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Abstract

Rumour detection on social media is an im-
portant topic due to the challenges of misin-
formation propagation and slow verification of
misleading information. Most previous work
focus on the response posts on social media, ig-
noring the useful characteristics of involved
users and their relations. In this paper, we
propose a novel framework, Post-User Fusion
Network (PESTO), which models the patterns
of rumours from both post diffusion and user
social networks. Specifically, we propose a
novel Chronologically-masked Transformer ar-
chitecture to model both temporal sequence
and diffusion structure of rumours, and apply
a Relational Graph Convolutional Network to
model the social relations of involved users,
with a fusion network based on self-attention
mechanism to incorporate the two aspects. Ad-
ditionally, two data augmentation techniques
are leveraged to improve the robustness and ac-
curacy of our models. Empirical results on four
datasets of English tweets show the superiority
of the proposed method.

1 Introduction

Rumours, are unverified statements found in social
media platforms, which can be damaging if they
spread false information with social, economic and
political impact (Del Vicario et al., 2016; Zubiaga
et al., 2018). For instance: during the period of the
U.S. 2016 presidential election, almost 529 differ-
ent rumours about candidates were propagated on
Facebook and Twitter which influenced voters’ atti-
tudes (Jin et al., 2017). To this end, it is important
for social network platforms to develop effective
strategies to combat against fake news and rumours.
Recognising misinformation from social media is
challenging due to different sources of information
required to gather in order to conduct an exten-
sive analysis and reasoning on these sources. Early
efforts to tackle rumour detection and misinforma-
tion in social network platforms relied on manual

verification from users or experts, however, this
kind of approach is inefficient due to the substan-
tial human effort and time to recognise a rumour
after it has emerged. In recent years, automatic
social context based rumour detection has attracted
increasing attention. This area of research utilizes
the collective wisdom of the social platforms by
extracting signals from comments and/or replies to-
wards a source claim (Ma et al., 2016, 2017, 2018;
Han et al., 2019; Kochkina et al., 2018; Yuan et al.,
2019; Bian et al., 2020; Khoo et al., 2020; Kochk-
ina and Liakata, 2020; Huang et al., 2019). The key
idea behind these work is that users from social me-
dia would contribute opinions, clues and evidence
for distinguishing between false and valid informa-
tion for rumour detection. Therefore, the content
of communication threads and the interaction be-
tween posts would be useful for rumour detection.
However, apart from the threads of responses, the
characteristics of the social network of users can
also provide important clues for inferring news ve-
racity. For example, eye-catching rumours usually
attract mostly bot accounts to spread, who tend
to follow many accounts but with few or no fol-
lowers (Gilani et al., 2019), such implicit patterns
can also support the veracity of a claim. There-
fore, in this paper, we aim to propose a method
which can model the post diffusion and the user
social network jointly to detect social rumours. In
terms of post diffusion modeling, a typical line
of methods have exploited the characteristics of
diffusion structure, such as tree-structured RvNN
(Ma et al., 2018), Bi-GCN (Bian et al., 2020) and
DSL (Huang et al., 2019), but ignore the tempo-
ral information and the implicit connections be-
tween posts. Sequence-based models such Recur-
rent neural networks (RNNs) (Ma et al., 2016),
PLAN (Khoo et al., 2020) and DCM (Veyseh et al.,
2019) flatten the tree structure and arrange posts in
chronological order. They overcome some limita-
tions of tree models but underexploit the diffusion
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structure. For this sake, in the paper, we propose
a Chronologically-masked Transformer architec-
ture, which integrates both temporal and structural
information to effectively model the rumour dif-
fusion patterns. In terms of user network model-
ing, many off-the-shelf graph neural networks such
as Graph Convolutional Network (GCN) (Kipf
and Welling, 2016), GraphSAGE (Hamilton et al.,
2017), Graph Attention Network (GAT) (Velivck-
ović et al., 2017), Relational Graph Convolutional
Network (RGCN) (Schlichtkrull et al., 2018) can
be leveraged. Considering that A-follow-B and
A-followed-by-B are different relations, we adopt
RGCN for user network representation. In order
to fuse the information in two aspects, we propose
to use a self-attention layer for final information
aggregation. Since many existing rumour detec-
tion datasets are in small scale, we propose two
data augmentation techniques: Connection drop-
ping and Sub-conversation training to assist model
training. We name the entire architecture as Post-
User Fusion Network (PESTO). Our experimental
evaluation shows PESTO improves performance
over previous approaches. The contributions of our
work are as follows:

- We propose a Chronologically-masked Trans-
former architecture to model the post diffu-
sion patterns of rumours, with both temporal
and structural information considered.

- We leverage a Relational Graph Convolu-
tional Network to represent the user so-
cial network, and integrate it with the
chronologically-masked Transformer via a
Fusion network based on self-attention.

- We adopt two data augmentation techniques:
Connection dropping and Sub-conversation
training, to reduce overfitting, making our
model more robust and stable.

2 Related Work

Existing detection approaches of fake claims can be
generally categories into three groups based on the
information utilized: (i) the content of the claim,
(ii) knowledge from trustworthy sources and (iii)
social response to the claim. Our work in this pa-
per falls into the last group, which exploits social
replies and the involved user network to detect ru-
mours. In this section, we briefly introduce each
group of work.

Content-based Detection: This line of stud-
ies studied specific linguistic cues such as verb

quantity, word classes, word length, pronouns, non-
objectivity (Rubin and Lukoianova, 2015; Feng
et al., 2012; Potthast et al., 2017). These features
are useful to detect satires or onion news, but might
be unique to domains or topics.

Knowledge-based Detection: Fact checking
websites such as politifact.com and snope.com
leverage manual verification to debunk fake news
or rumours, but fail to match the rapid emergence
rate of misinformation nowadays. Automated fact
checking techniques rely on truthworthy sources
such as Wikipedia, but they might not work for
latest news without evidences.

Social Response-based Detection Social re-
sponse information such as reply contents and prop-
agation structures have been shown to be particu-
larly useful for classifying rumours. Ma et al. (Ma
et al., 2017) uses tree kernel to capture the similar-
ity of propagation trees by counting their similar
sub-structures in order to identify different types
of rumours on Twitter. Ma et al. (Ma et al., 2018)
make use of tree-structured recursive neural net-
work to model the propagation tree, and informa-
tion from different nodes is aggregated recursively
in either a bottom-up or a top-down manner. Bian et
al. (Bian et al., 2020) also propose a bi-directional
graph model named Bi-GCN to explore both prop-
agation and aggregation patterns by operating on
both top-down and bottom-up propagation of ru-
mours. However, the focus in these works is on
using the static tree structure of Tweet propagation,
ignoring the temporal order and implicit connec-
tions between posts. For this sake, Veyseh et al.
(Veyseh et al., 2019) and Khoo et al. (Khoo et al.,
2020) propose to apply self-attention mechanism
(Vaswani et al., 2017) to model implicit connec-
tions, but their direct usage of self-attention does
not consider the propagation and aggregation char-
acteristic of news conversation and underexploit
the explicit diffusion structure. All of previous
work do not take user networks into consideration,
which provides important evidences for detection
(Yang et al., 2019; Shu et al., 2019).

3 Preliminaries

3.1 Problem Statement
We define rumour detection as predicting the
label (e.g., Rumour or Non-rumour) of a source
post on social media, given all its respond-
ing posts and the response relations between
them. A rumour detection dataset is a set of
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threads: T = {T1, T2, ...T|T|}, where Ti =

{pi1, pi2, ...piMi
, ui1, u

i
2, ...u

i
Ni
, GP

i , G
U
i , G

UP
i } is

the i-th event, where Mi and Ni denotes the
number of posts and involved users in Ti respec-
tively, pij denotes the j-th post and uik denotes
the k-th user. pi1 is the source post and others are
corresponding retweeted posts or responsive posts
in chronological order. GP

i is the propagation
structure of posts. Specifically, GP

i is defined as a
graph ⟨V P

i , EP
i ⟩, where V P

i = {pi1, pi2, ..., piMi
},

and EP
i = {ePi(st)|s, t = 1, ...,Mi} that repre-

sents the set of edges from responsive posts to
responded posts. Likewise, GU

i is defined as a
graph ⟨V U

i , EU
i ⟩, where V U

i = {ui1, ui2, ...uiNi
}.

and EU
i = {eUi(st)|s, t = 1, 2, ..., Ni} repre-

sents the set of edges from users to the users
they follow. GUP

i = {V U
i ∪ V P

i , EUP
i }

is the user-publish-post graph, where
EUP

i = {eUP
i(st)|s = 1, ..., Ni, t = 1, ...,Mi}

denotes the set of edges from users to the posts
they published. Each event Ti is associated with a
ground-truth label yi ∈ {F, T} (i.e., False Rumour
or True Rumour). In certain cases, the dataset
contains four fine-grained class {N,F, T, U} (i.e.,
Non-rumour, False Rumour, True Rumour and
Unverified Rumour). We formulate this task as a
supervised classification problem, which aims at
learning a classifier f from labeled events, that is
f : Ti → yi.

3.2 Architecture of Transformer
The Transformer model (Vaswani et al., 2017)
employs an encoder-decoder architecture, consist-
ing of stacked encoder and decoder layers. Each
encoder layer consists of two sub-layers: a self-
attention layer and a position-wise feed-forward
network. The self-attention layer employs h at-
tention heads. Each attention head operates on
the same input sequence X = (x1, ...,xn) of n
elements where xi ∈ Rd, and computes a new se-
quence Z = (z1, ..., zn) of the same length where
zi ∈ Rdk . To be specific, each xi is firstly linearly
transformed into a query vector, a key vector and a
value vector:

qi = WQxi,ki = WKxi,vi = WV xi, (1)

where WK ,WQ,WV ∈ Rdk×d are layer-specific
trainable parameter matrices. Then, each element
zi is computed as the weighted sum of vj :

zi =
n∑

j=1

exp(eij)∑n
k=1 exp(eik)

vj (2)

and eij is the unnormalized attention score com-
puted via a compatibility function, e.g., Scaled dot
product, that compares qi and ki, using:

eij =
qT
i kj√
dk

. (3)

Note that all these parameter matrices,
WQ,WK ,WV , are unique for each atten-
tion head. Then, the outputs of all the attention
heads are concatenated. Finally, the concatenated
vector is fed to a parameterized linear transfor-
mation to obtain the output of the self-attention
sublayer:

ẑi = WO Concat(z1i , ..., z
h
i ). (4)

Finally, a position-wise feed-forward network is
used to produce the output node embeddings z̃i:

z̃i = FFN(ẑi) = W2σ(W1ẑi + b1) + b2, (5)

where, W1,W2,b1,b2 are parameters, σ is the
non-linear function.

Figure 1: The architecture of PESTO. The left bottom
part is the Chronologically-masked Transformer archi-
tecture, the right bottom part is the user network model-
ing architecture, with connection dropping mechanism
applied to both parts. The upper part of the architecture
is the fusion network for aggregation of the two views.

4 Methodology

4.1 Overview of Model Architecture
In this section, we introduce our proposed Post-
User Fusion Network (PESTO). The core idea of
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Table 1: Detailed meta features of post and user nodes

Type Feature name Example

Post

Post type 0/1/2*

Retweet Count 10
Reply Count 10
Like Count 10
Quote Count 10
Created time 1501143981
Sentiment Score 0.8

User

is_verified 1
Following Count 100
Followers Count 1000
Tweet Count 1000
List Count 10
Account created time 1458483921
Description length 20

* 0 denotes tweet, 1 denotes retweet, 2 denotes reply.

PESTO is to learn discriminative representations
for both post propagation tree and the user social
network respectively, and then fuse them based
on self-attention mechanism. The overall archi-
tecture of the proposed model is illustrated in Fig-
ure 1. Our model consists of four major parts: 1)
Posts/User Feature Encoder, which encodes the
text and meta features of a post/user into a dense
vector. 2) Chronologically-masked Transformer,
which learns the representation of the post tree. 3)
Relational Graph Convolutional Network, which
learns the representations of the user-follow net-
work. 4) Fusion Network based on Self-Attention,
which learns the global representation of post-user
pairs.

4.2 Post/User Feature Encoder
Each post/user node contains two types of features:
text features which are short sequences of words
x and meta features m (e.g., follower count, fol-
lowing count, retweet count, etc, details are listed
in table 1). For each post, the text features are the
post content, which contains distinctive patterns
such as exaggerated expressions or negative stance,
and for each user, the text features are the user
description, which contains some bot-like flags or
political stance that implies the credibility of users.
We use the same encoder architecture to represent
both post and user nodes. There are many meth-
ods to represent texts in rumour detection, such as
TF-IDF (Aizawa, 2003), Convolutional Neural Net-
work (CNN) (Kalchbrenner et al., 2014), LSTM
(Hochreiter and Schmidhuber, 1997), Transformer
(Vaswani et al., 2017) and BERT (Wolf et al., 2019).
In our work, we apply word embeddings with CNN

as our textual feature extractor, which shows the
best performance and efficiency in our experiments.
Specifically, we first embed each word in the text
into a k−dimensional dense semantic representa-
tion using public pre-trained word vector Glove
(Pennington et al., 2014). Then, a convolutional
layer with window sizes of 2, 3, 4 is applied, fol-
lowed by a max-pooling layer to obtain the final
text representation hx. After that, we concate-
nate hx and m and use a linear layer to obtain
the final representation of the node. For event Ti,
we obtain the feature representation of all posts
Pi = {pi

1,p
i
2, ...p

i
Mi

}, and representation of all
users Ui = {ui

1,u
i
2, ...,u

i
Ni
}. We discard the su-

perscript i in the following sections for simplicity.

(a)

(b)
Figure 2: Illustration of diffusion trees. The blue lines
denote responsive relations, and the orange lines denotes
implicit relations

4.3 Chronologically-masked Transformer for
Representation of Post Diffusion Tree

Many post tree modeling methods such as tree-
structured RvNN (Ma et al., 2018), Bi-GCN (Bian
et al., 2020) and DSL (Huang et al., 2019) attempt
to learn the representation of post diffusion tree
from two directions: Top-down (Propagation) and
Bottom-up (Aggregation) as illustrated in Figure
2(a), to capture structural and semantic features.
However, as illustrated in Figure 2(b), each user
is often able to observe and respond to all existing
posts at the time of writing a post in the conver-
sation, while this lines of methods ignore the im-
plicit interactions between unconnected posts, as
well as the important temporal order. Therefore,
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we propose a Chronological-masked Transformer
to model both temporal and structural characteris-
tics of post diffusion. Specifically, we propose a
chronologically-masked self-attention mechanism,
which models the Top-down information spreading
and Bottom-up aggregation separately in each layer
based on the chronological order, and involves the
diffusion tree structure into attention calculation via
extra learnable position parameters. In the multi-
head self-attention layers of standard Transformer
(Vaswani et al., 2017), the state in i-th position
can attend to any other position in the whole se-
quence, here we propose to adopt a chronologically-
masking mechanism to inject the structure of both
propagation and aggregation into multi-head self-
attention mechanism (Vaswani et al., 2017). Specif-
ically, As illustrated in the left bottom part of Fig-
ure 1, we first divide the heads in each self-attention
layer into two groups: propagation heads and ag-
gregation heads. For propagation heads, we restrict
the head representation to only aggregate informa-
tion from all position j with (j ⩽ i) when calculat-
ing the output embedding at position i. Likewise,
for aggregation heads, we mask the attention score
from position j with (j < i) for position i. The
weighted sum of values at positions i for propa-
gation heads and aggregation heads are computed
as:

zpi =

Mi∑

j=i

exp(eij)∑Mi
k=i exp(eik)

vj , (6)

zai =
i∑

j=0

exp(eij)∑j
k=0 exp(eik)

vj (7)

, Furthermore, since the masking mechanism only
utilizes the chronological information, in order to
involve explicit spreading structure (i.e., the tree
structure), we modify the calculation of attention
score in Equation 3 to a structure-aware version as
follows:

eij =
qT
i kj + αϕ(i,j)√

dk
, (8)

where αϕ(i,j) is a learnable scalar indexed by
ϕ(i, j), and shared across all layers. ϕ(i, j) is the
relative position between post i and post j:

ϕ(i, j) =





di − dj pi is the parent of pj
dj − di + dmax pi is the child of pj
0 i = j

2dmax in different branches
(9)

, where di denotes the depth of post i in the spread-
ing tree and dmax is the maximum depth. Through
the learnable position parameters, the attention
score can capture the meaningful structural infor-
mation between post i and post j.

The final representation at position i before the
FFN layer is the concatenation of all head presen-
tation, denoted as:

ẑi = WOConcat(zpi,1, ..., z
p
i,np

, zai,1, ..., z
a
i,na

)
(10)

, where np,na denote the number of propagation
heads and aggregation heads, WO is trainable pa-
rameters. Given input feature matrix of all posts P,
we obtain P̂ = {p̂1, p̂2, ...p̂M} after the represen-
tation of the Chronologically-masked Transformer
Network.

4.4 User Network Representation
We introduce our representation module for user
social network in this section. Given the represen-
tation of all users U = {u1,u2, ...,uN} and the
adjacent matrix AU of user-follow relation set EU ,
we attempt to learn a structure-aware representa-
tion for each node in the following graph. Since
the followers and followings describe two sepa-
rate aspects of a user’s characteristics, we consider
neighbours of the two categories separately. Specif-
ically, we generate the user-followed a adjacent
matrix AU ′ = AU⊤.

We also generate the symmetric friendship adja-
cent matrix AU ′′ = AU ·AU ′. Given the three ad-
jacent matrices and node features, we adopt RGCN
(Schlichtkrull et al., 2018) to represent the graph.
The feature update equation can be formulated as
follows:

h
(t+1)
i = σ(

∑

r∈R

∑

j∈N r
i

1

|N r
i |
W(t)

r h
(t)
j +W

(t)
rooth

(t)
i )

(11)
where N r

i denotes the set of neighbor indices of
node i under relation r ∈ R, with corresponding
adjacent matrix Ar ∈ {AU ,AU ′,AU ′′}, W(t)

r is
the parameter matrix of relation r in layer t, W(t)

root
is the parameter matrix of target node. After the
transformation of multiple RGCN layers, we ob-
tain the structure-aware representation of all users:
Û = {û1, û2, ...ûN}.

4.5 Post-User Fusion Network
Once we have obtain the representation of posts
and users denoted as P̂i and Ûi for event Ti, we

5



fuse the information of posts and users via a fusion
network. According to user-publish-post graph
GUP

i , We first concatenate the hidden vectors of
m-th post and n-th user, if n-th user is the author
of m-th post. Note that a user can write multiple
posts but a post only has one author. Therefore,
we obtain the fused representation matrix Hi =
{hi

1,h
i
2, ...,h

i
Mi

}, where hi
j = Concat(p̂i

j , û
i
u(j)),

where u(j) denotes the index of user who is the
author of j-th post. In order to capture the seman-
tic relations between the fused post-user pairs, we
further use a self-attention layer to obtain the final
representation of all post-user pairs, denoted by
Ĥ = {ĥ1, ĥ2, ..., ĥM}. Afterwards, a mean pool-
ing layer is applied to obtain the aggregated rep-
resentation c, followed by several fully-connected
layers and a Softmax layer to get the vector of prob-
abilities for all classes. We train all the parameters
in the Network by minizing the cross-entropy of the
prediction and ground truth labels over the entire
dataset T .

4.6 Data Augmentation Mechanism
Since existing datasets for rumour detection are
mostly in small scale, overfitting is a serious is-
sue in this domain. For this sake, we use two data
augmentation mechanism to mitigate this problem:
Connection dropping and Sub-conversation train-
ing.

- Connection dropping: We adopt two ver-
sions of Connection dropping operation for
the user graph and post graph. For user graph,
we apply the same strategy as (Bian et al.,
2020): supposing the total number of edges
in the user following graph AU is NU and the
dropping rate is pu, then the adjacency ma-
trix with edge dropping is ÃU = AU −AU

drop,
where AU

drop is the matrix constructed using
NU × pu edges randomly sampled from AU .
The edge dropping operation is performed
before input AU into each RGCN layer, and
the AU ′, AU ′′ are calculated based on ÃU .
For post spreading tree, since we learn all
implicit correlation between posts using self-
attention, we propose to use an attention drop-
ping mechanism, which randomly set the at-
tention score before Softmax as −inf with
rate pp.

- Sub-conversation training: In order to
improve the robustness and early-detection
capability of our model, we adopt a sub-

Table 2: Statistics of the datasets

Statistic Twitter15 Twitter16 PolitiFact GossipCop
# of posts 331,612 204,820 130872 880640
# of user 276,663 173,487 89238 568482
# of events 1490 818 574 6880
# of True rumors 374 205 \ \
# of False rumors 370 205 231 2313
# of Unverified rumors 374 203 \ \
# of Non-rumors 372 205 343 4567
Avg. # of posts / event 223 251 228 128
Max # of posts / event 1,768 2,765 3294 1038
Min # of posts / event 55 81 32 12

conversation training technique. To be spe-
cific, we randomly set a time threshold tearly,
with tmin < tearly < tlast for each event
during training, where tmin is the minimum
detection time and tlast is the time of the last
tweet in the event. The posts after the time
is removed, so does the corresponding users.
This technique enables models to learn invari-
ant features during the whole life cycle of a
event.

5 Experimental Results

In this section, we first compare the performance of
our proposed PESTO method with several baseline
models. Then, ablation studies are conducted to
illustrate the impacts of each module. Afterwards,
early detection performance is evaluated. Empir-
ical results show the superiority of the proposed
method.

5.1 Datasets and Baselines
We evaluate our proposed method on four publicly
available Twitter datasets: Twitter15 and Twitter16
(Ma et al., 2017), PolitiFact and GossipCop (Shu
et al., 2020). The statistics are listed in Table 2.
Since in the original datasets, each instance only
contains the tweet propagation tree, we use Twitter
academic API1 to search the corresponding user
of each tweet and the following relations between
users. Each source tweet is annotated with one of
the four class labels, i.e., Non-rumour (N), False ru-
mor (F), True rumor (T), and Unverified rumor (U).
We compare our method with several baselines:

- DTC (Castillo et al., 2011): A Decision Tree
classifier based on various handcrafted fea-
tures to obtain information credibility.

1https://developer.twitter.com/en/products/twitter-
api/academic-research
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- SVM-TS (Ma et al., 2017): A linear SVM
classifier that utilizes handcraft features to
construct time-series model.

- SVM-TK (Ma et al., 2017): A SVM classifier
with a tree kernel based on the propagation
structure of rumours.

- RvNN (Ma et al., 2018): A tree-structured
recursive neural network with GRU units that
learn the propagation structure

- PPC_RNN+CNN (Liu and Wu, 2018): A
model combining RNN and CNN, which
learns the rumour representations through the
characteristics of users in the rumour propa-
gation path.

- Bi-GCN (Bian et al., 2020): A GCN-based
rumour detection model using bi-directional
propagation structure.

- DCM (Veyseh et al., 2019): A rumour detec-
tion model based on post-level self-attention
mechanisom.

- PESTO-U: A variant of PESTO, with the user
network modeling part removed.

- PESTO: Our proposed PESTO, with all mod-
ules included.

5.2 Experimental Setup
In all experiments, we used the Glove 100d embed-
dings (Pennington et al., 2014) to represent each
token in a tweet or user profile because they are
trained using tweet corpus. For the chronologically-
masked Transformer, the hidden size is 128, the
layer number is 4, the head number is 8. For the
RGCN Network, the layer number is 2, the hidden
size is 128. The dropout rate of both networks is
0.2, and the edge dropping rate is also 0.2. We use
the Adam optimizer with 6000 warm start-up steps.
For all datasets, we evaluate the Accuracy (ACC)
over all categories and F1 measure (F1) on each
class.

5.3 Overall Performance
Table 3 shows the performance of the proposed
method and all the baselines on Twitter15 and Twit-
ter16, respectively. First, it is apparent that all
the deep learning methods outperform those us-
ing handcrafted features significantly, showing that
deep neural networks are able to learn better rep-
resentations of rumours. Second, the proposed
method and its variants outperform other deep

Table 3: Overall results on Twitter15 and Twitter16

Twitter15
Method ACC N F T U
DTC 0.779 0.415 0.355 0.733 0.317
SVM-TS 0.544 0.796 0.472 0.404 0.483
SVM-TK 0.750 0.804 0.698 0.765 0.733
RvNN 0.723 0.682 0.758 0.821 0.654
PPC RNN+CNN 0.477 0.359 0.507 0.300 0.640
Bi-GCN 0.886 0.891 0.860 0.930 0.864
DCM 0.770 0.814 0.764 0.775 0.743
PESTO-U 0.895 0.897 0.896 0.888 0.900
PESTO 0.915 0.912 0.922 0.921 0.904

Twitter16
Method ACC N F T U
DTC 0.473 0.254 0.080 0.190 0.482
SVM-TS 0.574 0.755 0.420 0.571 0.526
SVM-TK 0.732 0.740 0.709 0.836 0.686
RvNN 0.737 0.662 0.743 0.835 0.708
PPC RNN+CNN 0.564 0.591 0.543 0.394 0.674
Bi-GCN 0.880 0.847 0.869 0.937 0.865
DCM 0.768 0.825 0.751 0.768 0.789
PESTO-U 0.891 0.906 0.891 0.890 0.875
PESTO 0.908 0.902 0.914 0.915 0.901

Table 4: Overall results on PolitiFact and GossipCop

Dataset PolitiFact GossipCop
Method ACC F1 ACC F1
DTC 0.753 0.749 0.772 0.769
SVM-TS 0.757 0.759 0.789 0.783
SVM-TK 0.731 0.721 0.753 0.745
RvNN 0.790 0.778 0.798 0.796
PPC RNN+CNN 0.744 0.760 0.776 0.776
Bi-GCN 0.821 0.819 0.811 0.802
DCM 0.812 0.810 0.810 0.809
PESTO-U 0.832 0.821 0.821 0.816
PESTO 0.845 0.836 0.834 0.831

learning methods in terms of all metrics, which
indicates the superiority of PESTO. As for RvNN,
it only uses the hidden feature vector of all the
leaf nodes, which implies that it is heavily influ-
enced by the information of latest posts. As for
Bi-GCN, it only relies on the explicit responsive
path, ignoring the implicit relations between posts.
As for DCM, it simply use the self-attention layer
without modification, ignoring the propagation and
aggregation characteristics of rumours. PESTO-
U outperforms previous methods, demonstrating
the effectiveness of the proposed chronologically-
masked self-attention architecture. PESTO has bet-
ter performance compared with PESTO-U, indicat-
ing the user following network contains valuable
information for detection.
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(a) Twitter15 (b) Twitter16

Figure 3: The performance of the PESTO and its vari-
ants. -M,-S,-R,-DC,-DS are abbreviations of different
variants, which are elaborated in Section 5.4

5.4 Ablation study
To demonstrate the effectiveness of each module of
PESTO, we conduct ablation analysis on Twitter15
and Twitter16 in this section. We compare PESTO
with its variants -M,-S,-R,-DC,-DS which repre-
sent our model (1) without chronological Masking
for post Transformer,(2) without Structure-aware
attention for post Transformer,(3) with RGCN re-
placed by GCN,(4) without Connection dropping
and (5) Without Sub-conversation training. As illus-
trated in Figure 3, each parts contribute to PESTO.
The impacts of M and S show that involving intrin-
sic characteristic of the spreading tree improves the
performance. RGCN is better than GCN for user
network modeling, indicating that treating user-
following network as directed graph retrains more
valuable information. The contribution of DC and
DS shows the importance of robust training.
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Figure 4: The performance of early detection.

5.5 Early Rumour Detection
Detecting rumours at the early stage of propagation
is crucial to reduce the negative effects of rumours.
For the early detection task, we select a series of
detection deadlines and only utilize the posts re-
leased before the deadlines and the corresponding
induced user network to evaluate the performance
in terms of accuracy. Figure 4 shows the perfor-
mances of RvNN, Bi-GCN, DCM and our PESTO

model at various deadlines on Twitter15 and Twit-
ter16 datasets. We can find that the performance of
PESTO is stably superior to other models.

6 Conclusion

In this paper, we address the task of rumour detec-
tion with social contexts. A novel Post-User Fusion
Network (PESTO) is proposed to learn both post
propagation patterns and user network patterns in
a rumour event. To be specific, we model the post
diffusion patterns using a novel chronologically-
masked Transformer, and use RGCN to represent
the user social network, then a fusion module based
on self-attention is applied to integrate the two as-
pects. Experiments show that PESTO outperforms
state-of-the-art baselines significantly.
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