens between Savo (C0 / orange) and all other
dialects. Further divisions are between South-East
(C4 / green and C2 / red) and the Western dialects,
which in turn split up one dialect area at a time
(in order: South-West (C3 / purple), Southern Os-
trobothnia (C5 / brown), Central and Northern Os-
trobothnia (C6 / pink) and finally Häme (C7 / grey)
and the Far North (C1 / yellow)).

The clusters for Norwegian in Figure 5 are also
quite distinct. The central Trøndersk area is mostly
presented in cluster number 2 (hereafter C2; pre-
sented in green color), but the three other dialect
areas are divided, with two clusters in Eastern (C3
/ pink and C6 / brown) and Northern (C1 / orange
and C7 / red) dialects, and three clusters in the
Western (C0 / yellow, C5 / grey and C4 / purple)
dialects. The clusters tend to stay inside the tra-
ditional dialect areas, apart from some Western
speakers belonging to cluster number 3 (pink) and
the municipality of Lierne (in the central Trøn-
dersk area, near the Swedish border) belonging
completely to cluster number 4 (purple).

The Norwegian Eastern dialects are moreover di-
vided into mountain communities (fjellbygdmål)
and lower elevation communities (flatbygdmål)
(Hanssen, 2010 - 2014), and our clusters number 3
(pink) and 6 (brown) follow this division quite well.
Likewise, the Northern dialects have a subdivision
into Nordland and Troms-Finnmark, which is also
reflected in clusters number 7 (red) and 1 (orange).
The Western dialects have three subgroups, as do
our clusters, but the areas are not as clear. The
clustering is thus quite faithful to the subdivisions
of the major dialect areas.

The dendrogram for NDC in Figure 6 presents
the relations between the clusters. The first divi-
sion is between North and South, as C2 (green),
C4 (purple), C7 (red), and C1 (orange), present-
ing the Central and Northern dialects, are divided
from the Western and Eastern dialects, presented in
C5 (grey), C0 (yellow), C3 (pink) and C6 (brown).
This is somewhat unexpected, as a two-way divi-
sion is typically seen to be between East and West.

In the North, C1 (orange; the area of Finnmark)
is divided from the three others, and C2 (green;
Trøndersk) is further divided from C4 (purple) and
C7 (red). In the South, C6 (brown) around Oslo
(flatbygdmål) is first divided from the others, fol-
lowed by C3 (pink; fjellbygdmål). This is to be
expected, as both C3 and C6 clusters belong to the

Eastern dialects.
All in all, it is apparent that the learned represen-

tations of the neural normalization models reflect
dialect divisions. For Finnish, the clustering pro-
duced by Ward in Figure 5 is very close to the gold
labels. For Norwegian, it is likely that using a more
fine-grained division as gold standard could pro-
duce even higher V-measure scores, since in our
clustering the four major dialect areas are divided
in a way that reflects traditional understanding of
dialectal subgroups.

6 Conclusions

In this paper, we apply neural dialect-to-standard
normalization models to two typologically different
languages and use the learned speaker representa-
tions to study the dialect continuum and division of
the languages. We use large datasets of Norwegian
and Finnish dialects, which have been manually
transcribed and manually or semi-automatically
normalized to a standard form. We add speaker
labels to each dialect utterance (source) and nor-
malize to the standard language, using byte-pair
encoded data.

The model learns representations of the speakers
based on the speaker labels added to the dialect
utterances. The learned representations are further
studied with principal component analysis, agglom-
erative clustering with Ward linkage, and k-means
clustering. The results are evaluated against gold
standard divisions of the dialects using V-measure
and adjusted Rand index as metrics. Agglomerative
clustering with Ward linkage outperforms k-means
clustering for both languages on V-measure.

We find that the learned representations of the
speakers correspond well to traditional dialect di-
visions. We also show that some dialect areas,
such as the Häme dialect in Finnish are not as ho-
mogenic as could be assumed by the traditional
division. The methodology could be further used
with noisier data from social media for instance,
which could reveal new insights into areal varia-
tion.

Limitations

We use clean, systematically transcribed and nor-
malized datasets. Further evaluation of the method-
ology on noisier data is left for future work. We
focus on two typologically different languages, but
our work is still tied to the linguistic and dialectal
practices of Northern Europe.
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The used neural normalization model has not
gone through extensive hyperparameter tuning,
since the aim of the paper is not in the best pos-
sible normalization quality. It is however possi-
ble that the learned representations would perform
even better if such tuning was to be executed. This
also applies to the chosen dimensionality reduction
methodology: using different methods might offer
better results.

There are multiple ways to divide the Finnish
and Norwegian dialects. We have chosen one such
division for both languages, and used them as the
gold standards. Using different divisions could
result in different models achieving the highest
scores. One could also try to avoid using gold
labels altogether to find new insights into areal
variation. It is anyhow apparent that the models
learn dialectal differences between speakers, and
that the selection of the gold standard only affects
which models are deemed to perform best.
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A K-means Clustering

Figure 7 presents the best k-means clustering re-
sults (evaluated by the V-measure). This results
in 7 clusters for Norwegian and 8 or 9 clusters for
Finnish. Note that while we averaged over 5 runs
when evaluating, we only present the single best
run with the said number of clusters. Therefore we
present the 8-cluster solution for Finnish, since it
achieved a higher single run score than a 9-cluster
solution.

The Finnish division achieves to capture the
South-Eastern (C4 / green), Southern Ostroboth-
nian (C5 / brown), Northern Ostrobothnian (C7 /
grey), Häme (C1 / yellow), and South-Western (C2
/ red) dialects for the most part. The traditional
dialect areas of South-West transitional, Far North,
and Savo are however divided into several clusters.
This results in a lower V-measure score than for the
Ward clustering in Figure 5.

The Norwegian clusters produced by the k-
means are reminiscent of the Ward clustering, pre-
sented in Figure 5. The central dialects (Trøndersk)
are mostly presented in C3 (pink). The Eastern
dialects are divided into mountain community (C1
/ orange) and lower elevation (C5 / grey), Western
dialects are divided into three groups (C2, C6, C4),
and the Northern dialects into two groups (C4 /
purple and C0 / yellow). There are however consid-
erably more outliers, with some speakers belonging
to different clusters than their surrounding speak-
ers. This results in low V-measure when evaluated
against the dialect areas.
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Figure 7: K-means clustering based on highest V-measure. Seven clusters for Norwegian, and eight clusters for
Finnish. Norwegian speakers are presented with circles and Finnish speakers with triangles.
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Abstract

This report describes first an industrial use case
for identifying closely related languages, e.g.
dialects, namely the detection of languages of
movie subtitle documents. We then present
a 2-stage architecture that is able to detect
macrolanguages in the first stage and language
variants in the second. Using our architecture,
we participated in the DSL-TL Shared Task of
the VarDial 2023 workshop. We describe the
results of our experiments. In the first experi-
ment we report an accuracy of 97.8% on a set
of 460 subtitle files. In our second experiment
we used DSL-TL data and achieve a macro-
average F1 of 76% for the binary task, and 54%
for the three-way task in the dev set. In the
open track, we augment the data with named
entities retrieved from Wikidata and achieve
minor increases of about 1% for both tracks.

1 Introduction

In the NLP community the problem of identifying
languages of documents is often perceived as be-
ing solved (Zampieri et al., 2023), also due to the
good accuracy of this function in tools like Google
Translate. This is especially true for many users as
they apply this method in cases where they want
to understand text that is not their field of native
speaker expertise. However, when applying state of
the art language identification tools to applications
where an accurate distinction of closely related lan-
guages, e.g. dialects is important, it soon becomes
clear that these tools often either do not offer vari-
ants in their list of covered languages or confuse
them regularly. One of these application areas are
movie subtitles. As we will see in the next section,
although these texts are typically not too small for
language identification, they often differ from news
domain content, which is the source of the shared
task data. Section 3 will describe the architecture of
our system. Using this architecture, we participated
in the DSL-TL Shared Task of the VarDial 2023

Format Title File Extension
DCTitle format xml

TTML xml
Flashplayer TTAF xml

SMPTE-TT (extension of
TTML)

xml

TTML dxfp
TTML itt
CAP cap
STL stl

Scenarist_SCC V1.0 scc
SRT srt

WEBVTT vtt

Table 1: Example subtitle file formats.

workshop. We describe this Shared Task briefly
in Section 4. Our experiments of our system on
this Shared Task and other data can be found in
Section 5, while Section 6 presents a manual oracle
experiment that aims at finding out how much an
extended NER-like mechanism can reduce errors.
Finally, Section 7 conclude our findings.

2 LID for Subtitles

Subtitle files contain the Closed Captions or Sub-
titles of movies and similar video content. These
files come in a variety of different, partially propri-
etary formats (see Table 1 for some of them).

The content consists typically of a mix of time
stamps, dialogue lines, textual descriptions of vi-
sual content, and symbols, e.g. for music (see Fig.
1 for an example extract of such content).

In order to cope with the diversity of formats,
and to extract the textual parts in the target lan-
guage, a preprocessing stage is needed. Afterwards,
UTF-8-encoded text can be fed into the Language
Identification stage. In our experience the resulting
subtitle text documents have a median file size of
about 25 kbytes. Subtitles and Closed Captions
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are meant to be displayed over the video for a cer-
tain amount of time (hence the time stamps). The
displayed text for this period can contain either
single words, parts of sentences, or multiple sen-
tences. These text portions are reflected by line
breaks in the document, i.e. line breaks separate
different time periods. Apart from textual descrip-
tions and symbols, texts transcribe mainly the spo-
ken dialogue. DVD and BluRay releases of video
content often come with a number of subtitles in
different languages and language variants.1 Also,
releases of these media in different regions or coun-
tries come with different sets of subtitle languages.
As a result, for a single piece of video content,
many different subtitle documents exist. If one
imagines that e.g. for a single movie, different
versions of that movie are needed even in a sin-
gle language (realizing different ratings, different
cuts, or being trailer versions), the number of subti-
tles documents over an entire catalogue of movies
is very large. Ideally, a digital asset management
system denotes the language of a single subtitle
file. However, in reality, movie studios have a very
large catalogue of content that partially predates
the widespread availability of low-threshold asset
management platforms. This means that there are
many subtitle files on many disks in many drawers
of which no exact metadata is known. This is where
Language Identification really helps as it avoids the
need of re-creating subtitle files for existing movies
if they are about to be re-released. Also, it helps to
verify existing language metadata as these might
be incorrect. The user of such a tool will be typi-
cally a technician, not a linguist. Also, the user will
probably have to face a lot of different languages,
some of which will be very foreign to the user. Fi-
nally, it will be very difficult for the user to get a
gold language label for a file using standard tools.
Subtitles are relatively mono-lingual; they might
contain a moderate amount of code-switching and
the occasional sentence in another language.

3 System Architecture

The requirements for the use case mentioned in
Section 2 asked for a system that could not only
recognize macrolanguages, but also language vari-
ants. An earlier internal language identification
system implementation based purely on charac-
ter n-grams and perplexity proved to be especially

1For four releases of the movie “Bullet Train” from 2022
alone, we counted 30 different subtitle languages.

7
00:01:30,904 –> 00:01:32,839
ANIMATED MUSIC PLAYS ON TV
8
00:01:37,443 –> 00:01:39,578
♪♪♪
9
00:01:41,014 –> 00:01:44,645
[ON TV IN JAPANESE] ANNOUNCER: The boom slang was
stolen from the zoo last night.
10
00:01:44,729 –> 00:01:47,398
It’s extremely dangerous.
11
00:01:47,754 –> 00:01:49,689
[RHYTHMIC BEEPING AND WHOOSHING CONTINUE]

Figure 1: Subtitle file extract.

Figure 2: Overall architecture.
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weak when it comes to closely-related languages
and dialects. Consulting the literature (Goutte et al.,
2014; Zampieri et al., 2015) we decided in favor
of a two-stage system, where the first stage aims at
recognizing a “language group”. For us, Language
Groups are groups of closely related languages that
are difficult to distinguish in the first stage. Lan-
guage Groups can be macrolanguages that contain
e.g. different language variants, or simply a set of
languages that are hard to tell apart for a stage 1
algorithm. If the language in stage 1 is marked in a
list as being a member of a certain Language Group,
a stage 2 takes over and aims at determining the
concrete member of the language group. Using this
architecture, not all language group member lan-
guages need to be recognized in stage 1. Let’s now
have a closer look at the two stages (see Figure 2).

3.1 Stage 1

For stage 1, our system follows the general ap-
proach of Goutte et al. (2014); Zampieri et al.
(2015). More concretely, we use the 126
MB-model of fasttext-langdetect (Joulin et al.
(2016a,b)) directly. This package uses pretrained
fastText embeddings for language identification
and provides support for 176 languages. The only
difference is that we additionally use the model
from fastlangid2 in order to cure the inexplicable
weakness of fasttext-langdetect not to distinguish
traditional and simplified Chinese.

3.2 Stage 2

Our second stage utilizes an SVM with 1- to 4-
character n-gram features, along with word uni-
gram features. SVMs have been shown in prior
work to have strong baselines, which have consis-
tently outperformed RNNs in prior experiments
(Çöltekin et al., 2018). All n-gram features are
weighted with sub-linear tf-idf scaling. The SVM
models are trained with scikitlearn (Pedregosa
et al., 2011).

4 The DSL-TL Shared Task at VarDial
2023

The Shared Task on "Discriminating Between Sim-
ilar Languages - True Labels" (DSL-TL) aims at
examining the effects of a data set for identify-
ing sentences in similar languages that have been
gold-labelled in a new way. Previously, the gold
labels for such sentences have been derived from

2https://github.com/currentslab/fastlangid

Language
code

# of
files

Language
code

# of
files

bg 2 ms 1
da 3 no 3
de 5 pl 6
el 1 PT-PT 9
en 225 PT-BR 13
es 103 ru 7
fi 3 sr 1
fr 14 sv 3
hu 3 th 4
is 3 tr 4
it 9 zh-hans 6
ja 23 zh-hant 2
mr 7

Table 2: Subtitle evaluation data.

the country (and therefore the language variant)
association of the source of a sentence, e.g. a
newspaper that is primarily published in a certain
country. This method is problematic if e.g these
sentences do not contain a variant-specific mark-
ers and, thus, do not help an automatic mechanism
to determine a language variant. The new way to
label sentences is using multiple human annota-
tors to determine a variant label while offering a
labeller to also specify that a sentence is not variant-
specific. The subject of this labelling campaign has
been nearly 13k sentences in a number of language
varieties, namely English (American and British),
Portuguese (Brazilian and European), and Spanish
(Argentinian and Peninsular). The DSL-TL web-
page3 explains the Shared Task in more detail and
contains a link to the data used in the Shared Task.
(Zampieri et al., 2023) explains the new dataset, the
annotation process that led to this dataset, and the
performance of baseline algorithms on the dataset.
The results of all teams and the shared tasks will
be explained in (Aepli et al., 2023).

5 Experiments on Subtitle Files

One of the original use cases for our system is
subtitle file language identification.

5.1 Data
Stage 1 was used out of the box; no further training
was used. The Language Group models of Stage
2 were trained on prior years of DSLCC data (Tan

3https://sites.google.com/view/vardial-2023/
shared-tasks#h.klf8c6mlh0zk
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et al., 2014) for the internal system. The evaluation
data set consists of 460 subtitle files that have been
converted to UTF-8 text. Table 2 shows the dis-
tribution of these files to Gold labels. Gold labels
have been raised mainly by a single person taking
into account the content of the files, language hints
in the filenames that sometimes occur (but which
are sometimes also wrong), and existing language
identification tools. As most of the labels denote
languages which can be easily distinguished, these
labels are expected to be correct. One group of
labels, though, posed quite a challenge. 22 files be-
long to the Language Group “Portuguese” with the
two members pt-PT and pt-BR. These files were
labelled by a native Brazilian Portuguese speaker
who expressed doubts on the reliability of his judg-
ments on these files.

5.2 Results
The content in the files was concatenated, then
processed by the system as described in Section
4. We also limited the set of language groups and
variants to those we expected to be contained in
the test data set (because in our experience, the
probability to correctly identify the standard vari-
ant in a language group is smaller than to identify
the macrolanguage). From the 460 files, 451 (or
98.0%) were recognized correctly. The 9 error
cases can be divided as follows:

• 7 cases confused pt-PT with pt-BR. In 6 of
these cases the file name hints to the possi-
bility that these files might have been indeed
created as pt-BR.

• 2 cases were extremely short files (in fact
these were the smallest files of the evaluation
set).

So, on this evaluation set our system seems to per-
form quite well as long as the content size is not
too small.

6 Experiments on DSL-TL Data

Now we will describe our experiments for the DSL-
TL Shared Task. Until mentioned otherwise, all
stages have been trained on DSL-TL training data.
In Section 6.2 the system will be tested on the DSL-
TL dev set, in Section 6.3 on the DSL-TL test set.

6.1 Predicting Macrolanguages for DSL-TL
Regarding stage 1 of our architecture, we wondered
with respect to the DSL-TL task whether our ex-

isting stage 1 trained on 177 languages (i.e. with
data outside the DSL-TL datasets) would perform
worse than a stage 1 trained purely on the three
language families of the Shared Task using only
DSL-TL training data.

In our experiment, applied to the combined
DSL-TL dev set data of all languages, the
only difference was that our existing stage
1 incorrectly predicted one Argentinian Span-
ish sentence as Italian (this sentence was “19.
Lucas di Grassi (BRA/Virgin-Cosworth):
1min24s547)”, which, considering the Italian ori-
gin of the last name, arguably constitutes a reason-
able error. All other stage 1 predictions (also from
the DSL-TL-only stage 1) were correct.

6.2 Results on DSL-TL Dev Data

In observance of the influence Named Entities po-
tentially have upon the task, we ran two experi-
ments on the DSL-TL data. First, for the closed
task, we varied the number of maximum word n-
grams added to observe the difference in perfor-
mance. Second, we also experimented with adding
named entities as retrieved from a linked open
database (Vrandečić and Krötzsch, 2014) to the
data as our submission to the open task, which al-
lows for the usage of external data. We observe
a consistent improvement in both the binary and
three-way task by way of this method.

6.2.1 Word n-gram Features
Table 3 shows our results of increasing the maxi-
mum number of word n-gram features on the dev
data in the binary task. Table 4 shows our results
per class. Table 5 and Table 6 show the same results
for the three-way classification task. Our results
replicate the conclusion made by Çöltekin et al.
(2018): increasing the number of word n-gram fea-
tures becomes useful up to a certain point, after
which the effect either levels out or starts hurting
performance. We hypothesize that this is due to
higher n-gram numbers capturing named entities,
but once the granularity exceeds what is typical for
a named entity, the features start to lose predictive
power.

6.2.2 Adding Named Entities
Our second approach experiments with using addi-
tional NER data as retrieved from Wikidata (Vran-
dečić and Krötzsch, 2014). This NER data consists
of 10k person names per country associated with
the 6 language variants (i.e. the US, the UK, Spain,
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0 1 2 3
pt 0.66 0.66 0.68 0.68
en 0.80 0.81 0.82 0.82
es 0.74 0.76 0.75 0.75

Table 3: Macro averaged F1 on dev data binary classifi-
cation task, where the columns indicate the maximum
number of word n-gram features used.

0 1 2 3
PT-BR 0.83 0.82 0.84 0.84
PT-PT 0.48 0.5 0.52 0.52
ES-ES 0.84 0.85 0.85 0.85
ES-AR 0.65 0.67 0.66 0.65
EN-GB 0.75 0.77 0.79 0.79
EN-US 0.84 0.85 0.86 0.86

Table 4: Per class F1 on dev data binary classification
task, where the columns indicate the maximum number
of word n-gram features used.

Argentina, Portugal, and Brazil). From these lists
we selected a number of names randomly per sen-
tence per language variant and added these names
as training features to the sentence. Our results
for the binary task are listed in Table 7, and the
three-way results are noted down in Table 9. Ta-
ble 8 and Table 10 shows our per class results. We
observe that in the binary case, Spanish sees an
improvement of 2% while Portuguese and English
deteriorate in performance; in the three-way case
however, the opposite phenomenon is observed,
where considerable improvements are seen for both
Portuguese and English, but not Spanish.

6.3 Results on DSL-TL Test Data

The results of our system on Open and Closed
Tasks, on Task 1 (three-way labels) and Task 2
(binary labels) as macro averages per language and
per single label, as well as the rank of our result
among the baselines and the other teams can be
found in Table 11. Our results can be found under
the team name "SSL" in (Zampieri et al., 2023).

0 1 2 3
pt 0.42 0.42 0.42 0.42
en 0.52 0.54 0.55 0.54
es 0.52 0.51 0.52 0.52

Table 5: Macro averaged F1 on dev data three-way
classification task, where the columns indicate the max-
imum number of word n-gram features used.

0 1 2 3
PT 0.04 0.05 0.03 0.03

PT-BR 0.78 0.77 0.79 0.79
PT-PT 0.43 0.45 0.44 0.45

ES 0.40 0.39 0.39 0.39
ES-ES 0.69 0.67 0.68 0.68
ES-AR 0.46 0.48 0.48 0.48

EN 0.07 0.13 0.12 0.10
EN-GB 0.70 0.71 0.74 0.73
EN-US 0.78 0.79 0.79 0.79

Table 6: Per class F1 on dev data three-way classifi-
cation task, where the columns indicate the maximum
number of word n-gram features used.

7 Country-Informed NER Oracle
Performance

We were wondering how much a slightly different
approach would fare using an NER-like system that
could tell one the country a Named Entity is typ-
ically associated with. One (probably inefficient)
way to implement this system would be to google
a maximum-length Named Entity candidate (the
English DSL-TL data is very consistently capital-
ized in terms of Named Entities) and to take the
first country reference that is found in the results
(maybe normalizing the result, e.g. from “English”
to “UK”). When a Knowledge Panel appears in
the results, this information should first be taken
into account. As we cared only about oracle perfor-
mance, we did this process manually.

In order to reduce the English dev set sentences
to manually label this way, we only looked at the 92
sentences (from 599) our automatic method from
above incorrectly predicted.

For each of these sentences, we marked the cap-
italized Proper Nouns and then started a Google
search. We also looked at mentioned currencies.
An example of this data can be found in Table 12.

When comparing the labels from the Oracle
mechanism to the DSL-TL labels, we found four
groups:

• In 32 cases (34.8%) the Oracle mechanism
found the TL label.

• In 25 cases (27.2%) the Oracle mechanism did
not come to a conclusion as either no usable
Named Entities were found or there was no
majority for a country of the found Named
Entity (e.g. there were two names associated
with the US and two with the UK).
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0 1 2 3 4 5 6 7 8 9
pt 0.68 0.67 0.64 0.59 0.57 0.58 0.52 0.51 0.47 0.48
en 0.82 0.81 0.82 0.81 0.78 0.77 0.75 0.75 0.74 0.69
es 0.75 0.77 0.77 0.77 0.75 0.77 0.77 0.77 0.76 0.77

Table 7: Macro averaged F1 on dev data binary classification task, where the columns indicate the number of person
names appended to each training instance.

0 1 2 3 4 5 6 7 8 9
pt-pt 0.53 0.5 0.45 0.34 0.3 0.33 0.22 0.19 0.13 0.14
pt-br 0.84 0.83 0.83 0.83 0.83 0.83 0.82 0.82 0.82 0.82
en-gb 0.79 0.78 0.79 0.76 0.73 0.71 0.67 0.67 0.65 0.58
en-us 0.85 0.85 0.86 0.85 0.84 0.83 0.83 0.83 0.82 0.81
es-es 0.85 0.85 0.85 0.85 0.84 0.84 0.84 0.84 0.82 0.83
es-ar 0.66 0.68 0.69 0.69 0.67 0.7 0.7 0.7 0.7 0.71

Table 8: Per class F1 on dev data binary classification task, where the columns indicate the number of person names
appended to each training instance.

0 1 2 3 4 5 6 7 8 9
pt 0.42 0.46 0.46 0.38 0.30 0.24 0.19 0.15 0.13 0.10
en 0.55 0.58 0.62 0.57 0.53 0.45 0.36 0.30 0.24 0.20
es 0.53 0.49 0.40 0.33 0.28 0.22 0.20 0.19 0.18 0.18

Table 9: Macro averaged F1 on dev data three-way classification task, where the columns indicate the number of
person names appended to each training instance.

0 1 2 3 4 5 6 7 8 9
pt 0.03 0.16 0.28 0.28 0.26 0.26 0.25 0.24 0.24 0.24

pt-pt 0.45 0.43 0.34 0.17 0.09 0.06 0.03 0.01 0.02 0.01
pt-br 0.78 0.78 0.76 0.68 0.54 0.41 0.28 0.2 0.13 0.07
en 0.14 0.2 0.33 0.31 0.32 0.29 0.26 0.25 0.24 0.24

en-gb 0.73 0.73 0.73 0.66 0.55 0.38 0.24 0.12 0.05 0.04
en-us 0.8 0.8 0.79 0.75 0.71 0.67 0.58 0.52 0.42 0.34

es 0.0 0.0 0.0 0.0 0.0 0.43 0.48 0.5 0.5 0.5
es-es 0.71 0.71 0.72 0.72 0.71 0.69 0.6 0.46 0.33 0.21
es-ar 0.5 0.52 0.52 0.51 0.49 0.47 0.39 0.25 0.16 0.13

Table 10: Per class F1 on dev data three-way classification task, where the columns indicate the number of person
names appended to each training instance.
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Type Track Results for Recall Precision F1-score Rank
Closed Track 1 Macro Average 0.4978 0.4734 0.4817 12 of 13
Closed Track 1 “en” label 0 0 0 14 of 14
Closed Track 1 “en-GB” label 0.7807 0.7063 0.7417 9 of 14
Closed Track 1 “en-US” label 0.8462 0.763 0.8024 6 of 14
Closed Track 1 “es” label 0.3205 0.3623 0.3401 13 of 14
Closed Track 1 “es-AR” label 0.4135 0.5046 0.4545 10 of 14
Closed Track 1 “es-ES” label 0.767 0.6371 0.696 5 of 14
Closed Track 1 “pt” label 0 0 0 11 of 14
Closed Track 1 “pt-PT” label 0.8997 0.7079 0.7923 1 of 14
Closed Track 1 “pt-BR” label 0.4526 0.5794 0.5082 7 of 14
Closed Track 2 Macro Average 0.7521 0.7885 0.7604 8 of 15
Closed Track 2 “en-GB” label 0.7895 0.7895 0.7895 10 of 15
Closed Track 2 “en-US” label 0.8526 0.8471 0.8498 10 of 15
Closed Track 2 “es-AR” label 0.5789 0.828 0.6814 10 of 15
Closed Track 2 “es-ES” label 0.9223 0.7724 0.8407 5 of 15
Closed Track 2 “pt-PT” label 0.9097 0.7861 0.8434 1 of 15
Closed Track 2 “pt-BR” label 0.4599 0.7079 0.5575 11 of 15
Open Track 1 Macro Average 0.4937 0.5068 0.4889 1/1
Open Track 1 “en” label 0.1333 0.1481 0.1404 1/1
Open Track 1 “en-GB” label 0.693 0.7248 0.7085 1/1
Open Track 1 “en-US” label 0.8205 0.7711 0.795 1/1
Open Track 1 “es” label 0.4038 0.3772 0.3901 1/1
Open Track 1 “es-AR” label 0.3609 0.4948 0.4174 1/1
Open Track 1 “es-ES” label 0.7379 0.658 0.6957 1/1
Open Track 1 “pt” label 0.322 0.1473 0.2021 1/1
Open Track 1 “pt-PT” label 0.7525 0.7401 0.7463 1/1
Open Track 1 “pt-BR” label 0.219 0.5 0.3046 1/1
Open Track 2 Macro Average 0.7647 0.7951 0.7729 2 of 2
Open Track 2 “en-GB” label 0.7544 0.8037 0.7783 2 of 2
Open Track 2 “en-US” label 0.8718 0.8293 0.85 2 of 2
Open Track 2 “es-AR” label 0.6917 0.8288 0.7541 2 of 2
Open Track 2 “es-ES” label 0.9078 0.8202 0.8618 2 of 2
Open Track 2 “pt-PT” label 0.9097 0.7839 0.8421 1 of 2
Open Track 2 “pt-BR” label 0.4526 0.7045 0.5511 2 of 2

Table 11: Results on DSL-TL Test data.
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sentence TL
label

Oracle
label

The Grenfell Tower fire shifted
the tectonic plates of British so-
ciety, triggering a wave of inves-
tigations and renewing a national
conversation about social housing.
One year on, Jack Hardy reviews
the major episodes from a trau-
matic year.

EN-GB EN-GB

EASTLEIGH’S rapidly rising
star Luke Coulson is putting club
before country. The Spitfires’ 22-
year-old league top scorer will sac-
rifice his place in the England C
squad in order to play in Tuesday’s
FA Cup first round replay at Swin-
don Town.

EN-US EN-GB

GOOD Samaritans cornered three
loose ponies which galloped
through oncoming traffic on the
A31 on Monday night.

EN-GB None

Table 12: Example oracle data.

• In 31 cases (33.7%) the Oracle mechanism
found a label different from the TL label,
but we would have labeled the sentence dif-
ferently. Our opinion was mainly informed
by the subject matter and the country of the
Named Entities as we are of the opinion that
it would be only of local interest and therefore
could have been published only by a local
newspaper.

Sometimes we could also trace the sentence
to a newspaper from a certain country. This
opinion is obviously based on our belief of
the intention-based criteria for documents of a
language variant. Therefore, the reader might
either count this group as errors or as correct
cases. We discussed our suspicion that the la-
belers are heavily using their knowledge of the
country of Named Entities in order to come
to a label. For this group, we basically claim
that the labelers did not follow that suspicion.

• In 4 cases (4.3%) the Oracle mechanism found
the wrong label and we agree that the TL label
is correct.

8 Conclusion

We reported on our use case for Language Identifi-
cation, namely movie subtitles. For movie subtitles
there is a need to also recognize close languages
and variants.

We presented the 2-stage architecture of our Lan-
guage Identification system that uses a second stage
if a language is identified in the first stage that is
marked as being a member of a “language group”.
We reported on the results of our experiments. In
the first experiment we reported an accuracy of
97.8% on a set of 460 subtitle files. In our second
experiment we used DSL-TL data and achieved
for the dev set a macro-averaged F1 of 54% in the
three-way classification task, and 76% in the binary
classification task, where we see an increase in per-
formance by adding Named Entities retrieved from
a knowledge base. On the DSL-TL test set for the
closed task we achieved a macro-averaged F1 of
48% in the three-way classification task, and 76%
in the binary classification task. On the open task,
we achieved 49% for the three-way, and 77% on
the binary task.

We reported on a small experiment using a man-
ually executed “country-informed” NER on those
sentences of the English DSL-TL dev set that were
incorrectly predicted by our system. We did this
in order to see how much head room remains in
the NER-based approach to identify DSL-TL data
as some sort of oracle data. As it turns out, this
mechanism can reduce the number of errors by at
least a third. As future work we intend to examine
the question whether it is better to keep language
group languages separated for training stage 1 or
whether the data for a language group should be
mixed together before training in order to achieve
a better stage 1 performance.

There are two aspects that are not clear to us
when it comes to the DSL-TL dataset, and that
might lead to future research. First, how strongly
influence named entities the human labellers and
is this detrimental to the label accuracy? To quote
(Goutte et al., 2016)

[...] named entities [...] can influence [...]
also the performance of human annota-
tors.

Second, again (Goutte et al., 2016) mentions that a

general tendency we observed is that it is
easier to identify an instance that is not
from the speaker’s own language than
the opposite. Our results indicate that
humans are better in telling what is not
a text written in their own language or
variety than telling what it is.
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We understand from the description of the new
annotation process that a labeller could annotate
sentences in his/her own, or another variant. As
the ratio of native speakers for the corresponding
variants seems not to be mentioned, it is hard to
assess the influence of this aspect on the results.
Maybe it would be worthwhile to trying to evaluate
the accuracy of the new labels. This is, of course,
not easy as then another, more accurate process
would be needed to come to "platinum" labels.

Limitations

The NER-based extensions to our base 2-stage al-
gorithm increase the accuracy only for documents
that contain enough Named Entities. Such docu-
ments can be found in news domains, but not in
all other domains. Depending on the implemen-
tation, the extensions might additionally rely on a
correct capitalization in the document. Basically,
all Language Identification systems assume that a
document is using the written version of a variant.
If a document is transcribing the spoken variant, it
will have problems to be processed.
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Tiedemann, and Preslav Nakov. 2015. Overview of
the DSL shared task 2015. In Proceedings of the
Joint Workshop on Language Technology for Closely
Related Languages, Varieties and Dialects, pages 1–
9, Hissar, Bulgaria. Association for Computational
Linguistics.

221

https://aclanthology.org/W18-3906
https://aclanthology.org/W18-3906
https://aclanthology.org/W18-3906
https://doi.org/10.3115/v1/W14-5316
https://doi.org/10.3115/v1/W14-5316
https://aclanthology.org/L16-1284
https://aclanthology.org/L16-1284
https://doi.org/10.1145/2629489
https://doi.org/10.1145/2629489
https://aclanthology.org/W15-5401
https://aclanthology.org/W15-5401


Tenth Workshop on NLP for Similar Languages, Varieties and Dialects (VarDial 2023), pages 222–229
May 5, 2023 ©2023 Association for Computational Linguistics

Two-stage Pipeline for Multilingual Dialect Detection

Ankit Vaidya and Aditya Kane
Pune Institute of Computer Technology, Pune

{ankitvaidya1905, adityakane1}@gmail.com

Abstract

Dialect Identification is a crucial task for local-
izing various Large Language Models. This pa-
per outlines our approach to the VarDial 2023
DSL-TL shared task. Here we have to iden-
tify three or two dialects from three languages
each which results in a 9-way classification for
Track-1 and 6-way classification for Track-2
respectively. Our proposed approach consists
of a two-stage system and outperforms other
participants’ systems and previous works in
this domain. We achieve a score of 58.54% for
Track-1 and 85.61% for Track-2. Our codebase
is available publicly1.

1 Introduction

Language has been the primary mode of communi-
cation for humans since the pre-historic ages. Stud-
ies have explored the evolution of language and
outlined mathematical models that govern the intri-
cacies of natural language (Nowak and Krakauer,
1999; Hauser et al., 2014). Inevitably, as humans es-
tablished civilization in various parts of the world,
this language was modified by, and for the group
of people occupied by that particular geographical
region. This gave rise to multiple national dialects
of the same language.

The VarDial workshop (Aepli et al., 2023) (co-
located with EACL 2023) explores various dialects
and variations of the same language. We partici-
pated in the Discriminating Between Similar Lan-
guages - True Labels (DSL-TL) shared task. In
this task, the participants were provided with data
from three languages, with each language having
three varieties. This shared task consisted of two
tracks – Track-1 featuring nine-way classification
and Track-2 featuring six-way classification. The
second track included two particular national di-
alects of each language (eg. American English and
British English), and the first track had one general

1https://github.com/ankit-vaidya19/EACL_
VarDial2023
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23.5%

PT-PT
10.2%

ES
12.5%

EN-US
11.9%

EN-GB
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ES-ES
16.6%

ES-AR
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Figure 1: Class distribution of dialects

label (English) in addition to the aforementioned
two.

We ranked 1st in both of the tracks. More-
over, we beat the next best submission by a margin
of 4.5% in the first task and 5.6% in the second
task.We were the only team to surpass the organizer
baseline scores. We present our winning solution
in this paper. We used an end-to-end deep learning
pipeline which consisted of a language identifi-
cation model and three language-specific models,
one for each language. We converged upon the best
combination by doing an elaborate analysis of var-
ious models available. Furthermore, in this work
we also analyze the performance of the pipeline as
a whole and also provide an ablation study. Lastly,
we provide some future directions in this area of
research.

2 Related Work

The present literature encompasses various aspects
of dialect identification. We study this from three
perspectives: large language models, language
identification and dialect classification problems.

2.1 Large Language Models
The success of transformers and BERT (Devlin
et al., 2019) based models was inevitable since
the initial boom of the transformer (Vaswani et al.,
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Figure 2: System diagram for dialect classification.The LID classifies the input into one of 3 languages.The sample
is then further classified into dialects by language specific models.

2017) model. In recent years, many other ar-
chitectures like RoBERTa (Liu et al., 2019) and
ELECTRA (Clark et al., 2020) have further pushed
the state-of-the-art in this domain. Moreover,
autoregressive models like GPT (Radford and
Narasimhan, 2018) and GPT-2 (Radford et al.,
2019) have also shown their prowess. Mul-
tilingual versions of RoBERTA, namely XLM-
RoBERTa (Conneau et al., 2020) are also avail-
able. Lastly, language specific models like Span-
ish BERT (la Rosa y Eduardo G. Ponferrada y
Manu Romero y Paulo Villegas y Pablo González
de Prado Salas y María Grandury, 2022) and Por-
tuguese BERT (Souza et al., 2020) are available as
well. Our winning solution makes use of these large
language models trained on specific languages.

2.2 Language Identification Models

Many multilingual language identification mod-
els have been developed in order to classify the
language of the input sentence beforehand. Even
though the initial works used n-gram models and
generative mixture models (Lui et al., 2014; Bald-
win and Lui, 2010; Al-Badrashiny and Diab, 2016;
Bernier-Colborne et al., 2021; Bestgen, 2021) or
even conditional random fields (Al-Badrashiny and
Diab, 2016) and other classical machine learning
methods like naive bayes (Jauhiainen et al., 2020,
2022, 2021), modern methods have shifted to the
use of deep learning for language identification
(Mathur et al., 2017; Thara and Poornachandran,
2021; Romero et al., 2021; Bernier-Colborne et al.,

2022). Recent works have focused on deep learning
based methods, where handling codemixed data is
a big challenge in the domain. For our experiments,
we use a version of XLM-RoBERTa finetuned on
a language identification dataset2. This model has
near-perfect test accuracy of 99.6%.

2.3 Dialect Classification

Dialect classification has been previously solved
using statistical methods like Gaussian Mixture
Models and Frame Selection Decoding or Support
Vector Machines (SVM) (Lei and Hansen, 2011;
Tillmann et al., 2014). It has been explored rel-
atively sparsely, mostly in the case for local lan-
guages (Hegde et al., 2020). Deep learning ap-
proaches have been explored in previous editions
of the VarDial workshop shared tasks (Rebeja and
Cristea, 2020) and otherwise (Lin et al., 2020). Di-
alect classification was also explored previously as
a part of other shared tasks (Khered et al., 2022).
We want to stress that given the multilingual nature
of the dataset, using the present methods directly
was not an option. In our work, although we take
inspiration from the previous works, we propose a
novel system that surpasses the performance of the
previous systems by a large margin.

3 Data

The dataset (Zampieri et al., 2023) contained a to-
tal of 11,610 sentences belonging to 3 languages:

2This model is available here and dataset is available here
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Model-EN Model-ES Model-PT Validation F1 Test F1

RoBERTabase Spanish RoBERTabase XLM-RoBERTabase 60.74% -
RoBERTabase Spanish BERTbase XLM-RoBERTabase 60.05% -

BERTbase Spanish RoBERTabase XLM-RoBERTabase 59.08% -
BERTbase Spanish BERTbase Portuguese BERTbase 60.17% -
BERTbase Spanish BERTbase XLM-RoBERTabase 58.40% -

BERTbase Spanish RoBERTabase Portuguese BERTbase 60.85% 58.54%
RoBERTabase Spanish RoBERTabase Portuguese BERTbase 62.51% 58.09%
RoBERTabase Spanish BERTbase Portuguese BERTbase 61.83% 57.03%

Table 1: Our complete results for Track-1 using the two-stage dialect detection pipeline. Model-* denotes the
language of the models used for the experiments.

Model-EN Model-ES Model-PT Validation F1 Test F1

RoBERTabase XLM-RoBERTabase Portuguese BERTbase 80.84% -
RoBERTabase XLM-RoBERTabase XLM-RoBERTabase 79.16% -

BERTbase Spanish RoBERTabase XLM-RoBERTabase 82.22% -
BERTbase XLM-RoBERTabase Portuguese BERTbase 80.55% -
BERTbase XLM-RoBERTabase XLM-RoBERTabase 78.87% -

RoBERTabase Spanish RoBERTabase Portuguese BERTbase 84.19% 85.61%
BERTbase Spanish RoBERTabase Portuguese BERTbase 83.90% 85.11%

RoBERTabase Spanish RoBERTabase XLM-RoBERTabase 82.51% 83.68%

Table 2: Our complete results for Track-2 using the two-stage dialect detection pipeline. Model-* denotes the
language of the models used for the experiments.

English (EN), Spanish (ES), Portuguese (PT) and
each language had 3 corresponding varieties. The
varieties for English were: American English
(EN−US), British English (EN−GB) and Com-
mon English Instances (EN ). Similarly varieties
corresponding to Spanish and Portuguese were: Eu-
ropean/Peninsular Spanish (ES − ES), Argentine
Spanish (ES −AR), Common Spanish Instances
(ES) and European Portuguese (PT−PT ), Brazil-
ian Portuguese (PT −BR), Common Portuguese
Instances (PT ). These were divided into a training
set containing 8,745 sentences and the validation
set containing 2,865 sentences. The system was
evaluated on a separate testing set containing 1,290
sentences. This dataset has acute class imbalance.
We observed that the class PT-BR had the most
number of samples (2,724) and the class EN had the
least number of samples (349), and thus the imbal-
ance ratio was almost 1:8. We have illustrated the
data distribution in Figure 1. We tried to mitigate
this imbalance using over-sampling and weighted
sampling methods. However, the improved data
sampling method did not affect the performance.

4 System Description

This was a problem of multi-class classification
having 9 classes for Track-1 and 6 classes for
Track-2. The samples were belonging to 3 lan-
guages having 3 varieties each, so the classifica-
tion pipeline was made in 2 stages. The Language
Identification (LID) model which is the first stage
classifies the sentence into 3 languages: English
(EN), Spanish (ES) and Portuguese (PT). The LID
is a pretrained XLM-RoBERTa that is fine-tuned
for the task of language identification. It is able
to classify the input sentence into 20 languages.
We classify and separate the samples according to
their language. The samples corresponding to the
specific languages are then fed into the language
specific models for dialect identification. For di-
alect identification we have used models like BERT
and RoBERTa with a linear layer connected to the
pooler output of the models. Then fine-tuning
is done on the models for dialect identification
using the samples corresponding to the specific
languages. For the task of dialect identification
we experimented with several pretrained models

224



Lg Model Train F1 Val F1

EN RoBERTa 79.74% 71.34%
EN BERT 80.71% 70.19%
EN ELECTRA 65.02% 66.60%
EN XLM-RoBERTa 71.64% 66.12%
EN GPT-2 56.78% 49.74%

ES Spanish RoBERTa 74.36% 62.96%
ES XLM-RoBERTa 59.46% 61.58%
ES Spanish BERT 67.40% 60.76%
ES Spanish GPT-2 34.33% 46.11%

PT Portuguese BERT 67.63% 55.15%
PT XLM-RoBERTa 64.33% 48.46%
PT Portuguese ELECTRA 62.11% 46.34%
PT Portuguese GPT-2 38.52% 34.19%

Table 3: Performance on Track-1 validation dataset of
individual models used in the two-stage pipeline. "Lg"
stands for language of the model used.

Lg Model Train F1 Val F1

EN RoBERTa 91.70% 88.75%
EN BERT 94.24% 88.32%
EN XLM-RoBERTa 87.61% 84.68%

ES Spanish RoBERTa 96.05% 87.05%
ES XLM-RoBERTa 89.25% 80.29%

PT Portuguese BERT 89.49% 79.21%
PT XLM-RoBERTa 81.61% 75.91%

Table 4: Performance on Track-2 validation dataset of
individual models used in the two-stage pipeline. "Lg"
stands for language of the model used.

like XLM-RoBERTa, BERT, ELECTRA, GPT-2
and RoBERTa. All models were fine-tuned for
20 epochs with a learning rate of 1e-6 and weight
decay 1e-6 with a batch size of 8. The best per-
forming model checkpoint was chosen according
to the epoch-wise validation macro-F1 score.

5 Experiments and Results

5.1 Experiments Using Large Language
Models

For the task of Dialect Identification we have
tried various language specific models like XLM-
RoBERTa, BERT, ELECTRA, RoBERTa and GPT-
2. The base variant of all these models were used
and all the models were used through the Hugging-
Face (Wolf et al., 2020) library. The pooler output

Lg Model Adapted F1 F.T. F1

EN RoBERTa 85.20% 88.75%
EN BERT 83.21% 88.32%
EN XLM-RoBERTa 81.21% 84.68%

ES Spanish RoBERTa 78.45% 87.05%
ES XLM-RoBERTa 66.89% 80.29%

PT Portuguese BERT 72.17% 79.21%
PT XLM-RoBERTa 71.89% 75.91%

Table 5: Comparative results of two-way classification
using the finetuned (F.T.) predictions and predictions
adapted from three-way classification models.

of these models was passed through a linear layer
and the models were fine-tuned. First, we experi-
mented with different models for Track-1. All the
models were trained for 20 epochs with learning
rate 1e-6, weight decay 1e-6 and a batch size of
8. We used XLM-RoBERTa as the baseline for
all 3 languages. The best performing models for
the English language were RoBERTa and BERT
whereas GPT-2 was the worst performing. Simi-
larly the language specific versions of RoBERTa
and BERT performed well for the Spanish and Por-
tuguese respectively. Overall the worst performing
model was GPT-2 across all 3 languages. The val-
idation F1 scores are present in Table 3. The two
best-performing models for every language were
chosen for Track-2. The same procedure as speci-
fied above was used and the F1 scores are present
in Table 4. The train and validation F1 scores for
2-class classification are higher for all models as
compared to the F1 score of the same models for
3-class classification. This was mainly due to the
poor representation and accuracy of classification
of the third class. We observed symptoms of over-
fitting in all models after 12-15 epochs and the best
validation F1 score was obtained in the range of
4-8 epochs.

5.2 LID Experiments

The pipeline for dialect identification is divided
into two parts as the sentences in the dataset belong
to different languages. The stages are described in
Section 4. The XLM-RoBERTa we have used for
language classification has a test accuracy of 99.6%
meaning it correctly classifies all input sentences
and hence, can be considered as a perfect classifier.
For the final pipeline we experimented using the
two best performing models for each language in
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Track-1 and Track-2. For both the tracks we ex-
perimented with all 8 (23) possible combinations
of models and calculated the validation F1 score
for the combined validation dataset which had sen-
tences belonging to all languages. The validation
scores for Track-1 and Track-2 are shown in Table
1 and Table 2 respectively. For both the tracks, the
three pipelines with the best validation F1 scores
were chosen for submission.

5.3 Using 3-way Classifier as a 2-way
Classifier

In Track-1, participants are expected to train a clas-
sifier which classifies amongst 9 classes, and in
Track-2, participants are expected to train a clas-
sifier which classifies amongst 6 classes. These 6
classes are a proper subset of the 9 classes from
Track-1. Thus, an intuitive baseline for Track-2
is to use the model finetuned for Track-1, whilst
considering only the relevant classes for the latter
task. The classes EN , ES and PT , i.e. the classes
without any national dialect associated with them
are not included in Track-2 as compared to Track-1.
Thus, we calculate the predictions for the Track-2
validation dataset using the models for Track-1 and
exclude the metrics for Track-1 specific classes to
get the metrics for this "adapted" 2-way classifi-
cation. We show the results of this experiment in
Table 5 and observe that, as expected, the adapted
2-way classification performs worse compared to
the explicitly finetuned variant.

5.4 Results for Track-1 and Track-2
We now present our experiments and their perfor-
mance for both tracks. Our experiments for Track-
1 are described in Table 1 and our experiments
for Track-2 are described in Table 2. The partic-
ipants were allowed three submissions for evalu-
ation on the test set, so we submitted predictions
using the three systems which performed the best
on the validation set. As mentioned in Section 5.2,
we performed 23, i.e. a total of 8 experiments us-
ing the two best models for each language. We
observed that RoBERTabase on English, Spanish
BERTbase on Spanish and Portuguese BERTbase

performed the best on the testing set for Track-
1. The same combination, with RoBERTabase for
English, worked best for Track-2. All of our sub-
missions were the top submissions for each track,
which surpassed the next best competitors by a
margin of 4.5% and 5.6% for Track-1 and Track-2
respectively.

5.5 Ablation of Best Submissions
We hereby make some observations of our submis-
sions and other experiments. To assist this, we plot
the confusion matrices of our best submissions for
Track-1 and Track-2 in Figures 3 and 4 respectively.
Note that these confusion matrices have their rows
(i.e. true labels axes) normalized according to the
number of samples in the class. Here are observa-
tions from our experiments:

1. BERT-based models outperform other
models across all languages: We ob-
serve that BERT-based models outperform
ELECTRA-based and GPT-2-based models,
as shown in Table 3. We speculate this
is because of the inherent architecture of
BERT, which combines semantic learning
with knowledge retention. This combination
of traits is particularly useful for this task.

2. Common labels perform the worst across
all languages: We observe that the common
labels EN , ES and PT perform the worst,
both in the individual as well as the two-stage
setup. We hypothesize this is because of the
absence of dialect specific words, or words
that are specific to the geographical origin of
the national dialect (for example, "Yankees"
for EN-US and "Oxford" for EN-GB).

3. English models work better than models of
other languages: It can be noted from Fig-
ures 4 and 3 that the English models have
the best performance across all classes. This
can be attributed to two reasons: absence of
national dialect specific words and lesser pre-
training data in the case of Portuguese.

4. British English is most correctly classified
class: We can observe that the Spanish or Por-
tuguese models make equal number of mis-
takes in the case of either national dialect, in
the case of Track-2 (see Figure 4). However,
in the case of English, the label EN − GB
is correctly classified for more than 95% of
the cases. We speculate this is because British
English involves slightly distinctive grammar
and semantics, which help the model separate
it from other classes.

5. The proposed 2-step method is scalable for
multiple language dialect classification: We
can strongly assert that the novel 2-step deep
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Figure 3: Confusion matrix of 9-way classification.
Note that rows are normalized according to the number
of samples is that class.
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Figure 4: Confusion matrix of 6-way classification.
Note that rows are normalized according to the number
of samples is that class.

learning method for multilingual dialect clas-
sification is a scalable method for the task due
to two specific reasons: firstly, the multilin-
gual models (like XLM-RoBERTa) might not
have the vocabulary as well as the learning
capabilities to learn the minute differences
between individual dialects. Secondly, this
system can be quickly expanded for a new
language by simply adding a language spe-
cific dialect classifier, provided the language
identification model supports that particular
language.

6 Conclusion

In this paper we propose a two-stage classification
pipeline for dialect identification for multilingual

corpora. We conduct thorough ablations on this
setup and provide valuable insights. We foresee
multiple future directions for this work. The first is
to expand this work to many languages and dialects.
Secondly, it is a worthwhile research direction to
distill this multi-model setup into a single model
with multiple prediction heads.

Limitations

The obvious limitation of this system is the ex-
cessive memory consumption due to the usage of
language specific models. For low resource lan-
guages this system is difficult to train and scale.
We hope that these problems will be addressed by
researchers in future works.
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Abstract

The present work describes the solutions pro-
posed by the UnibucNLP team to address the
closed format of the DSL-TL task featured in
the tenth VarDial Evaluation Campaign. The
DSL-TL organizers provided approximately 11
thousand sentences written in three different
languages and manually tagged with one of 9
classes. Out of these, 3 tags are considered
common label and the remaining 6 tags are
variety-specific. The DSL-TL task features 2
subtasks: Track 1 - a three-way and Track 2 - a
two-way classification per language. In Track
2 only the variety-specific labels are used for
scoring, whereas in Track 1 the common label
is considered as well. Our team participated
in both tracks, with three ensemble-based sub-
missions for each. The meta-learner used for
Track 1 is XGBoost and for Track 2, Logis-
tic Regression. With each submission, we are
gradually increasing the complexity of the en-
semble, starting with two shallow, string-kernel
based methods. To the first ensemble, we add
a convolutional neural network for our second
submission. The third ensemble submitted adds
a fine-tuned BERT model to the second one. In
Track 1, ensemble three is our highest ranked,
with an F1 − score of 53.18%; 5.36% less
than the leader. Surprisingly, in Track 2 the en-
semble of shallow methods surpasses the other
two, more complex ensembles, achieving an
F1− score of 69.35%.

1 Introduction

Discriminating between Similar Languages us-
ing a manually annotated data set of True Labels
(Zampieri et al., 2023) was included on the list
of shared tasks in the tenth VarDial evaluation
campaign (Aepli et al., 2023), under the DSL-TL
acronym. The topic of discriminating among lan-
guage varieties and similar languages has been
addressed in previous VarDial editions (Zampieri
et al., 2017; Malmasi et al., 2016; Zampieri et al.,
2015, 2014). However, we find the DSL-TL task

compelling as it introduces qualitative human-
annotations from multiple sources.

In DSL-TL organizers provide a set of sentences
coming from news reports1 written in either En-
glish, Spanish or Portuguese and split in a train,
development and test subsets. The test split rep-
resents a collection of unlabelled sentences, with
labels being subject to further submissions from
participants. The examples in the train and develop-
ment sets are tagged with one of nine labels, namely
EN-GB, EN-US, EN, ES-ES, ES-AR, ES, PT-PT, PT-
BR and PT. Six of the labels provided, aside from
the language itself, also specify the language va-
riety, marked with the initials of the country (i.e.
GB – Great Britain, US – USA, ES – Spain, AR –
Argentine, PT – Portugal, BR – Brazil). These are
referenced to, by the organizers, as variety-specific
labels. The remaining three tags, i.e. EN, ES and
PT, are considered common labels. Based on this
terminology, the task features two subtasks:

• Track 1 - a nine-way classification, where both
the variety-specific (e.g. EN-GB or EN-US)
as well as the common label (e.g. EN) are
considered for scoring.

• Track 2 - evaluates a six-way classification
setup, considering only the variety-specific
labels.

The DSL-TL task is presented in both the open
and closed formats for each of the two aforemen-
tioned tracks. Three submissions are allowed for
each pair (subtask, format), which amounts to a
total of maximum 12 different sets of predictions
that can be submitted by each team.

Our team chose the closed format and partici-
pated in both tracks, with three submissions for
each subtask. All the models submitted are pow-
ered by ensemble learning. For Track 1, the meta-
learning is based on Extreme Gradient Boosting

1https://github.com/LanguageTechnologyLab/
DSL-TL
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(XGBoost) (Chen and Guestrin, 2016), while for
Track 2 we employ Multinomial Logistic Regres-
sion (Peng et al., 2002) as our meta-classifier. The
same subset of individual learners is used for each
set of ensembles submitted , independent of its
meta-learner (i.e. XGBoost or Logistic Regression)
and destination (i.e. subtask).

With each submission, we gradually increase the
complexity of the models plugged into the afore-
mentioned ensembles. We start by combining the
powers of two shallow methods, namely Support
Vector Machines (SVM) (Cortes and Vapnik, 1995)
and Kernel Ridge Regression (KRR) (Hoerl and
Kennard, 1970), both using string kernels - a fea-
ture extraction technique that proved useful in pre-
vious endeavours of identifying language varieties
(Ionescu and Popescu, 2016). For our second sub-
mission, we augment the ensemble of shallow mod-
els with a Character-level Convolutional Neural
Network (Char-CNN) (Zhang et al., 2015), which
adds depth to the ensemble and a new way of re-
garding the data (i.e. at the character level). The
third ensemble submitted for each track contains
the two string kernel based shallow methods, the
Char-CNN and also a fine-tuned BERT (Devlin
et al., 2019) as individual learners.

We fine-tuned and evaluated all of the individual
models and meta-learners previously mentioned
using the development set provided by Zampieri
et al. (2023). Our final submissions include the
development subset in the training routine. More-
over, our preference for only submitting ensemble
models reflect the best results obtained locally with
models trained on the training split and tested on
the development data.

The rest of the present paper is structured as
follows. In Section 2 we present related work in
the space of language varieties identification. We
describe in detail our approach for the DSL-TL
task in Section 3. The experiments conducted and
the empirical results obtained are discussed across
Section 4. A set of conclusions will be drawn in
Section 5.

2 Related Work

Usually modeled as a text classification problem
and tackled using supervised learning approaches
(Jauhiainen et al., 2019b), Language Identification
(LI) research dates from the mid-60’s (Mustonen,
1965), with periodic updates until the early 2000s
(Takcı and Soğukpınar, 2004; Sibun, 1996; Grefen-

stette, 1995). Initially focused on dissimilar lan-
guages, LI has reached a peak when McNamee
(2005) achieved a nearly-perfect outcome using
character n-grams based models to discriminate
among different languages in samples collected
online.

In the last decade, language identification re-
search has regained momentum, with social media
becoming a rich and resourceful source of data.
User-generated content (Tromp and Pechenizkiy,
2011) and free-form short texts (Anand, 2014) can
be counted among the reasons why the research
in the area of language identification was resumed.
New challenges have arisen - e.g. mixing two or
more different languages in social media content
(Molina et al., 2016). Moreover, the idea of dis-
criminating among similar languages or language
varieties started gathering an entire community
around it, especially in the VarDial evaluation cam-
paign (Aepli et al., 2022; Chakravarthi et al., 2021;
Gaman et al., 2020).

The problem of discriminating among similar
languages has been tackled, to date, using a va-
riety of ML-powered techniques practicing both
shallow (Ljubešic and Kranjcic, 2014), as well as
deep-learning (Li et al., 2018) with an accuracy
surpassing a 95% threshold.

For language varieties on the other hand, we
can observe fluctuations in performance as shown
in the VarDial reports to date (Aepli et al., 2022;
Chakravarthi et al., 2021; Gaman et al., 2020). For
instance, Goutte et al. (2014) applies a common
approach to three different language varieties: Eu-
ropean vs Brazilian Portuguese, Castilian vs Ar-
gentine Spanish and British vs American English.
The same model achieves an accuracy above 90%
for the first 2 varieties and just below 53% for
the third. In the Arabic dialect identification task
(Malmasi et al., 2016), the highest ranking systems
were based either on ensemble learning or on single
SVMs trained on character and word-level n-grams
(Malmasi and Zampieri, 2016; Eldesouki et al.,
2016) and achieved accuracies of around 50%. Re-
cent shared tasks (Aepli et al., 2022; Chakravarthi
et al., 2021; Gaman et al., 2020; Zampieri et al.,
2019, 2018, 2017) continued the work in the space
of language varieties, with multiple different lan-
guages targeted over the years. Among these, we
count German (Malmasi and Zampieri, 2017b),
Chinese (Jauhiainen et al., 2019a) and Italian Jauhi-
ainen et al. (2022) dialects, Dutch vs Flemish (Çöl-
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tekin and Rama, 2017), Romanian vs Moldavian
(Çöltekin, 2020), etc. Performance was consis-
tent with the results in earlier campaigns (2014 -
2016) – the highest ranked results varied greatly
from task to task, with n-gram based shallow mod-
els often outperforming other approaches. These
works show that language identification is not a re-
solved problem, as we still see a struggle in perfor-
mance in automatically identifying certain dialects
and language varieties.

Among the most recent works on language iden-
tification, we should mention the one on which the
current DSL-TL shared task is based. Zampieri
et al. (2023) introduce DSL-TL as the first human-
annotated multilingual data set for language va-
riety classification. DSL-TL uses instances from
DSLCC (Tan et al., 2014) - an extensive collec-
tion of samples for LI, introduced and enhanced
in prior VarDial evaluation campaigns (Zampieri
et al., 2017; Malmasi et al., 2016; Zampieri et al.,
2014). DSL-TL also uses news reports from Zellers
et al. (2019). The authors label the data from multi-
ple human sources using a crowdsourcing platform.
Moreover, alongside the qualitative data set, the
authors train multiple models on these samples.
The approaches used count Naive Bayes, Adaptive
Naive Bayes and deep learning based methods such
as mBERT, XLM-R, and XLM-R-LD and are em-
ployed as baselines in the shared task referred in
the present paper. Intriguing perhaps, the authors
observe similar performance across the shallow
and deep learning based methods. Additionally,
in some cases, the shallow methods even surpass
the deep ones - an observation consistent with prior
findings (Jauhiainen et al., 2019b; Medvedeva et al.,
2017).

Analyzing the baselines introduced by Zampieri
et al. (2023), we consider appropriate to tackle the
classification problem posed by the DSL-TL task
from both angles. Thus, as previously mentioned,
we are combining shallow and deep learning tech-
niques in our ensemble-powered solutions. Our
choice is encouraged by prior research in the space
of LI, which shows good results obtained by stack-
ing ensembles (Malmasi and Zampieri, 2017b,a).
Moreover, we choose most of the individual learn-
ers used based on their prior impact in language
identification tasks: SVM with string kernels (Kru-
engkrai et al., 2005), CNNs (Jaech et al., 2016) and
BERT (Zaharia et al., 2020). From our perspective,
prior success in LI is an indication that these meth-

ods have a high chance of being suitable for the
DSL-TL use-case as well. Additionally, each of the
two choices of meta-learners were also used before
in language variety identification: Logistic Regres-
sion (Porta and Sancho, 2014; Chen and Maison,
2003) and XGBoost (Barbaresi, 2016).

3 Methods

Our team submitted three distinct ensemble-based
systems for each of the two tracks of the DSL-
TL task. The choice of architecture for the meta-
learner represents the one difference between the
ensembles submitted for each track. For the first
subtask, we use an XGBoost-based meta-learner,
whereas for the second one, we rely on Logistic
Regression. As mentioned in both Section 1 and
Section 2, we gradually increase the complexity of
the ensemble used in each submission. Figure 1
displays the prediction pipeline of the third and
most complex system submitted, which is similar
with a system that we used in a previous VarDial
geo-location challenge (Gaman et al., 2021). From
left to right, also in Figure 1, we can infer how
the other pipelines are composed: the first system
submitted only uses two shallow models (i.e. SVM
and KRR) and the second submission adds a char-
level CNN to the first system. In the continuation
of this section, we briefly describe each individual
machine learning technique used in the ensembles
submitted, as well as the meta-learners.

3.1 Shallow Learning based on String Kernels
String Kernels. Introduced by Lodhi et al.
(2001), string kernels represent an effective method
(Cozma et al., 2018; Ionescu and Butnaru, 2018;
Giménez-Pérez et al., 2017; Ionescu et al., 2014)
of comparing two textual samples. String kernels
use the inner product generated by all the character
n-grams in a given document. We observe good per-
formance of string kernel-based systems in dialect
identification, with emphasis on previous VarDial
editions (Butnaru and Ionescu, 2018; Ionescu and
Popescu, 2016).

Using the technique introduced by Popescu et al.
(2017), we obtain a kernel matrix X where the
element Xij measures the similarity between two
documents xi and xj . The similarity function used
is the presence bits string kernel (Popescu and
Ionescu, 2013), which is defined as follows:

k0/1(xi, xj) =
∑

g∈Sn

#(xi, g) · #(xj , g), (1)
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Figure 1: Full ensemble (submission 3) proposed by UnibucNLP for the DSL-TL shared task. Best viewed in color.

where S is a set of characters; xi and xj are the
strings to be compared; n is the length of the char
n-grams used and #(x, g) is a function with binary
outcome that returns 1 when n-gram g occurs at
least once in x.

Support Vector Machines – SVM(s). The goal in
SVMs (Cortes and Vapnik, 1995) is to find the best
hyperplane that separates the training data points
in their respective classes. At the same time, in
order to achieve better generalization, SVM tries to
maximize the margin that separates the two classes,
using support vectors (i.e. the points closest to
the decision boundary). An advantage of SVM
is the kernel trick (Shawe-Taylor and Cristianini,
2004) - a technique used to map the non-linearly
separable data in a higher-dimensional space,
where it becomes separable through a hyperplane.
Although designed with 2-way classification
in mind, SVMs can be used in the multi-class
setup through the training of multiple models in a
one-vs-one or one-vs-rest scheme. In our current
experiments, we use the one-vs-one technique.
Moreover, instead of using a standard kernel, we
employ the SVMs with the custom n-gram based

string kernel defined in Equation 1.

Kernel Ridge Regression (KRR). Considered a
generalization of Ridge Regression (Hoerl and Ken-
nard, 1970), KRR is obtained by combining L2 lin-
ear regression with the kernel trick (Saunders et al.,
1998). Thus, KRR presents the same two big ad-
vantages as is the case with SVM - (1) it can model
non-linearly separable data and (2) we can use a
custom kernel function. For the DSL-TL task, we
employ the presence bits kernel from Equation 1.
We also follow two steps to repurpose the trained re-
gressor for multi-class classification: (1) we round
the continuous predictions to match the values in
{−1, 1} and (2) we use the one-versus-rest scheme.

3.2 Deep Learning

Character-level Convolutional Neural Network
(Char-CNN). Regarded as the base unit in any
given vocabulary, characters represent a popular
(Al-Rfou et al., 2019; Kim et al., 2016; Zhang
et al., 2015; Sutskever et al., 2011) non-pretentious
source of features for text-based ML models. When
working at character level, we remove dependen-
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cies of syntax and semantic structure (Ballesteros
et al., 2015). Given that in DSL-TL we have mul-
tiple languages mixed in the same data set, the
aforementioned property represents a welcomed
advantage for the present use-case.

CNNs are a type of neural network that joins
convolutions and pooling operations in convolu-
tional blocks. Towards the end of the network we
usually add a sequence of fully connected layers,
followed by a terminal prediction layer. In this
work, we employ a convolutional neural network
operating at char level (Zhang et al., 2015) with
squeeze-and-excitation (SE) blocks, introduced
and successfully used in dialect identification by
Butnaru and Ionescu (2019).

Transformers (BERT). With an encoder-decoder
based architecture, transformers (Vaswani et al.,
2017) are among the most important advancements
in NLP in the past decade. Widely used since its
release, BERT (Devlin et al., 2019) is a special type
of transformer, which pre-trains deep bidirectional
representations of language in a self-supervised
fashion. For downstream tasks, such as our cur-
rent language varieties identification problem, it
is straightforward to fine-tune a pretrained BERT
model. BERT is our last choice of individual
learner given the good results obtained in simi-
lar dialect / language variety identification setups
(Zaharia et al., 2020).

3.3 Ensemble Learning

XGBoost. XGBoost is a tree-based ensemble
model (Chen and Guestrin, 2016; Friedman, 2001),
effectively employed in both academic research (Li,
2010; Burges, 2010; Bennett et al., 2007) as well as
the industry (He et al., 2014). In our experiments,
XGBoost is the chosen meta-learner for Track 1.
We train XGBoost over the predictions of each in-
dividual models previously described in the current
section.
Logistic Regression (LR). Multinomial Logistic
Regression is a generalization of LR (Peng et al.,
2002) to multi-class classification problems. Lo-
gistic Regression has been historically employed
in language identification tasks (Porta and Sancho,
2014; Chen and Maison, 2003). Moreover, in our
experiments, the ensembles that used multinomial
Logistic Regression as meta-learner achieved simi-
lar performance when compared to the XGBoost
meta-learner. Thus, we decided to also submit the

predictions of the set of ensembles based on LR.
We should mention that we trained the LR-based
ensembles on all of the tags available, including the
common labels (i.e. GB, ES and PT). No language-
variety specifics were enforced for this ensemble
whose predictions were submitted for Track 2.

4 Experiments

4.1 Data Set

The DSL-TL data set (Zampieri et al., 2023) is tar-
geted towards the task of discriminating between
language varieties. Consistent with its purpose, the
data set contains a total of 12, 900 instances written
in either English (EN), Spanish (ES) or Portuguese
(PT) and manually labelled from multiple sources.
DSL-TL makes a distinction among two different
varieties for each of the three languages included.
Thus, we observe the following six composed la-
bels in the data set: EN-GB - British English, EN-
US - American English, ES-ES - Castilian Spanish,
ES-AR - Argentine Spanish, PT-PT - European Por-
tuguese and PT-BR - Brazilian Portuguese. More-
over, we also have 3 common labels, namely EN,
ES and PT, for the samples not containing any vari-
ety specific markers.

DSL-TL provides three splits for training, devel-
opment and the final testing of the solutions pro-
posed to address the task. The split was performed
following the 70/20/10 rule. The training and de-
velopment textual samples are provided alongside
their respective language labels. The test set only
contains the textual samples, pending further sub-
mission of predictions such that the organizers can
evaluate them against the ground truth.

4.2 Hyperparameter Tuning

SVM. In our experiments, we use SVM with a
pre-computed string kernel and the regularization
parameter C = 10. We select the best regulariza-
tion value via grid search from a range of values
from 10−4 to 104, with a multiplication step of
10. For the string kernel used, we experiment with
multiple presence-bits string kernels based on var-
ious n-gram lengths, from 3 to 6 characters long.
The best performance in terms of accuracy and
macro F1− score was achieved by a string kernel
based on the blended spectrum of 3 to 5 character
n-grams.
KRR. For KRR, we tune the regularization λ using
a set of values that range from 10−6 to 10−1, and
a multiplication step of 10. The best value for λ
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in our 9-way classfication setup was 10−2. Similar
with the SVMs, the string kernel used in KRR is
based on a blended spectrum of 3 to 5 character
n-grams.

CharCNN. The third individual learner used is a
character-level CNN (Zhang et al., 2015), operating
on an input window of maximum 256 characters in
each sample, as indicated by a closer inspection of
the data. The architecture used is very similar with
the one employed by Butnaru and Ionescu (2019) in
Romanian dialect identification. Each of the maxi-
mum 256 characters considered in the input layer is
embedded into a vector of size 128, selected from
a set of powers of 2 as potential embedding sizes,
ranging from 16 up until 256. Three convolutional
blocks follow, each having a convolutional layer
with 128 filters, a stride of 1 and filter sizes 7, 5
and 3. We use max pooling with a filter of size 3 to
downsample the output of the convolutional layer.
Each convolutional block is followed by a Squeeze-
and-Excitation (SE) block with a reduction ratio
r = 64. The sequence of convolutional blocks is
followed by one fully connected layer with 128
neural units, out of which we drop neurons with
a probability of 0.5. The neural network is also
equipped with a final Softmax-activated prediction
layer, of size 9 to retrieve a probability for each
of the classes in DSL-TL. We use a learning rate
of 10−4 and train the network for 100 epochs on
mini-batches of 128 samples. Early stopping is
used with a tolerance of 10 consecutive epochs for
stalled performance.

Fine-tuned BERT. Our fourth and last individ-
ual learner consists in a fine-tuned multilingual
BERT model (Devlin et al., 2019). Prior to fine
tuning the model, we use the multilingual BERT
tokenizer to encode each example into a list of
token IDs. Then, each token is translated into a
768-dimensional embedding vector. Furthermore,
the architecture is augmented with a global aver-
age pooling layer to achieve a Continuous Bag-of-
Words (CBOW) representation of the data. In the
end, a Softmax output layer predicts the likeliness
of a sample being marked with each of the nine
language tags provided. We fine-tune the model
described above for 30 epochs with early stopping.
We train on mini-batches of 32 samples and op-
timize using Adam with decoupled weight decay
(AdamW) (Loshchilov and Hutter, 2019), a learn-
ing rate of 5 · 10−5 and an ϵ equal to 10−8. We
tuned the learning rate using a few different values

in the range of 10−5 and 10−4 and tested two loss
options, cross-entropy vs. negative log-likelihood.
In the end, we opted for the cross-entropy loss.
XGBoost. We fine-tune the XGBoost meta-learner
separately, for each of the three submissions. The
set of values considered for the maximum depth
of a tree is [3, 5, 7, 9, 10]. We fine-tuned the learn-
ing rate in a range starting from 10−4 up to 10−1,
with a multiplying step of 10. The subsample ra-
tio of columns when constructing each tree was
picked from [0.1, 0.3, 0.5, 0.7]. The number of es-
timators is gradually initialized with values rang-
ing from 50 and up to 400 with an additive step
of 50. For each submission, a different set of pa-
rameters was deemed optimal. Thus, for the en-
semble composed of shallow models, the best pa-
rameters were: max_depth=5, learning_rate=10−1,
n_estimators=50 and colsample_bytree=0.5. When
adding the character-level CNN into the mix
of shallow models, the best choice of hyper
parameters changes slightly: max_depth and
learning_rate remain the same as previously men-
tioned; however, in this case, n_estimators=100
and colsample_bytree=0.7. With BERT in-
cluded in the ensemble of shallow and deep
models, all the optimal parameters change
as follows: max_depth=7, learning_rate=10−3,
n_estimators=200 and colsample_bytree=0.5.
Logistic Regression. In the case of the Logistic
Regression based meta-learner, we use L2 regular-
ization and only fine tune the inverse of the regular-
ization strength parameter, noted as C. The range
of values tested starts with 10−5 and ends with 105.
Different optimal values are observed for each run,
as we gradually increase the number of learners
and their respective depths. For the ensemble of
shallow methods, we observe that a C=103 gives
the best scores both in terms of accuracy, as well as
for the macroF1−score. The optimal value for C
decreases to 102 when we combine the Char-CNN
with the two shallow models. We observe a further
decrease in the best value for C, i.e. 101, when we
add the BERT model to the second ensemble.

4.3 Results

Track 1 For Track 1 we submitted 3 XGBoost
stacking ensembles, gradually adding more com-
plex individual learners to the ensemble as follows.
For the first run, we combine only the powers of
two shallow models, namely SVM and KRR. In
the second run, we add a character-level CNN to
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the ensemble of shallow models. Finally, in the
third run, we add a fine tuned BERT model to the
second run. In our local testing, the performance
on the development set increased with the addition
of each individual learner. Thus, we deemed our
first run, UnibucNLP-run-1, as being the weakest
of the three submissions for this track, followed
by the second run, UnibucNLP-run-2 and with
UnibucNLP-run-3 being the top performing sys-
tem that we have submitted.

Method Rank F1-score
VaidyaKane-run-3 1 0.5854
baseline-mBERT 4 0.54
baseline-XLM-R 5 0.536
UnibucNLP-run-3 6 0.5318
baseline-XLM-R-LD 7 0.529
baseline-NB 8 0.503
UnibucNLP-run-1 11 0.4875
UnibucNLP-run-2 13 0.4572

Table 1: The final results for the closed format of Track
1 obtained by our XGBoost based ensembles on the
DSL-TL test set. For simplicity, we compare ourselves
only against the baseline and the top scoring method. In
bold are the methods that we submitted and described
in the current work.

Table 1 partially confirms our intuition, as our
third run is indeed out-performing the other two
ensemble-based systems. Surprisingly perhaps, the
ensemble that combines the predictions of the Char-
CNN and the ones of SVM and KRR falls behind
the model that employs only the shallow individual
models. Our best performing submission is situ-
ated just below two of the best performing baselines
provided for Track 1, and immediately above the
worst-performing baselines in this subtask. The 9-
way classification proved to be a difficult problem,
as most of the submissions are below the worst per-
forming baseline provided by the organizers. Three
submissions of the same team (i.e. VaidyaKane)
are above all of the baselines, then our best per-
forming system is right in the middle, ranking sixth
if we consider the baselines and fourth if we don’t,
then, below the baselines we can see the scores of
all the other systems submitted (including ours -
run 1 and run 2).

Table 2 shows the ranking and score of our
best performing method for each of the 9 classes
considered. We achieve a good position in
classifying the samples that are written in English -
ranking first for EN-US, second for the common

Tag Method Rank F1-score
EN VaidyaKane-run-3 1 0.3333
EN UnibucNLP-run-3 2 0.32
EN baseline-mBERT 3 0.303
EN-GB VaidyaKane-run-1 1 0.8148
EN-GB UnibucNLP-run-3 4 0.8034
EN-GB baseline-XLM-R 5 0.793
EN-US UnibucNLP-run-3 1 0.8454
EN-US baseline-mBERT 3 0.829
ES VaidyaKane-run-2 1 0.4738
ES UnibucNLP-run-3 2 0.4573
ES baseline-mBERT 3 0.455
ES-AR VaidyaKane-run-1 1 0.6204
ES-AR baseline-mBERT 4 0.518
ES-AR UnibucNLP-run-3 9 0.4884
ES-ES VaidyaKane-run-1 1 0.7692
ES-ES baseline-XLM-R 3 0.719
ES-ES UnibucNLP-run-1 7 0.6858
PT VaidyaKane-run-2 1 0.1633
PT baseline-NB 4 0.126
PT UnibucNLP-run-3 7 0.1165
PT-PT ssl-run-1 1 0.7923
PT-PT baseline-XLM-R 5 0.769
PT-PT UnibucNLP-run-3 7 0.7618
PT-BR baseline-XLM-R 1 0.562
PT-BR UnibucNLP-run-1 12 0.4683
PT-BR UnibucNLP-run-2 13 0.378
PT-BR UnibucNLP-run-3 14 0.3575

Table 2: The performance per class reported on the test
set for the closed format of Track 1 obtained by our best
performing ensemble compared to the baseline and the
top scoring method. We mark in bold our own work.

label EN and fourth for EN-GB. Although for
the common Spanish tag we rank second, for
the Castilian and Argentine language varieties,
we only achieve the seventh and ninth positions
respectively. The common label for Portuguese
seems to bring ourselves and everyone other
participant down, with the best model not being
able to obtain an F1− score greater than 0.1633.
The results for European Portuguese are better,
and with values very close to each other across
all of the systems submitted. In these conditions,
for PT-PT we achieve an F1 − score of 0.7618.
In the end, as shown in the final rows of Table 2,
all of our systems achieve the worst results for
Brazilian Portuguese.

Track 2 Track 2 tests a six-way classification,
using only the variety-specific tags and ignoring the
common labels. For this subtask, we submit three
stacking ensembles, following the same logic as
for the submissions in Track 1, the only difference
being that we use Logistic Regression as meta-
learner. We do not perform any variety-specific
transformations and we do not exclude the common

236



labels at training for the three runs submitted for
Track 2. Thus, our expectations are consistent with
the results obtained and displayed in Table 3.

Method Rank F1-score
VaidyaKane-run-1 1 0.8561
baseline-ANB 4 0.799
baseline-NB 5 0.794
baseline-XLM-R 6 0.78
baseline-XLM-R-LD 7 0.772
baseline-mBERT 9 0.755
UnibucNLP-run-1 13 0.6935
UnibucNLP-run-3 14 0.6855
UnibucNLP-run-2 15 0.6182

Table 3: The final results for the closed format of Track
2 obtained by our Logistic Regression based ensembles
on the DSL-TL test set. For simplicity, we compare
ourselves only against the baselines and the top scoring
method. In bold are the methods that we submitted and
described in the current work.

One interesting fact observed in Table 3 is that
our first run - an ensemble of string kernel based
shallow models, outperforms our other two runs,
based on more complex models such as the Char-
CNN and BERT models.

5 Conclusions

In this work we propose six ensemble models to ad-
dress the problem of language-variety identification
in news reports. To tackle the two tracks proposed
by the DSL-TL task, we employ two similar sets
of ensembles which differ only in the choice of
meta-learner: XGBoost for the 9-way classification
in the first track, and Logistic Regression for the
6-way classification in the second one. By the def-
inition of Track 2, our Logistic Regression based
systems are evaluated only on the variety-specific
labels provided. However, we have trained these
LR powered ensembles also on the common labels,
in hopes that the model will learn additional useful
representations. For each set of ensembles sub-
mitted, we follow a similar strategy: increase the
number of models and individual models’ complex-
ity for each run. Thus, our first submission only
combines predictions from KRR and SVM - two
shallow models. In the second ensemble we add a
CNN working at character level, and in the third
one, we augment the second ensemble with a fine
tuned multilingual BERT model.

For the 9-way classification, our best performing
model achieves a macro F1-score of 53.18%, 5%

less than the top scoring submission. Overall, our
model ranks fourth out of 9 total submissions and
surpasses two of the four strong baselines proposed
by the organizers. In the variety-specific, 6-way
classification of Track 2, most of the models sub-
mitted by participants (including ours) fall behind
the proposed baselines. Interestingly, our best per-
forming submission in this case is the ensemble of
shallow models, which obtains a score of 69.35%,
surpassing the other 2, more complex ensembles,
that we submitted.

Given the final results, we conclude that in future
similar endeavours we should not underestimate the
power of shallow models, as they consistently seem
to achieve good results in language identification
setups. Moreover, we intend on performing a closer
analysis of the baselines proposed in Zampieri et al.
(2023) - the paper that introduces DSL-TL, try to
replicate and perhaps enhance the already impres-
sive methods that the authors used for this task.

Limitations

Limitations of the present work and results include
tackling the closed format of the DSL-TL task. As
shown in Zampieri et al. (2023) using additional
data, from the broader DSLCC corpus (Tan et al.,
2014), would have likely helped both the 9-way as
well as the 6-way classification attempted in our
submissions.

Hardware limitations represent another disadvan-
tage, due to which a better, broader fine-tuning of
the deep learning based models could not be fully
achieved in time.
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Çağrı Çöltekin. 2020. Dialect identification under do-
main shift: Experiments with discriminating Roma-
nian and Moldavian. In Proceedings of VarDial,
pages 186–192.
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mann, Chris van der Lee, Stefan Grondelaers,
Nelleke Oostdijk, Dirk Speelman, Antal van den
Bosch, Ritesh Kumar, Bornini Lahiri, and Mayank
Jain. 2018. Language identification and morphosyn-
tactic tagging: The second VarDial evaluation cam-
paign. In Proceedings of VarDial, pages 1–17.

Marcos Zampieri, Shervin Malmasi, Yves Scherrer,
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Abstract

Intent detection and slot filling are critical tasks
in spoken and natural language understanding
for task-oriented dialog systems. In this work
we describe our participation in the slot and
intent detection for low-resource language vari-
eties (SID4LR; Aepli et al. (2023)). We in-
vestigate the slot and intent detection (SID)
tasks using a wide range of models and set-
tings. Given the recent success of multitask-
prompted finetuning of large language models,
we also test the generalization capability of
the recent encoder-decoder model mT0 (Muen-
nighoff et al., 2022) on new tasks (i.e., SID) in
languages they have never intentionally seen.
We show that our best model outperforms the
baseline by a large margin (up to +30 F1 points)
in both SID tasks.

1 Introduction

Digital conversational assistants have become in-
creasingly pervasive. Examples of popular virtual
assistants include Siri, Alexa, and Google. A cru-
cial factor in the effectiveness of these systems is
their capacity to understand user input and respond
or act accordingly to fulfill particular requirements.
Most of these applications are voice-based and
hence need spoken language understanding (SLU).
SLU typically starts with automatic speech recog-
nition (ASR), taking the sound of spoken language
and transcribing it into text. Then, it handles natu-
ral language understanding (NLU) tasks to extract
semantic features from the text including question
answering, dialogue management, intent detection,
and slot filling.

The intent detection task aims to recognize the
speaker’s desired outcome from a given utterance.
And slot filling focuses on identifying the main
arguments or the spans of words in the utterance
that contain semantic information relevant to the
intent. Table 1 shows four utterances in different
languages: English, Swiss German (GSW), South

Lang. Annotation

EN Set an alarm for 6 am on Wed

GSW Du em Mittwuch e Wecker dry fürem sächsi em Morge .

ST Stell an Wecker firn Mittig af 6 in der friah

NAP Imposta ’na sveglia ’e 6 ’e matina ’e miercurì

Table 1: Examples of xSID annotations in our target
languages from the validation set with intents (alarm
/ set_alarm) and slots ( location , datetime ). EN: En-
glish, GSW:Swiss German ST: South Tyrolean, NAP:
Neapolitan

Tyrolean (ST), and Neapolitan (NAP). The English
example has the intent set_alarm and two individ-
ual spans Set an alarm and 6 am on Wed are labeled
with their slot tags location and datetime, respec-
tively, using the Inside, Outside, Beginning (IOB)
(Ramshaw and Marcus, 1995) tagging format.

In this work, we present our participation in the
slot and intent detection for low-resource language
varieties (SID4LR; Aepli et al. (2023)) shared task.
The shared task takes as its target three low re-
sources languages– Swiss German (GSW), South
Tyrolean (ST), and Neapolitan (NAP). The main
objective of the SID4LR shared task is to find the
most effective approach for transferring knowledge
to less commonly spoken languages that have lim-
ited resources and lack a standard writing system,
in the zero-shot setting (i.e., without use of any
training data). In the context of the shared task, we
target the following four main research questions:

Q1: Can successful models on English SID tasks
be generalizable to new unseen languages (i.e.,
the zero-shot setting)?

Q2: How do models trained on a language from the
given language family fare on a low-resource
variety from the same family under the zero-
shot setting (i.e., with no access to training
data from these low-resource varieties). For
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example, in our case, we ask how do models
trained on German perform on Swiss German
or South Tyrolean, and how do models trained
on Italian perform on Neapolitan.

Q3: What impact does exploiting data augmenta-
tion techniques such as paraphrasing and ma-
chine translation have on the SID tasks in the
zero-shot context?

Q4: Are the existing large multilingual models,
trained using multitask-prompted fine-tuning,
able to achieve zero-shot generalization to
SID tasks in languages that they have never
intentionally seen?

The rest of this paper is organized as follows:
Section 2 is a literature review on intent and slot
detection tasks. The shared task, the source data
provided in SID4LR, and the external parallel data
we exploit to build our models are described in
Section 3. In Section 4, we provide information
about datasets, baselines, and data preprocessing.
The baseline, and multilingual pre-trained language
models we used are described in Section 5. We
present our experimental settings and our training
procedures in Section 6. Section 7 is an analysis
and discussion of our results. And we conclude in
Section 8.

2 Related Work

The problem of low-resource slot and intent detec-
tion for languages with limited training data has
been the focus of several recent research works. In
this section, we discuss some of the most relevant
and recent works, including datasets, benchmarks,
and models that aim to address this challenge.

2.1 SID Benchmarks and Corpus
The table below provides an overview of various
datasets used for NLU tasks. These datasets cover
a range of languages, domains, intents, and slots,
and are widely used to evaluate the performance
of NLU models. Some of the prominent datasets
include MASSIVE, SLURP, NLU Evaluation Data,
ATIS, MultiATIS++, Snips, TOP, MTOP, Cross-
lingual Multilingual Task-Oriented Dialog, Mi-
crosoft Dialog Challenge, and Fluent Speech Com-
mands. These datasets have been used for tasks
such as intent classification, slot filling, and seman-
tic parsing. Overall, these datasets provide a useful
resource for researchers to benchmark their models
and develop better NLU systems.

2.2 SID Approaches and Models

The are many works devoted to the SID tasks.
Most of these works are categorized into three ap-
proaches: (1) single model for intent detection, (2)
single model for slot filling, and (3) joint model.
(1) Single Model for Intent Detection refers to de-
veloping a single model that can identify the intent
behind a user’s spoken or written input. This ap-
proach involves training a neural network or other
machine learning model on a large dataset of la-
beled examples. Each example consists of user
input and its corresponding intent label. The model
then uses this training data to learn patterns and
features that can accurately predict the intent of
new user inputs. For instance, Ravuri and Stol-
cke (2015) proposed a recurrent neural network
and LSTM models for intent detection in spoken
language understanding. In this work, the authors
first discuss the limitations of traditional intent de-
tection approaches that rely on handcrafted fea-
tures and propose using deep learning models to
learn features directly from the data. Zhang et al.
(2021) investigate the robustness of pre-trained
transformers-based models such as BERT and
RoBERTa for intent classification in spoken lan-
guage understanding. They conduct experiments
on two datasets, ATIS (Upadhyay et al., 2018) and
SNIPS (Coucke et al., 2018), showing that pre-
trained transformers perform well on in-scope in-
tent detection.
(2) Single Model for Slot Filling is an approach
that aims to develop a single model capable of
identifying slots in spoken language understand-
ing. The model takes a sentence as input and
predicts the slot labels for each word in the sen-
tence. Various recurrent neural network (RNN)
architectures such as Elman-type (Mesnil et al.,
2015) and Jordan-type (Mesnil et al., 2015) net-
works and their variants have been explored to find
the most effective architecture for slot filling. In-
corporating word embeddings has also been stud-
ied and found to improve slot-filling performance
significantly. For example, Yao et al. (2014) use
LSTM networks with word embeddings for slot
filling on the ATIS (Upadhyay et al., 2018) dataset
and achieve state-of-the-art (SOTA) results at the
time. Goo et al. (2018) propose a bi-directional
LSTM (BLSTM) with an attention mechanism for
slot filling on the ATIS (Upadhyay et al., 2018) and
SNIPS (Coucke et al., 2018) datasets.
(3) Joint Model is an approach that aims to jointly
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Name # Langs Utt. per Lang (K) Domains Intents Slots

Airline Travel Information System (ATIS) (Price, 1990) 1 5.8 1 26 129
ATIS with Hindi and Turkish (Upadhyay et al., 2018) 3 1.3-5.8 1 26 129
Cross-lingual Multilingual Task Oriented Dialog (Schuster et al., 2019) 3 5.08-43.3 3 12 11
Fluent Speech Commands (FSC) (Lugosch et al., 2019) 1 30 - 31 -
MASSIVE (FitzGerald et al., 2022) 51 19.5 18 60 55
Microsoft Dialog Challenge (Li et al., 2018) 1 38.2 3 11 29
MultiATIS++ (Xu et al., 2020) 9 1.4-5.8 1 21-26 99-140
Multilingual Task-Oriented Semantic Parsing (MTOP) (Li et al., 2021) 6 15.1-22.2 11 104-113 72-75
NLU Evaluation Data (Liu et al., 2019) 1 25, 7 18 54 56
SLURP (Bastianelli et al., 2020) 1 16, 5 18 60 55
SNIPS (Coucke et al., 2018) 1 14.4 - 7 53
Task Oriented Parsing (TOP) (Gupta et al., 2018) 1 44.8 2 25 36
xSID (van der Goot et al., 2021) 13 10 7 16 33

Table 2: SID benchmark and datasets with the number of languages covered, number of utterances per language,
domain, intent count, and slot count.

model the intent detection and slot-filling tasks in
spoken language understanding. This approach
trains a single model to predict both the intent and
slot labels simultaneously. The model uses the con-
text of the input sentence to predict these labels.
Joint models have been shown to achieve SOTA
performance on several spoken language under-
standing datasets. Xu and Sarikaya (2013) propose
a joint convolutional neural network (CNN) and
RNN model for intent detection and slot filling on
the ATIS (Upadhyay et al., 2018) dataset. They
achieved SOTA results at the time. In the same con-
text, Liu and Lane (2016) proposed an attention-
based neural network for joint intent detection and
slot filling. The model uses an attention mecha-
nism to weigh the importance of different parts of
the input sentence for predicting the intent label
and slot labels. Chen et al. (2019) explore the use
of the BERT model for joint intent detection and
slot filling on ATIS (Upadhyay et al., 2018) and
SNIPS (Coucke et al., 2018). They report SOTA
results on both datasets.

3 SID4LR Shared Task

Task Formulation. Intent detection and slot-filling
are critical NLP tasks where, given an utterance, a
system is responsible for parsing the user’s intent
and extracting relevant information to act or reply
appropriately. While many neural-based models
have achieved SOTA performance for these tasks,
their success often depends on large amounts of la-
beled data. However, many real-world datasets are
limited to specific domains and are only available
in English or a few other languages. As a result, it
is important to reuse existing data in high-resource
languages to develop models for low-resource lan-

guages, especially since tasks like intent classifica-
tion and slot-filling require abundant labeled data.
Shared Task Problem Statement. This shared
task of SID aims to address the challenges of per-
forming SID for low-resource language varieties
for the following languages: Swiss German, South
Tyrolean, and Neapolitan. The training data pro-
vided consists of the Cross-lingual Slot and Intent
Detection (xSID0.4) corpus (van der Goot et al.,
2021), a cross-lingual spoken language understand-
ing dataset, covering 12 languages (Arabic, Chi-
nese, Dutch, Danish, English, German, Indonesian,
Italian, Japanese, Kazakh, Serbian, Turkish) from
six language families with English training. The
task allowed the use of pre-trained models and ex-
ternal data including data from the target language.
Evaluation Metric. The primary evaluation met-
ric for slot filling is the span F1 score, where both
span and label must match exactly, and accuracy
is used to evaluate intent detection where it is cal-
culated through the ratio of the number of correct
predictions of intent to the total number of sen-
tences. More details regarding the shared task can
be found in Aepli et al. (2023).

4 Data

Shared Task Data. The xSID0.4 (van der Goot
et al., 2021) corpus comprises cross-lingual SLU
evaluation datasets covering 13 languages from six
language families. The training dataset contains
43, 605 sentences, the development set contains
300 sentences, and the test set contains 500 sen-
tences. The corpus contains sentences from Snips
and Facebook, which were translated into all 13
target languages, resulting in a cross-lingual SLU
evaluation dataset. All examples are annotated with
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Language # Train # Valid # Test

ar 42, 157 300 500
da 43, 605 300 500
de 43, 605 300 500
en 43, 605 300 500
id 42, 157 300 500
it 43, 605 300 500
ja 29, 073 150 250
kk 42, 157 300 500
nl 43, 605 300 500
sr 43, 605 300 500
tr 43, 605 300 500
zh 42, 157 300 500

Table 3: Number of samples in the train, validation, and
test sets for each language in the multilingual dataset
xSID0.4, where the language codes are represented by
two-letter ISO codes. The dataset includes 12 languages:
Arabic (ar), Danish (da), German (de), English (en),
Indonesian (id), Italian (it), Japanese (ja), Kazakh (kk),
Dutch (nl), Serbian (sr), Turkish (tr), and Chinese (zh).

their intent and corresponding slots. Listing 1 pro-
vides examples of annotations with intent and slots.
We converted the dataset into a JSON format that
includes intents and slots. This JSON file was then
converted to HuggingFace Dataset format for easy
use with our transformer models. A sample of the
resulting JSON format is shown in Listing 2.

# text: show all reminders

# intent: reminder/show_reminders

# slots: 5:8:reminder/reference,

9:18:reminder/noun

1 show reminder/show_reminders O

2 all reminder/show_reminders B-reference

3 reminders reminder/show_reminders O

Listing 1: Example of the dataset format

{'text':'show all reminders',

'slots': 'reference:all',

'intent': 'reminder/show_reminders',

'__index_level_0__': 0}

Listing 2: Example of the preprocessed dataset

External Data. As mentioned, Swiss German,
South Tyrolean, and Neapolitan are low-resource
languages with limited available labeled data. To
address this challenge, we incorporate unlabeled

data from different sources to augment our training
data. We describe these external sources next.
SwissCrawl (Linder et al., 2020), a corpus of over
500, 000 Swiss German sentences gathered from
web crawling between September and November
2019. The sentences are representative of how na-
tive speakers write in forums and social media and
may contain slang and ascii emojis.
DiDi Corpus (Frey et al., 2016) is a multilingual
language corpus of 600, 000 tokens from Face-
book users in South Tyrol, Italy. It includes CMC
texts, socio-demographic data, and linguistic anno-
tations on thread, text, and token level. The corpus
is mainly German and Italian, with English also
present, and has been manually anonymized and
annotated.
OSCAR Corpus (Caswell et al., 2021) is a large
multilingual corpus created by scraping the web
and includes texts in more than 200 languages.
The OSCAR Corpus includes texts in Neapolitan,
which is a Romance language spoken in the south-
ern part of Italy, particularly in the region of Cam-
pania. The Neapolitan texts in the corpus consist
of around 4.4 million tokens, making it one of the
largest resources available for this language.

5 Pre-trained Language Models

In this study, we evaluate several popular multilin-
gual Transformer-based language models, includ-
ing mBERT, XLM-R, SBERT, LaBSE, LASER,
and mT0. These models are capable of effectively
capturing cross-lingual embeddings, enabling trans-
fer learning across multiple languages. Below we
provide a description of each model used in our
experiments on the training dataset.
mBERT. is the multilingual version of BERT (De-
vlin et al., 2019), which is an encoder model with
bidirectional representations from Transformers
trained with a denoising objective. mBERT is
trained on Wikipedia for 104 languages including
German and Italian.
XLM-R. (Conneau et al., 2020) is a transformer-
based multilingual masked language model pre-
trained on more than 2TB of filtered Common-
Crawl data in 100 languages, including languages
including German and Italian. XLM-R uses a
Transformer model (Vaswani et al., 2017) trained
with a multilingual masked language model XLM
(Conneau and Lample, 2019).
sBERT. Sentence-BERT (SBERT) (Reimers and
Gurevych, 2019), is a modification of the pretrained
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BERT (Devlin et al., 2019) model that uses siamese
and triplet network structures to derive semanti-
cally meaningful sentence embeddings that can
be compared using cosine-similarity. As we work
under a multilingual context, we use the multilin-
gual versions from previously monolingual SBERT
models (Reimers and Gurevych, 2020) which is
trained for sentence embedding in 50+ languages
from various language families.
LaBSE. Language-agnostic BERT Sentence En-
coder (LaBSE) (Feng et al., 2020a) is a BERT-
based model trained to generate sentence embed-
dings in 109 different languages. The model’s
pre-training approach involves a combination of
masked language modeling and translation lan-
guage modeling. The pre-training process com-
bines masked language modeling with translation
language modeling. LaBSE is useful for producing
sentence embeddings in multiple languages and
performing bi-text retrieval.
LASER. Language-Agnostic Sentence Representa-
tions (LASER) (Feng et al., 2020b) is a contextual-
ized language model based on a BiLSTM encoder
trained on parallel data from OPUS website (Tiede-
mann, 2012) using a translation objective. The
LASER model can handle 200 different languages.
mT0. (Muennighoff et al., 2022) is a group of
sequence-to-sequence models that come with differ-
ent sizes from 300M to 13B parameters trained to
investigate the cross-lingual generalization through
multitask finetuning. mT0 can execute human in-
structions in many languages without any prior
training. The models are fine-tuned from pre-
existing mT5 (Xue et al., 2020) multilingual lan-
guage models using a cross-lingual task mixture
called xP3. These refined models are capable of
cross-lingual generalization to unseen languages.

6 Experiments and Settings

Training on English Data. As a baseline setting,
we train all the pre-trained models described in
Section 5 on the English part of the multilingual
dataset xSID0.4 (van der Goot et al., 2021) and
evaluate them on Swiss German, South Tyrolean,
and Neapolitan under a zero-shot setting.
Training on German/Italian Data. Our second
approach aims to train all the pre-trained models on
the language family of low-resource languages (i.e.,
German for Swiss German and South Tyrolean, and
Italian for Neapolitan, respectively) under the zero-
shot setting. So, we extract the German and Italian

SID data from xSID0.4, and then fine-tune all our
models on both datasets. Then, we evaluate the
German models on GSW and ST tasks and the
Italian models on the NAP task.

Training on Multilingual Dataset. Next, we ex-
plore a third training approach that involves the full
multilingual xSID0.4 dataset. To do so, we com-
bine all the 12 available languages in the xSID0.4

dataset and fine-tune our pre-trained models on this
combined dataset. We then evaluate each target us-
ing a zero-shot setting. This approach allows us to
train on larger and more diverse datasets. In total,
we generate 502, 936 training sentences across all
languages in the dataset.

Paraphrase and Machine Translation. To im-
prove the performance of our pretrained models,
we also explore the impact of data augmentation
techniques such as paraphrasing and machine trans-
lation. Specifically, we aime to examine how these
techniques can enhance the performance of our
models on cross-lingual SLU tasks. To this end, we
experiment with different data augmentation strate-
gies, including paraphrasing and machine transla-
tion. Paraphrasing is performed using the quality-
guided controlled paraphrase generation (QCPG)
model (Bandel et al., 2022), resulting in a total
of 130, 815 sentences in English. These sentences
are then translated into German and Italian using
the OPUS-MT model (Tiedemann and Thottingal,
2020), creating cross-lingual datasets for our exper-
iment.

To further augment our training data for low-
resource languages, we leverage Meta AI’s No Lan-
guage Left Behind (NLLB), which provides open-
source models capable of high-quality translations
between 200 languages (including low-resource
languages (NLLB Team et al., 2022)). To create
our new training data using the NLLB model, we
first use FastText to detect the language codes of
our target languages. Next, we utilize NLLB mod-
els to translate the English training data into the pre-
dicted language codes. The language codes identi-
fied for our target languages are deu_latn for Swiss
German, est_latn for South Tyrolean, and ita_Latn
for Neapolitan. We generate 43, 605 sentences for
each of the three languages. It is worth noting that
we ensure that the labels for each sentence remain
the same throughout the paraphrasing and machine
translation process to maintain the integrity of the
data.

Training on External Data. Since the language
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models we employ do not have a strong represen-
tation of the low-resource languages used on the
task, we leverage large corpora of each of the low-
resource languages into the training process. By
incorporating external datasets, the models are ex-
posed to more comprehensive information about
the semantics of each low-resource language, en-
abling them to better capture the nuances and com-
plexities of the target languages.
Training MT0 As discussed in Section 5, the MT0
models share the same architecture as MT5/T5
models, i.e., they are encoder-decoder models.
Therefore, we train them for intent classification
and slot detection using the data preprocessing ap-
proach described in Section 4. We utilize the PEFT
library provided by Huggingface (Sourab Man-
grulkar, 2022) to train the mT0-small, mT0-Base,
and mt0-Large models. Our approach involves us-
ing LORA (Hu et al., 2021), which allows us to
achieve SOTA performance while consuming sig-
nificantly less memory. For the mT0-xxl models,
we utilize DeepSpeed (Rasley et al., 2020) with
CPU offloading to train a model with 13B parame-
ters on a 40GB A100 GPU.
Combining Models. In recent studies, joint learn-
ing techniques that combine multiple classification
approaches have produced promising results (Bilat
et al., 2020). These approaches involve concatenat-
ing the outputs of individual models and passing the
resulting output through multiple neural network
layers, allowing the resulting network to be trained
jointly. In this part of our experiments, we investi-
gate the effectiveness of this approach in zero-shot
settings by combining multilingual models. Specif-
ically, we combine LASER embeddings, from the
LASER model, with other multilingual models in-
cluding mBERT, sBERT, LaBSE and XLMR.

7 Results and Discussions

Evaluation on Validation Data. We present the
accuracy scores of all our models across various
settings. Table 4 presents the evaluation results
for the intent classification task on the validation
set. Our transformer-based models, with different
experimental settings, outperform the baseline on
all the target languages. For instance, mT0-base
outperforms the baseline (mBERT) with an aver-
age of +16.49, +22.93, +17.90 for GSW, ST, and
NAP, respectively. Notably, our best combination
was the mT0-xxl model under the multilingual set-
ting. It achieves the best results of 89.00, 94.00,

and 87.00, improving the baseline with +29.30,
+33.30, and +25.70 Accuracy point in the three
target languages.

The results of the slot filling task on the valida-
tion set are shown in Table 5. Our transformer-
based models perform better than the baseline
across all target languages when tested under dif-
ferent experimental settings. Our best-performing
model, mT0-large, achieves the most outstand-
ing results using the Multilingual settings with F1
scores of 60.30, 55.00, and 52.30 in the three tar-
get languages. These results represent a notable
improvement over the baseline, with an increase of
+30.88, +4.65, and +0.90 F1 points in the three
target languages.

Our results on the validation data suggest that
larger models generally achieve better performance,
implying that higher parameter counts result in bet-
ter cross-lingual and zero-shot setting performance.
Moreover, as the mT0 models are fine-tuned from
pre-existing mT5 multilingual language models,
they are capable of performing cross-lingual gen-
eralization on unseen languages. This capability
may be a possible reason for the mT0 models out-
performing other models in zero-shot settings.

Official Shared Task (Test) Results. Our find-
ings regarding the performance of larger models
are also observed in the test set. Table 6 presents
the evaluation results for both slot filling and in-
tent classification tasks across all three target lan-
guages. Our mT0 models strongly outperform the
baseline models. Specifically, our mT0 models
outperformed the baseline models in all target lan-
guages for the intent classification task, highlight-
ing the effectiveness of larger models for intent
classification. Moreover, our mT0 models also out-
perform the baseline models in two of the target
languages for slot filling task, further indicating
the superiority of larger models for sentence-level
classification tasks. The improvement in scores for
intent classification is more evident than for slot
filling. The larger improvement in scores for intent
classification may be correlated with the fact that
for our data augmentation experiment on paraphras-
ing and machine translation, we were only able to
augment data for intent classification, resulting in
a larger improvement in performance for this task
compared to slot filling.

It is worth noting that we use the validation set
for model selection, which resulted in higher scores
than those achieved on the test set. This is because
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Setting Lang. mBert LS LL LX mT0-small mT0-base mT0-large mT0-xxl

English
GSW 51.67 45.30 52.70 48.30 69.20 70.20 69.00 80.00
ST 61.00 58.00 66.70 61.70 74.50 76.20 79.10 89.00
NAP 61.00 55.30 56.00 67.0 71.30 72.00 75.00 76.33

German GSW 59.00 74.00 68.00 80.70 69.30 73.33 80.33 84.33
ST 59.70 55.70 59.00 51.00 83.33 88.33 84.66 92.00

Italian NAP 65.30 63.30 63.70 55.70 77.66 84.66 83.33 86.00

Multilingual
GSW 59.70 62.70 59.70 53.30 75.00 76.33 84.00 89.00
ST 60.70 54.70 58.00 56.30 88.33 85.66 90.66 94.00
NAP 61.30 55.70 59.00 60.30 82.66 84.66 86.00 87.00

Paraphrase+MT
GSW 45.30 37.30 58.00 64.00 79.00 83.00 84.33 91.00
ST 61.70 61.30 60.70 60.70 90.66 93.00 90.00 95.66
NAP 63.70 60.00 58.70 60.00 85.66 89.00 87.33 88.33

Table 4: Accuracy results for intent classification on the validation set. Baseline: mBERT (Devlin et al., 2019). LS:
LASER (Feng et al., 2020b)+sBERT (Reimers and Gurevych, 2019). LL: LASER+LaBSE (Feng et al., 2020a). LX:
LASER+XLM-R (Conneau and Lample, 2019). Underline: Best-performing models for each setting. Bold: Best
F1 score across all the experiments and settings.

Setting Lang. Baseline mt0-small mt0-base mt0-large

English
GSW 26.23 25.42 34.00 40.32
ST 44.61 32.40 44.00 54.30
NAP 48.01 42.20 47.90 49.00

Multi-langl
GSW 29.42 28.90 42.30 60.30
ST 50.35 43.40 53.40 55.00
NAP 51.40 49.00 50.30 52.30

Table 5: Slot-f1 results for Slot Filling on the validation
set. Bold entries are the best-performing models for
each experiment and setting.

Task Lang. Baseline mT0-large
ST 44.61 46.41

Slots GSW 26.23 27.39
NAP 48.01 38.82

ST 61.00 89.40
Intents GSW 51.67 81.60

NAP 61.00 85.40

Table 6: Results on the test set for both SID tasks. Bold
entries indicate the model’s performance compared to
the baseline model.

the validation data is similar to the data used during
training, while the test data is entirely new and un-
seen. As a result, the test scores may be lower due
to differences in the distribution of data between
the training and test sets. Nevertheless, our mT0
models consistently outperform the baseline mod-
els on the test set, providing further evidence for
the effectiveness of larger models in SID tasks.

8 Conclusion

We described our contribution to the
SID4LR (Aepli et al., 2023) shared tasks.

Our models target both the slot and intent sub-task
in three proposed low-resource languages, namely,
Swiss German, South Tyrolean, and Neapolitan.
We test the utility of existing pretrained language
models such as mT0 (Muennighoff et al., 2022)
on the intent detection and slot filling tasks. We
show that such models can lead to improving the
results of the baseline with an average of +27 F1
points. In the future, we intend to use mT0 to
jointly model the intent detection and slot filling
tasks for improving overall performance.
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Abstract
This report presents the results of the shared
tasks organized as part of the VarDial Evalu-
ation Campaign 2023. The campaign is part
of the tenth workshop on Natural Language
Processing (NLP) for Similar Languages, Va-
rieties and Dialects (VarDial), co-located with
EACL 2023. Three separate shared tasks were
included this year: Slot and intent detection
for low-resource language varieties (SID4LR),
Discriminating Between Similar Languages –
True Labels (DSL-TL), and Discriminating Be-
tween Similar Languages – Speech (DSL-S).
All three tasks were organized for the first time
this year.

1 Introduction

The workshop series on NLP for Similar Lan-
guages, Varieties and Dialects (VarDial), tradi-
tionally co-located with international conferences,
has reached its tenth edition. Since the first edi-
tion, VarDial has hosted shared tasks on various
topics such as language and dialect identification,
morphosyntactic tagging, question answering, and
cross-lingual dependency parsing. The shared tasks
have featured many languages and dialects from dif-
ferent families and data from various sources, gen-
res, and domains (Aepli et al., 2022; Chakravarthi
et al., 2021; Gaman et al., 2020; Zampieri et al.,
2019, 2018, 2017; Malmasi et al., 2016; Zampieri
et al., 2015, 2014).

As part of the VarDial Evaluation Campaign
2023, we offered three shared tasks which we
present in this paper:

• SID4LR: Slot and intent detection for low-
resource language varieties1

• DSL-TL: Discriminating Between Similar
Languages – True Labels2

1Task organizers: Noëmi Aepli, Rob van der Goot, Barbara
Plank, Yves Scherrer.

2Task organizers: Marcos Zampieri, Kai North, Tommi
Jauhiainen.

• DSL-S: Discriminating Between Similar Lan-
guages – Speech3

DSL-TL and DSL-S continue the long line of lan-
guage and dialect identification (Jauhiainen et al.,
2019) shared tasks at VarDial, whereas the SID4LR
features a task novel to the evaluation campaigns.

This overview paper is structured as follows: in
Section 2, we briefly introduce the three shared
tasks. Section 3 presents the teams that submit-
ted systems to the shared tasks. Each task is then
discussed in detail, focusing on the data, the partic-
ipants’ approaches, and the obtained results. Sec-
tion 4 is dedicated to SID4LR, Section 5 to DSL-
TL, and Section 6 to DSL-S.

2 Shared Tasks at VarDial 2023

The evaluation campaign took place in January –
February 2023. Due to the ACL placing the work-
shop at the EACL conference in early May, the
schedule from the shared tasks’ first announcement
to completion was relatively tight. The call for par-
ticipation in the shared tasks was first published in
early January, the training data sets for the shared
tasks were released on January 23rd, and the results
were due to be submitted on February 27th.4

2.1 SID for Low-resource Language Varieties
(SID4LR)

The SID4LR shared task focused on Slot and Intent
Detection (SID) for digital assistant data in three
low-resource language varieties: Swiss German
(GSW) from the city of Bern, South Tyrolean (DE-
ST), and Neapolitan (NAP). Intent detection is the
task of automatically classifying the intent of an
utterance and slot detection aims at finding the rel-
evant (labeled) span. Figure 1 illustrates these two
tasks with an example. The objective of this shared

3Task organizers: Çağrı Çöltekin, Mourhaf Kazzaz,
Tommi Jauhiainen, Nikola Ljubešić.

4https://sites.google.com/view/vardia
l-2023/shared-tasks
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English (EN) Remind me to go to the dentist next Monday
Italian (IT) Ricordami di andare dal dentista lunedì prossimo
Neapolitan (NAP) Ricuordam’ ‘e ‘i addo dentista lunnerì prossimo
German (DE) Erinnere mich am nächsten Montag zum Zahnarzt zu gehen
Swiss German (GSW) Du mi dra erinnere nöchscht Mänti zum Proffumech zga
South Tyrolean (DE-ST) Erinner mi in negschtn Muntig zin Zohnorzt zu gian

Figure 1: Example of the SID tasks. The three target languages (NAP, GSW, DE-ST) are in bold, the corresponding
high-resource languages (DE and IT) and the translation (EN) are included for comparison. The slot annotations are
coloured: datetime and reminder/todo. The intent for this sentence is reminder/set_reminder.

task is to address the following question: How can
we best do zero-shot transfer to low-resource lan-
guage varieties without standard orthography?

The xSID-0.4 corpus5, which includes data from
both Snips (Coucke et al., 2018) and Facebook
(Schuster et al., 2019), constitutes the training data,
providing labeled information for slot and intent
detection in 13 different languages. The original
training data is in English, but we also provided
automatic translations of the training data into Ger-
man, Italian, and other languages. These transla-
tions are obtained with the Fairseq library (Ott et al.,
2019), using spoken data for training (more details
in van der Goot et al. (2021a)). Bleu scores (Pap-
ineni et al., 2002) were 25.93 and 44.73 for respec-
tively German and Italian. Slot label annotations
were transferred using the attention weights. Par-
ticipants were allowed to use other data to train on
as long as it was not annotated for SID in the target
languages. Specifically, the following resources
were allowed:

1. annotated data from other (related and unre-
lated) languages in the xSID-0.4 corpus;

2. raw text data from the target languages, if
available (e.g., Wikipedia, web crawls);

3. pre-trained language models containing data
from the target languages.

It was not mandatory for the participants to pro-
vide systems for all tasks and languages; they had
the option to only take part in a specific subset. We
used the standard evaluation metrics for these tasks,
namely the span F1 score for slots and accuracy for
intents.

5https://bitbucket.org/robvanderg/sid
4lr

2.2 Discriminating Between Similar
Languages – True Labels (DSL-TL)

Discriminating between similar languages (e.g.,
Croatian and Serbian) and national language vari-
eties (e.g., Brazilian and European Portuguese) has
been a popular topic at VarDial since its first edi-
tion. The DSL shared tasks organized from 2014 to
2017 (Zampieri et al., 2017; Malmasi et al., 2016;
Zampieri et al., 2015, 2014) have addressed this is-
sue by providing participants with the DSL Corpus
Collection (DSLCC) (Tan et al., 2014), a collec-
tion of journalistic texts containing texts written in
groups of similar languages (e.g., Indonesian and
Malay) and language varieties (e.g., Brazilian and
European Portuguese).6 The DSLCC was compiled
assuming each instance’s gold label is determined
by where the text is retrieved from. While this
is a straightforward and primarily accurate prac-
tical assumption, previous research (Goutte et al.,
2016) has shown the limitations of this problem
formulation as some texts may present no linguis-
tic marker that allows systems or native speakers to
discriminate between two very similar languages
or language varieties.

At VarDial 2023, we tackle this important limita-
tion by introducing the DSL True Labels (DSL-TL)
shared task. DSL-TL provided participants with the
DSL-TL dataset (Zampieri et al., 2023), the first
human-annotated language variety identification
dataset where the sentences can belong to several
varieties simultaneously. The DSL-TL dataset con-
tains newspaper texts annotated by multiple native
speakers of the included language and language
varieties, namely English (American and British
varieties), Portuguese (Brazilian and European va-
rieties), and Spanish (Argentinian and Peninsular
varieties). More details on the DSL-TL shared task
and dataset are presented in Section 5.

6http://ttg.uni-saarland.de/resources
/DSLCC/
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Team SID4LR DSL-TL DSL-S System Description Paper

UBC ✓ Kwon et al. (2023)
Notre Dame ✓ Srivastava and Chiang (2023)
VaidyaKane ✓ Vaidya and Kane (2023)
ssl ✓ Hohl and Shim (2023)
UnibucNLP ✓ Gaman (2023)
SATLab ✓

Table 1: The teams that participated in the VarDial Evaluation Campaign 2023.

2.3 Discriminating Between Similar
Languages – Speech (DSL-S)

In the DSL-S 2023 shared task, participants were
using the training, and the development sets from
the Mozilla Common Voice (CV, Ardila et al.,
2020) to develop a language identifier for speech.7

The nine languages selected for the task come
from four different subgroups of Indo-European
or Uralic language families (Swedish, Norwe-
gian Nynorsk, Danish, Finnish, Estonian, Moksha,
Erzya, Russian, and Ukrainian).

The 9-way classification task was divided into
two separate tracks. Only the training and devel-
opment data from the CV dataset were allowed
in the closed track, and no other data were to be
used. This prohibition included systems and mod-
els trained (unsupervised or supervised) on any
other data. On the open track, the use of any
openly available (available to any possible shared
task participant) datasets and models not including
or trained on the Mozilla Common Voice test set
was allowed. The evaluation measure used was the
Macro F1 score over the nine languages.

3 Participating Teams

A total of six teams submitted runs to the SID4LR
and DSL-TL tasks. Two teams registered for the
DSL-S shared task, but neither provided any sub-
missions. In Table 1, we list the teams that par-
ticipated in the shared tasks, including references
to the system description papers, which are pub-
lished as parts of the VarDial workshop proceed-
ings. Detailed information about the submissions
is included in the task-specific sections below.

7Further information available at: https://dsl-s.g
ithub.io.

4 SID for Low-resource Language
Varieties

4.1 Dataset

The xSID-0.4 corpus8 makes up the training data
and provides labeled information for slot and in-
tent detection in 13 different languages. The xSID
dataset consists of sentences from the English Snips
(Coucke et al., 2018) and cross-lingual Facebook
(Schuster et al., 2019) datasets, which were man-
ually translated into 12 other languages (van der
Goot et al., 2021a). There are 43,605 sentences
in the English training data. The evaluation data
contains 500 test sentences and 300 validation sen-
tences per language. For the test data, we took
the existing South Tyrolean (DE-ST) part of xSID
(van der Goot et al., 2021a) and two novel transla-
tions created for this shared task: Bernese Swiss
German (GSW) and Neapolitan (NAP). The new
translations were done by native speakers of the
two language varieties. They translated directly
from English without seeing the Italian or German
source sentences. The translations were then pro-
cessed and annotated by the shared task organizers
(who have passive knowledge of the two language
varieties). The two steps were done according to
the guidelines from the original paper by van der
Goot et al. (2021a).

4.2 Participants and Approaches

UBC: Team UBC (Kwon et al., 2023) partic-
ipated in both subtasks: slot and intent detec-
tion. They used several multilingual Transformer-
based language models, including mBERT, XLM-
R, SBERT, LaBSE, LASER, and mT0. Further-
more, they experimented with a variety of settings
to improve performance: varying the source lan-
guages, combining different language models, data
augmentation via paraphrasing and machine trans-

8https://bitbucket.org/robvanderg/sid
4lr
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lation, and pre-training on the target languages. For
the latter, they made use of additional external data
from various sources for all three target languages
for the training.

Notre Dame: Team Notre Dame (Srivastava and
Chiang, 2023) submitted a research paper to the
VarDial workshop, within which they also de-
scribed their participation in the intent detection
subtask. The team applied zero-shot methods, i.e.,
they did not use any data from the target language
in the training process. They fine-tuned monolin-
gual language models9 with noise-induced data.
The noising technique they applied is similar to
that of Aepli and Sennrich (2022) with three main
differences: they 1) add an additional noise type:
swapping between adjacent letters; 2) they employ
higher levels of noise and include multiple copies
of the fine-tuning data; and 3) remove the step of
continued pre-training to avoid using any target
language data.

Baseline: The baseline we provided is the same
as in the original xSID paper, trained on the En-
glish data, with an updated version of MaChAmp
(van der Goot et al., 2021b). The model uses an
mBERT encoder and a separate decoder head for
each task, one for slot detection (with a CRF layer)
and one for intent classification.

4.3 Results

We evaluated the submitted systems according to
accuracy for intents and according to the span F1
score for slots (where both span and label must
match exactly). Table 2 contains the scores.

For intent classification, the winner for all three
languages is the team Notre Dame. Both teams beat
the baseline by a large margin. All systems reached
the highest scores on DE-ST and the lowest scores
on GSW, but both participating teams managed to
significantly close the gaps between the languages
compared to the baseline.

For slot detection, the UBC team outperformed
the baseline for DE-ST and GSW but not for NAP.
Again, GSW turned out to be the most difficult
language variety of the three. We must note, how-
ever, that the UBC submission contained a large
amount of ill-formed slots. Between 13% (DE-ST,
NAP) and 28% (GSW) of predicted slots start with

9German BERT: https://huggingface.co/dbm
dz/bert-base-german-uncased and Italian BERT:
https://huggingface.co/dbmdz/bert-base-i
talian-uncased

an I- label instead of B-; the evaluation script
simply ignores such slots. Furthermore, a small
number of predicted spans have inconsistent la-
bels (e.g., I-datetime immediately followed
by I-location). This suggests that the model
architecture chosen by the UBC team was not ap-
propriate for span labeling tasks and that a different
architecture could have led to further improvements
compared to the baseline. The baseline system,
which uses a CRF prediction layer, did not produce
any such inconsistencies.

Baseline UBC Notre Dame

Intent
detection

DE-ST 0.6160 0.8940 0.9420
GSW 0.4720 0.8160 0.8860
NAP 0.5900 0.8540 0.8900

Slot
detection

DE-ST 0.4288 0.4692 –
GSW 0.2530 0.2899 –
NAP 0.4457 0.4215 –

Table 2: Results for intent classification (accuracy) and
slot detection (Span-F1 score). UBC submitted several
models for intent detection, and here we report their
best-performing system for each language.

4.4 Summary

The UBC submissions are based on a pre-trained
multilingual language model (mT0), which was
fine-tuned on the 12 languages of the xSID dataset.
Among these languages are Italian and German,
but all training sets except the English one have
been produced by machine translation. This setup
worked better than using only the related languages
of xSID (IT and DE) or only English. Also, further
data augmentation with paraphrasing and machine
translation did not have any positive effect. These
findings suggest that task-specific knowledge is
more important than having access to linguistic
material in the target languages (or even in related
high-resource languages).

The Notre Dame participation provides a some-
what contrasting result. They start with a mono-
lingual BERT model of the related high-resource
language (IT or DE) and use fine-tuning to make
the model more robust to character-level noise. The
possibility of including unrelated languages was
not explored here.

The contributions proposed by the participants
are thus largely complementary, and it would be
interesting to see if their combination leads to fur-
ther improvements on the task. For instance, task-
specific fine-tuning (using all of the xSID data)
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could be combined with language-specific fine-
tuning (based on the noise induction task) and com-
plemented with the baseline’s CRF architecture to
provide consistent slot labels.

A striking finding of this shared task are the poor
results on Swiss German compared to the other
two low-resource varieties, Neapolitan and South-
Tyrolean German. This may be due to the particular
Swiss German dialect used in this dataset and/or
to some translator-specific preferences or biases.
Further analysis will be required to fully explain
these differences.

5 Discriminating Between Similar
Languages – True Labels

The DSL-TL shared task contained two tracks:

• Track 1 – Three-way Classification: In this
track, systems were evaluated with respect
to the prediction of all three labels for each
language, namely the variety-specific labels
(e.g., PT-PT or PT-BR) and the common label
(e.g., PT).

• Track 2 – Binary Classification: In this
track, systems were scored only on the variety-
specific labels (e.g., EN-GB, EN-US).

In addition to the two tracks mentioned above, we
provided participants with the option of using ex-
ternal data sources (open submission) or only the
DSL-TL dataset (closed submission).

5.1 Dataset

Data DSL-TL contains 12,900 instances split be-
tween three languages and six national language
varieties, as shown in Table 3. Instances in the DSL-
TL are short extracts (1 to 3 sentences long) from
newspaper articles randomly sampled from two
sources (Zellers et al., 2019; Tan et al., 2014). Con-
sidering the source’s ground truth label, the DSL-
TL creators randomly selected 2,500 instances for
each Portuguese and Spanish variety and 1,500 in-
stances for each English variety.

Annotation DSL-TL was annotated using crowd-
sourcing through Amazon Mechanical Turk
(AMT).10 The annotation task was restricted to
annotators based on the six national language vari-
ety countries, namely Argentina, Brazil, Portugal,
Spain, United Kingdom, and the United States. The

10https://www.mturk.com/

annotators were asked to label each instance with
what they believed to be the most representative
variety label, namely European (pt-PT) or Brazilian
Portuguese (pt-BR), Castilian (es-ES) or Argentine
Spanish (es-AR), and British (en-GB) or Ameri-
can English (en-US). The label distributions are
shown in Table 3. The annotators were presented
with three choices: (1) language variety A, (2) lan-
guage variety B, or (3) both or neither for cases
in which no clear language variety marker (either
linguistic or named entity) was present in the text.
The annotator agreement calculations and filtering
carried out after the annotation stage are described
in detail in the dataset description paper (Zampieri
et al., 2023). Finally, the instances in DSL-TL have
been split into training, development, and testing
partitions, as shown in Table 4.

5.2 Participants and Approaches

Four teams provided submissions to the shared
task.

VaidyaKane: All submissions from the team
VaidyaKane used a pre-trained multilingual XLM-
RoBERTa fine-tuned to language identification11

to classify the language of the sentence (Con-
neau et al., 2020b). After the initial language
identification, they experimented with several
language-specific BERT models to identify the ex-
act variety. Their best submission on track one
used “bert-base-uncased”12 for English (Devlin
et al., 2019), “bertin-project/bertin-roberta-base-
spanish”13 for Spanish (la Rosa et al., 2022), and
“neuralmind/bert-base-portuguese-cased”14 for Por-
tuguese (Souza et al., 2020). On track two, the mod-
els for Spanish and Portuguese were the same, but
“roberta-base”15 was used for English (Liu et al.,
2019).

ssl: Team ssl submitted one submission to each
of the four track combinations. For the closed
tracks, they trained an SVM classifier using TF-
IDF weighted character n-grams from one to four
and word n-grams from one to two. On the open

11https://huggingface.co/papluca/xlm-r
oberta-base-language-detection

12https://huggingface.co/bert-base-unc
ased

13https://huggingface.co/bertin-project
/bertin-roberta-base-spanish

14https://huggingface.co/neuralmind/be
rt-base-portuguese-cased

15https://huggingface.co/roberta-base
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Language Variety A Variety B Both/Neither Total
Portuguese 1,317 (pt-PT) 3,023 (pt-BR) 613 (pt) 4,953
Spanish 2,131 (es-ES) 1,211 (es-AR) 1,605 (es) 4,947
English 1,081 (en-GB) 1,540 (en-US) 379 (en) 3,000
Total 12,900

Table 3: DSL-TL’s class splits and the total number of instances.

Variety Train Dev Test Total
Portuguese 3,467 991 495 4,953
Spanish 3,467 985 495 4,947
English 2,097 603 300 3,000
Total 12,900

Table 4: DSL-TL’s train, dev, and test splits are
70/20/10% of the total number of instances, respec-
tively.

tracks, they also used names of people obtained
from Wikidata (Vrandečić and Krötzsch, 2014).

UnibucNLP: On track one, the UnibucNLP team
submitted a run using an XGBoost stacking ensem-
ble (Chen and Guestrin, 2016). The classifier stack
for the ensemble consisted of one SVM and one
KRR classifier. For track two, the stack classifiers
were the same, but Logistic Regression was used
for the stacking ensemble.

SATLab: On both tracks, the SATLab team used
a Logistic Regression classifier from the LIBLin-
ear package with character n-grams from one to
five weighted by BM25 and L2 normalization. The
n-grams had to appear in at least two different sen-
tences in the training data. The system was very
similar to the one used by Bestgen (2021) in the
Dravidian Language Identification (DLI) shared
task in 2021 (Chakravarthi et al., 2021).

5.3 Results

Tables 5 to 8 show the recall, precision, and F1
scores for the baselines and best submissions for
all track combinations.

Rank Model R P F1
baseline-mBERT 0.5490 0.5450 0.5400
baseline-XLM-R 0.5280 0.5490 0.5360

1 run-3-UnibucNLP 0.5291 0.5542 0.5318
baseline-NB 0.5090 0.5090 0.5030

2 run-1-SATLab 0.4987 0.4896 0.4905
3 run-1-ssl 0.4978 0.4734 0.4817

Table 5: The macro average scores of the best run for
each team on closed track 1.

Rank Model R P F1
baseline-ANB 0.8200 0.7990 0.7990
baseline-NB 0.8110 0.7920 0.7940
baseline-XLM-R 0.7830 0.7820 0.7800

1 run-1-ssl 0.7521 0.7885 0.7604
baseline-mBERT 0.7600 0.7530 0.7550

2 run-2-SATLab 0.7520 0.7430 0.7452
3 run-1-UnibucNLP 0.6502 0.7756 0.6935

Table 6: The macro average scores of the best run for
each team on closed track 2.

Rank Model R P F1
1 run-3-VaidyaKa 0.5962 0.5866 0.5854
2 run-1-ssl 0.4937 0.5068 0.4889

Table 7: The macro average scores of the best run for
open track 1.

Rank Model R P F1
1 run-1-VaidyaKa 0.8705 0.8523 0.8561

baseline-NB 0.8200 0.8030 0.8030
2 run-1-ssl 0.7647 0.7951 0.7729

Table 8: The macro average scores of the best run for
each team on open track 2.

Team UnibucNLP (Gaman, 2023) achieved the
first place out of nine submissions on the closed
version of track one. Their XGBoost stacking en-
semble attained an F1 score of 0.5318. The re-
sults were still slightly worse than the multilin-
gual BERT16 (mBERT) (Devlin et al., 2019) and
the XLM-RoBERTa17 (XLM-R) (Liu et al., 2019)
baselines. All other submissions achieved slightly
worse F1 scores. In the second place, team SAT-
Lab’s logistic regressor obtained an F1 score of
0.4905. In third place, team ssl’s SVM produced
an F1 score of 0.4817. The similarity between the
top three F1 scores shows that automatically dif-
ferentiating between similar language varieties is a
challenging task, especially when taking into con-
sideration neutral labels (EN, ES, or PT), as well
as only using the provided data.

16mBERT: https://huggingface.co/bert-bas
e-multilingual-cased

17XLM-R: https://huggingface.co/xlm-rob
erta-base
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Team ssl (Hohl and Shim, 2023) achieved the
best performance out of ten submissions on the
closed version of track two. Their SVM was able
to more effectively differentiate between six labels
that did not include the aforementioned neutral
labels (en-GB, en-US, es-AR, es-ES, pt-PT, or pt-
BR). They achieved an F1 score of 0.7604. Their
results were closely followed by the performance
of SATLab’s logistic regressor, having attained an
F1 score of 0.7452, and UnibucNLP’s XGBoost
stacking ensemble with an F1 score of 0.6935. All
submissions were clearly behind the adaptive and
traditional Naive Bayes baselines, which were iden-
tical to the systems winning the Identification of
Languages and Dialects of Italy (ITDI) shared task
in 2022 (Jauhiainen et al., 2022a; Aepli et al., 2022).
SVMs are well-known to perform well when there
is a clear distinction between class boundaries.
This likely explains why team ssl’s SVM has out-
performed UnibucNLP’s ensemble since neutral
labels that contained features of both classes were
no longer considered.

Team VaidyaKane’s (Vaidya and Kane, 2023)
submission to the open version of track 1 out-
performed all other open and closed submissions
for this track. Their two-stage transformer-based
model achieved an F1 score of 0.5854. Team ssl
was the only other team to submit predictions for
open tracks 1 and 2. Their open submission for
track 1 achieved an F1 score of 0.4889 which sur-
passed that of their closed submission for this track.
The use of additional data was, therefore, found to
improve overall performances.

Team VaidyaKane produced the highest F1 score
on the open version of track 2. They achieved an
F1 score of 0.8561, which was greater than all
other open and closed submissions for either track.
Team ssl also saw a further improvement in their
SVM’s model performance when using additional
data for track 2. Their SVM model produced an F1
score of 0.7729, which was superior to their closed-
track submission. These performances show that
the use of additional data is beneficial and further
proves that the classification of language varieties
is an easier task than the classification of language
varieties with neutral labels.

5.4 Summary

The DSL-TL shared task introduced a novel prob-
lem formulation in language variety identification.
The new human-annotated dataset with the pres-

ence of the ‘both or neither’ class represent a new
way of looking at the problem. Given the simi-
larity between language varieties, we believe this
new problem formulation constitutes a fairer way
of evaluating language identification systems, al-
beit rather challenging in terms of performance as
demonstrated in this shared task.

6 Discriminating Between Similar
Languages – Speech

6.1 Dataset
The DSL-S shared task uses Mozilla Common
Voice data (version 12 released in Dec 2022) in
9 languages from two language families. The data
comes from volunteers reading a pre-selected set of
sentences in each language. The audio is recorded
through a web-based interface. For training and
development sets, we follow the training and de-
velopment set of the source data. Even though the
test data used in this task comes from the Common
Voice test data for the nine languages, we do not
use the entire test set of the CV release but sam-
ple 100 audio files for each language. There is no
overlap of sentences and speakers between the data
sets. Table 9 presents the test set’s statistics. The
total amount of unpacked speech data is around
15 gigabytes. The data includes severe class im-
balance, as well as substantial differences in the
number of speakers. Generalization from a small
number of speakers is a known challenge in similar
speech data sets, including earlier VarDial evalua-
tion campaigns.18 The CV data set makes this task
further challenging since the variety of speakers in
the test set is much larger than the training and the
development sets.

Similar to the earlier VarDial shared tasks with
audio data (Zampieri et al., 2017, 2018, 2019),
we provided 400-dimensional i-vector and 512-
dimensional x-vector features, both extracted using
Kaldi (Povey et al., 2011). Unlike earlier tasks,
however, the raw audio data was also available to
the potential participants.

6.2 Participants and Approaches
Two teams registered for the shared task, but nei-
ther provided any submissions. In this section, we
briefly introduce the baselines we provided. For the
closed track, we provided a linear SVM baseline
with x-vectors features (Snyder et al., 2018). The

18See Jauhiainen et al. (2018) and Wu et al. (2019) for
earlier approaches to this problem.
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Train Dev Test

n spk duration n spk duration n spk duration

DA 2734 3 3:17:38 2105 10 2:50:46 100 48 0:07:50
ET 3137 221 5:49:04 2638 167 4:57:54 100 88 0:11:12
FI 2121 3 2:43:47 1651 13 1:59:23 100 63 0:07:46
MDF 173 2 0:15:39 54 1 0:04:39 100 7 0:08:40
MYV 1241 2 1:58:26 239 1 0:22:55 100 9 0:09:07
NO 314 3 0:22:43 168 4 0:13:28 100 18 0:07:35
RU 26043 252 37:16:50 10153 394 15:23:17 100 98 0:09:15
SV 7421 22 8:11:54 5012 73 5:32:33 100 89 0:07:24
UK 15749 28 18:38:31 8085 103 10:58:25 100 28 0:08:22

Table 9: Number of instances (n), number of speakers (spk) and total duration (hour:minute:seconds) for each split
of the DSL-S shared task. The speaker numbers are approximated based on client id detection by CV.

System P R F1

SVM + x-vectors 0.0914 0.1189 0.0876
XLS-R 0.6736 0.5953 0.5856
XLS-R + NB 0.7331 0.7167 0.7031

Table 10: Baseline scores of the DSL-S shared task.

SVM baseline was implemented using scikit-learn
(Pedregosa et al., 2011), and tuned only for the
SVM margin parameter ‘C’. The open track base-
line uses two baselines - the XLS-R multilingual
pre-trained transformer speech model (Conneau
et al., 2020a)19 with a classification head for direct
speech classification, and a multilingual speech
recognition system 20 based on XLS-R (Babu et al.,
2021) to transcribe the speech, and uses Naive
Bayes (Jauhiainen et al., 2022a,b) to identify the
language.21

6.3 Results

The scores for the baselines are presented in Ta-
ble 10. The SVM baseline performs particularly
badly on the test set (the development precision,
recall, and F1 scores are 0.4088, 0.4011, 0.3777, re-
spectively). The reason behind this is likely due to
the fact that, although they were used for language
identification in earlier research, the x-vectors are
designed for speaker identification. Given the vari-
ability of speaker features in the test set, any clas-
sifier relying on speaker features are likely to fail.
The baselines relying on pre-trained transformer

19https://huggingface.co/facebook/wav2
vec2-large-xlsr-53

20https://huggingface.co/voidful/wav2v
ec2-xlsr-multilingual-56

21https://github.com/tosaja/TunPRF-NADI

models perform substantially better, with the di-
rect speech classifier being more than 10 points
behind the transcription and text classification ap-
proach. While the direct speech classification ap-
proach could be further improved through hyperpa-
rameter optimisation (currently we fine-tune for 3
epochs with a batch size of 24 and a learning rate of
1e-04) and a selection of the layer from which the
features are extracted (related work suggests that
lower transformer layers are more informative for
discriminating between languages (Bartley et al.,
2023)), these baseline results show that transcrip-
tion and text classification might still be a shorter
path to a reasonably performing system for dis-
criminating between similar languages than direct
speech classification.

6.4 Summary
Although we did not have any submissions for this
shared task, we believe that the task includes many
interesting challenges. Based only on our base-
line results, identifying languages from a limited
amount of data (without pre-trained speech models)
seems challenging, yet this is particularly interest-
ing for low-resource settings and for investigating
differences and similarities for closely related lan-
guage varieties. We hope to see more interest in
the community for language/dialect identification
from speech.

7 Conclusion

This paper presented an overview of the three
shared tasks organized as part of the VarDial Eval-
uation Campaign 2023: Slot and intent detection
for low-resource language varieties (SID4LR), Dis-
criminating Between Similar Languages – True La-
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bels (DSL-TL), and Discriminating Between Simi-
lar Languages – Speech (DSL-S).
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