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Abstract

While deep learning models have greatly im-
proved the performance of many tasks related
to sentiment analysis and classification, they
are often criticized for being untrustworthy due
to their black-box nature. As a result, numerous
explainability techniques have been proposed
to better understand the model predictions and
to improve the deep learning models. In this
work, we introduce InfoBarometer, the first
benchmark for examining interpretable meth-
ods related to sentiment analysis in the Ger-
man automotive sector based on online news.
Each news article in our dataset is annotated
with respect to the overall sentiment (i.e., posi-
tive, negative and neutral), the target of the sen-
timent (focusing on innovation-related topics
such as e.g. electromobility) and the rationales,
i.e., textual explanations for the sentiment la-
bel that can be leveraged during both training
and evaluation. For this research, we compare
different state-of-the-art approaches to perform
sentiment analysis and observe that even mod-
els that perform very well in classification do
not score high on explainability metrics like
model plausibility and faithfulness. We calcu-
lated the polarity scores for the best method
BERT and got a macro F1-score of 73.8. More-
over, we evaluated different interpretability al-
gorithms (LIME, SHAP, Integrated Gradients,
Saliency) based on explicitly marked rationales
by human annotators quantitatively and quali-
tatively. Our experiments demonstrate that the
textual explanations often do not agree with hu-
man interpretations, and rarely help to justify
the models decision. However, global features
provide useful insights to help uncover spuri-
ous features in the model and biases within the
dataset. We intend to make our dataset public
for other researchers.

1 Introduction

There is a wealth of economic (online) news so that
even specialists find it challenging to analyze all in-
formation in a timely manner. Therefore, methods

that seek to automatically identify the sentiment
in textual data for calculating economic indices or
trends have become prominent in recent years (Seki
et al., 2022; Kalamara et al., 2022; Levenberg et al.,
2014; Weiss and Nemeczek, 2022).

In particular, deep learning based approaches
have yielded high performance (Poria et al., 2020;
Rojas-Barahona, 2016; Hartmann et al., 2022), and
their results even seem to correlate with survey-
based indicators (Marszal et al., 2022; Katayama
et al., 2019).

However, sentiment analysis1 is challenging due
to the domain-specific language and unavailabil-
ity of labeled datasets needed for training or fine-
tuning neural models (Araci, 2019; Mishev et al.,
2020). It is also a complex task, as a document
may contain multiple targets whose sentiments
may be opposite. For example, in the sentence
Um gute Produkte und Leistungen zu liefern, hat
die Firma hohe Investitionen getätigt. (In order to
deliver good products and services, the company
has made high investments.), the author expresses
a positive sentiment towards products and services
using the opinion words gute (good) and a negative
sentiment towards Investitionen (investments) using
hohe (high). Apart from mixed sentiment, another
challenge is that depending on the context, the sen-
timent may also shift to the opposite, e.g., hoher
Komfort/hoher Verlust (high comfort vs. high loss).

Since model interpretability is a critical require-
ment for many downstream applications, recently
explainable artificial intelligence (XAI) techniques
that make models explainable have been proposed
(Danilevsky et al., 2020; Madsen et al., 2021), and
also been adopted for sentiment analysis in general
(El Zini et al., 2022) or with respect to financial
news (Gite et al., 2021; Xing et al., 2020). In line
with Arrieta et al. (2020), we consider that an AI

1In our work, we focus on document-level sentiment anal-
ysis, i.e. the goal to infer the overall opinion of a news article,
which is assumed to convey a unique opinion towards a topic.
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system is explainable, if the task model is intrin-
sically interpretable or if it is complemented with
an interpretable and faithful explanation. In this
work, we focus on transparent inference through
the generation of a post-hoc explanation for the
final output prediction (Thayaparan et al., 2020).

It is well known that machine learning tech-
niques suffer from an inadequate generalization
capacity on real-world datasets, which are often
scarce and imbalanced. While transfer learning
and regularization techniques have been proposed
to solve this issue (Pan and Yang, 2010; Srivastava
et al., 2014), overfitting the training data is still a
common problem, especially for non-English texts.
As has been stated by various authors, explainable
modelling can contribute to trustworthy AI systems,
that go beyond quantitative performance metrics
such as accuracy (Danilevsky et al., 2020; Wallace
et al., 2020).

To this aim, we build up a corpus of German
news articles that report recent innovations in the
automotive field, which includes class labels for
topics such as e-mobility, autonomous driving,
Diesel, hydrogen, synthetic fuel, and misc, sen-
timent labels i.e., positive, neutral, negative, and
human rationales for studying trustworthiness, in-
spired by recent work in this field (Zaidan and Eis-
ner, 2008; Wang et al., 2021, 2022). We conduct
experiments building on state-of-the art machine
learning models for sentiment analysis, as well as
interpretation methods (Molnar, 2022) using estab-
lished evaluation metrics for interpretability (DeY-
oung et al., 2020; Atanasova et al., 2020). Human
explanation for sentiment classification is essential
for high-impact settings such as financial analy-
sis where human rationales are required to support
specialists’ decisions. Basic research questions are

• RQ1 How well can we automatically classify
news articles as expressing a positive, negative
or neutral opinion at the document-level and
which approach gives the best performance.
How well is human IAA for our corpus.

• RQ2 Which sentiment detection and XAI
method delivers interpretable results, high-
lighting words or phrases that have lead to
the sentiment class. Is this also reflected by
human rationales on positive or negative as-
pects?

Our main contributions are as follows:

• We present a benchmark for rationalized pre-
dictions, including baseline models and re-
sults. We quantitatively compare SVM, CNN,
LSTM and BERT models in the context of
sentiment analysis by performing an evalua-
tion on our manually annotated corpus. Using
local and global explanation methods, we are
able to retrieve the tokens that are most indica-
tive of the sentiment class label.

2 InfoBarometer Dataset

In this section, we provide the dataset collection
strategy, the annotation procedure and statistics on
our dataset.

2.1 Data Collection
We scraped German news articles related to recent
innovative trends in the automotive sector for the
time period Feb-2022 to Dec-2022 from online
news providers2, filtering the results by selecting
innovation-related keywords, and then applying a
precision-oriented topic classifier.

We keep a minimal layout with title and para-
graphs, eliminating links and pictures in the news
articles.

2.2 Annotation Procedure
The dataset was annotated using tagtog3, a web-
based tool, which was configured appropriately for
our annotation task. Each news article contains
three types of annotations: the sentiment polarity,
the topic category, and the human rationales.

Regarding sentiment polarity, each news arti-
cle is assigned one of the following polarity la-
bels: positive, negative, neutral which reflects the
overall sentiment label about a certain topic cate-
gory that is prevalent in a given news article, and
chosen from a predefined inventory of categories,
i.e. autonomous driving, electromobility, hydrogen,
Diesel, Synfuel and misc (see Appendix A). We
further ask the annotators to highlight rationales
as text spans, that could justify the final polarity
annotation.

Annotation guidelines have been set up that
clearly explain the goal of the annotation task,
how to annotate tokens or spans and also include a
definition for each topic category, following best-
practice recommendations (Wiegreffe and Maraso-
vić, 2021).

2www.automobil-industrie-vogel.de,
www.automobilwoche.de

3https://www.tagtog.com/
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We provided multiple examples with topic and
polarity classification as well as rationale annota-
tions to help the annotators understand the task.

Figure 1: Dataset Statistics

Each news article was annotated by 3 annota-
tors, experts in the automotive domain. In addi-
tion a master annotator consolidated annotations
and decided on the final label and rationales, when
annotators disagreed. Since classifying implicit
sentiments is a challenging task, which demands
expert knowledge and requires interpretation, we
conducted an inter-annotator agreement study to
determine whether our annotation guidelines were
properly defined and resulted in consistent and re-
producible annotations. To measure the interanno-
tator agreement of the manual annotation (IAA),
we calculate the overall F1-measures of the anno-
tations, treating the master annotation as the gold
standard, resulting in an average F1 score of 0.829
and 0.774 for text classification and sentiment an-
notation, respectively, which indicates a high agree-
ment of the labeled data. The IAA is depicted in
Table 1.

IAA Topic Label f1 Sentiment f1
annotator1 0.8249 0.7989
annotator2 0.7716 0.6821
annotator3 0.8905 0.8396

Table 1: Inter-Annotator Agreement of the Sentiment
and Topic Classification Task

2.3 Dataset Statistics

The dataset is composed of 1,039 news articles
from the web. As can be seen in Figure 1, the ex-
tent to which German news media cover innovation-
related technologies in the automotive sector dif-
fers a lot in terms of frequency of certain topics.
Looking at the sentiment distribution, we see that
they mostly receive positive coverage in German
news media with 59.12%, while 22.65% are neg-
ative and 18.23% of all news is neutral. Given
these results, we infer that news on innovation and
new technologies are indeed overall positive for the
German automotive industry. While sentiment po-
larity annotations express overall sentiments (posi-
tive/negative/neutral) in the news article, it might
nonetheless include different opinionated expres-
sions with different polarities, positive or negative,
indicated by spans of rationales on each news item.

Figure 2 shows all rationales that have been se-
lected for a specific news article, grounding the
overall positive sentiment annotation for the whole
article in the positive evidences Steigerung (in-
crease), gerettet (saved), mehr als verdoppelt (more
than doubled). The aim was to annotate the news
in an exhaustive way, which in this example in-
cludes also negative evidences (e.g. Mangel an Hal-
bleitern (lack of semiconductors), verfehlt (missed),
Produktion gebremst (hampered production).

The InfoBarometer dataset has been split into
training, validation, and testing set. The training
set contains 833 news items, while the dev and
test set contain 104 and 102 items, respectively.
The average length for each news article is 226.21
tokens, consisting of 13.23 sentences on average.

For this dataset, the number of rationales per
instance is 6.25 (9.97 tokens) on average, which
varies slightly by sentiment class, also when taking
the average percentage of rationales to input se-
quence length into account (see Table 2). Note that
there is no perfect correlation between the length
of an article and the length of the rationale based
on our Benchmark Corpus (see Fig. 3). Only the
test set was used in the plausibility evaluation.

2.4 Related Work

Many datasets with human-annotated rationales
have been published for interpretability evaluation,
in particular highlight-based rationales (DeYoung
et al., 2020). For the task of sentiment analysis,
the Movie Reviews Dataset (Zaidan et al., 2007)
has lately been extended (DeYoung et al., 2020) to
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Figure 2: Annotation of a German news article. Human Rationales are highlighted in blue (positive) and red
(negative).

Figure 3: Dataset Statistics: The correlation between
the length of an article and the length of the rationale
based on our Benchmark Corpus.

Sentiment Rationales Len. Rationale Len. Ratio
negative 6.75 16.46 7.27
neutral 5.52 14.90 6.59
positive 6.22 17.79 7.86

Table 2: The Rationales column presents the average
number of rationales, the Length Rationale the average
number of tokens per instance, while the Length Ratio
column presents the average ratio of rationale to input
sequence length measured in tokens.

build a comprehensive evaluation benchmark for
interpretability (Zaidan and Eisner, 2008).

Wang et al. (2021) propose a novel evaluation
dataset for sentence-level sentiment analysis for
English. They provide highlight-based rationales
to evaluate the robustness and interpretability (i.e.,
faithfulness and plausibility) of various algorithms
(Lime, SHAP, attention) and deep learning frame-
works, including LSTM and SKEP (Tian et al.,
2020).

In comparison to these datasets, the InfoBarome-
ter dataset also contains span-level rationale annota-
tions, however, we annotated three polarity classes
instead of 2, including the neutral class which ei-
ther denotes the lack of sentiment towards a topic
or may consist of an equal amount of positive and
negative evidence in the news article. The included

rationale annotations are comprehensive, since the
annotators were asked to mark all text supporting
the polarity label and we aggregated the rationales
from multiple annotators if they agreed on the same
class. In addition, approx. 20% of all article con-
tain mixed sentiments with evidence for both the
positive and negative polarity class.

3 Methodology

Due to the small size of our dataset, we think
that there is high need for explainability, regarding
model interpretability. Through our experiments,
we like to investigate if explainability techniques
can uncover biases within the dataset and check the
trustworthiness of the ML models trained on the
InfoBarometer dataset.

3.1 Classification Models
We consider three model families of text encoders
with increasing complexity: a support vector ma-
chine (SVM) with a linear kernel (Pang et al.,
2008), a CNN (Kim, 2014), LSTM (Hochreiter
and Schmidhuber, 1997) and a pre-trained BERT
model (Devlin et al., 2018)4. To build the senti-
ment classifier, we fine-tune BERT on our dataset
to encode domain specific semantics and augment
it with a prediction task to encode sentiment and
topic information. In the CNN and LSTM models,
the word inputs are initialized to 300-dimensional
GloVe embeddings (Pennington et al., 2014)5. We
tune all parameter using the validation set and use
the best model for testing. While recently contex-
tual language models like BERT performed best
on a variety of benchmark datasets for document-
sentiment analysis, also CNNs and RNNs have
been applied successfully (Poria et al., 2020), as
well as sequence models (Li et al., 2016), because
they can encode long-range dependencies in the
word sequence, which is fundamental to model

4German BERT model is from Huggingface
https://huggingface.co/deepset/gbert-base

5GLOVE embeddings are from Deepset
https://www.deepset.ai/german-word-embeddings
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negation and polarity shifts. On the movie dataset6

(Zaidan and Eisner, 2008), CNNs based on pre-
trained embeddings showed highest performance
in terms of accuracy, outperforming RNNs and
LSTMs, because they are able to learn contextual
semantic features that are relevant for the sentiment
prediction task. Our baseline models are:

Convolutional Neural Networks: CNNs (Kim,
2014) are specially powerful in exploiting the local
correlation and pattern of the data by their feature
maps. Since parallelization is possible, they are
more efficient than LSTMs and yield a good perfor-
mance for classification tasks with little fine tuning
(Nedjah et al., 2022).

Long-short time memory : LSTM (Schmid-
huber et al., 1997) is a popular recurrent neural
network architecture for modeling sequential data,
and can capture long term dependencies. They have
the characteristics of selectivity and memory cells
and solve the gradient vanishing problem.

Bidirectional Encoder Representations from
Transformers (BERT) by (Devlin et al., 2018),
enriched with the deep bidirectional word repre-
sentations released by HuggingFace (Wolf et al.,
2019). Key aspects of the BERT model include
multi-head self-attention as well as a Transformer
layer.

See Appendix A.2 for our hyperparameter set-
tings.

3.2 Explainability Models

We focus on post-hoc feature attribution explana-
tion methods, probing the model parameters and/or
input-output pairs of an already trained black-box
model. We use Captum7, an open source library
for model interpretability built on PyTorch for our
experiments, including explanation methods that
are gradient-based, i.e. InputXGradient (Shriku-
mar et al., 2016), Saliency (Simonyan et al., 2013)
perturbation-based, i.e. Shapley Value Sampling
(Shapley, 1953; Castro et al., 2009), and Lime
(Ribeiro et al., 2016) as a model simplification
method. Saliency maps are used to visualize which
parts of the input are responsible for the prediction.
In the case of gradient-based methods, we measure
the importance of a feature using the derivative with
respect to that feature. We apply the L2 norm to
obtain the magnitude of a gradient vector, which be-
comes a saliency of each token. As the output, we

6https://www.tensorflow.org/datasets/catalog/movie_rationales
7https://captum.ai/

take the loss with the top prediction as the ground
truth class (Han et al., 2020).

4 Experimental Setup

We execute experiments on topic classification
and sentiment analysis for four different ML ap-
proaches. The model predictions as well as the
XAI models’ explanations are compared to ground
truth data that has been annotated by domain ex-
perts. For an overview of the proposed approach
see Figure 4.

4.1 Classification Results
Following prior works, we conduct experiments
with all described sentiment classification models.

Sentiment Model Macro F1 Accuracy
SVM_linear 0.5320 0.6476
CNN with GLOVE 0.3824 0.6095
LSTM with GLOVE 0.4013 0.5048
Fine-tuned BERT 0.7376 0.7809

Table 3: Accuracy of sentiment analysis models (in
terms of classification accuracy and macro f1), evaluated
on the news datasets with 1039 articles devided into
train/dev/test.

Topic Classifier Model Macro F1 Accuracy
SVM_linear 0.3600 0.4857
CNN with GLOVE 0.4981 0.6381
LSTM with GLOVE 0.3248 0.5143
Fine-tuned BERT 0.7904 0.8190

Table 4: Accuracy of the topic classification models (in
terms of classification accuracy and macro f1), evaluated
on the news datasets with 1039 articles devided into
train/dev/test.

4.2 Computational Efficiency
We also compare the computational efficiency of
our ML models and XAI techniques (see Section
5.3 ) that are critical in a setting which requires
timely decision support. We recorded the compu-
tational time to generate sentiment and class pre-
dictions on a computer cluster with 2 AMD EPYC
7742 64-Core Processors 2.25 GHz, 192 GB RAM,
x64 NVIDIA A100-PCIE 40GB.

The computational time for classifying our test
dataset is shown in Table 8. The speed for testing is
relatively low compared to the time for training the
model, so that all of them can be used in a real-time
interactive system.
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Figure 4: Overview of the proposed approach

Topic Classifier Model Train sec Test sec
CNN with GLOVE 3228.06 27.85
LSTM with GLOVE 703.44 22.83
Fine-tuned BERT 1062.33 21.54

Table 5: Computational efficiency. We report the mean
speed in seconds for topic and sentiment classification,
for training on train/dev and testing on the test dataset

4.3 Explainability Results

Global Explanation We use SHAP to compute
the global features that influence the overall per-
formance of our ML models (Lundberg and Lee,
2017). A key advantage of SHAP is that feature
contributions are all expressed in terms of the out-
come variable, providing a same scale to compare
the importance of each feature against each other.
Figure 5 shows what features are important to the
model overall. Top salient features in our test set for
the negative and positive class are stop, decrease,
bad, crises, expensive and preferred, solve, build
up, possible, modern, funding, respectively.

Local Explanation An example of a local ex-
planation from our dataset is shown in Figure 6.
We can see that the sentence has been predicted
correctly to be positive. However, our explainabil-
ity methods partly disagree on the interpretation
of the same prediction made by the same BERT
model. XAI methods depict either investiert (in-
vest), synthetisch (synthetic) or Bundesregierung
(government) as most salient feature that contribute
to a positive sentiment assessment.

We observe that the model is relying on spuri-
ous features, like electric and autonomous. Fur-
thermore, any bias in the data, e.g. mentions of
nationalities like Chinese, need to be eliminated
before deployment.

4.4 Evaluation of Explainability

4.4.1 Metrics

Plausibility: In the context of this work, we gen-
erate token-level explanations, selecting a list of
the top k most salient tokens. For each instance,
the model must generate an explanation defined as
a subset of zero or more tokens from the instance.
The longer the instance, the more explanation to-
kens are selected. We use IOU (Intersection-Over-
Union) F1-score and Token F1 score to measure
plausibility (DeYoung et al., 2020). We compute
the score at the token level and do not consider
continuous sub-strings (spans), since this metrics
is considered too imprecise (Wang et al., 2022).

Faithfulness: For debugging, it is important to
produce explanations that are faithful, i.e., accu-
rately reflect the features considered important by
the model (Jacovi and Goldberg, 2020). The XAI
method should faithfully reveal information about
the model’s inner working. A common approach
is to iteratively mask salient features from the in-
put and measure the average drop in the model’s
performance (DeYoung et al., 2020). In this work,
we follow the approach of Atanasova et al. (2020),
which relies on producing several perturbations by
masking [0, 10, 20,.., 100%] of the input tokens in
order of decreasing saliency, and then computing
the area under the threshold-performance.

5 Results - Performance Comparison for
XAI Methods

We compare LIME, Saliency, InputXGradient and
SHAP with respect to the evaluation criteria plausi-
bility (human agreement), faithfulness and runtime
complexity.
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Figure 5: Global Feature Importance Score per Class generated by SHAP and the BERT Sentiment Classifier.

Figure 6: Explainability information generated by different XAI methods for the BERT Sentiment analysis model.

5.1 Results for Human Agreement
Performance

Table 6 shows the Human Agreement performance
of each explanation algorithm on our test dataset.
Regarding plausibility, there is only modest agree-
ment of explanations generated by XAI methods
versus human rationales, independent of the ML
model. Since rationales are generally very short,
the model has a high chance of missing the main
evidence in the text. Simpler models like CNN
performed slightly better, so we observe a nega-
tive correlation between model performance and
agreement with human rationales.

XAI methods usually produce a list of top-k fea-
tures, ordered according to their saliency. However,
hyperparameter setting and choice of the optimal

cutoff threshold of the ranked feature list impacts
the output results. To this aim, we calculated plau-
sibility with a moving threshold t in the range [0.01,
0.2], varying the number of tokens being extracted
as salient features, and selecting thresholds that
result in the highest F1 score. Related work gen-
erally determines the threshold value heuristically
based on the length ratio of the gold annotations or
based on the saliency weights, as suggested by Yu
et al. (2019). Interestingly, the results differ from
the heuristically determined threshold based on the
length ratio (see Table 2), and suggest that bet-
ter results could be obtained by choosing a higher
threshold, i.e, negative mean: 11.7%; std: 4.7, neu-
tral mean: 12.3%; std: 5.5, positive mean: 11.4%;
std: 5.7.
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Model Token F1 IOU
CNN [LIME] 0.066 0.036
LSTM [LIME] 0.062 0.034
BERT [LIME] 0.069 0.037
CNN [IG] 0.044 0.023
LSTM [IG] 0.068 0.037
BERT [IG] 0.039 0.021
CNN [Saliency] 0.062 0.033
LSTM [Saliency] 0.068 0.037
BERT [Saliency] 0.044 0.023
CNN [SHAP] 0.074 0.041
LSTM [SHAP] 0.071 0.039
BERT [SHAP] 0.078 0.043

Table 6: Evaluation Plausibility of the explainabil-
ity techniques measured with Intersection over Union
(IOU) and Token F1 Score with the gold human annota-
tions.

5.2 Results for Faithfulness

In our use case, we require faithful explanations
that are actually relevant to the model’s prediction
and inner workings. The sufficiency of rationales,
based on the AUC score is shown in Table 7. A
faithful rationale should display low sufficiency val-
ues, as the prediction should be highly influenced
by the tokens selected as most salient. As can be
seen, simpler model architectures achieve the high-
est faithfulness scores in terms of sufficiency, with
CNN performing best.

CNN LSTM BERT
LIME 27.29 37.84 52.66
IG 29.92 37.44 46.15
Saliency 29.32 36.85 46.71
SHAP 27.80 32.66 46.46

Table 7: Comparison of the Faithfulness of the ex-
plainability methods measured by AUC for thresholds
∈ [0, 10, 20, .., 100] defined as the average difference of
the AUC before and after masking the top k% words
with zero padding. Lower scores are better.

5.3 Computational Efficiency

We also compare the computational efficiency of
our XAI techniques. The wait time for an ex-
planation should not be a bottleneck for the task
workflow. We recorded the computational time to
generate salient features (including visualization
heatmaps) for our test dataset. As shown in Table 8,
the computational time for generating explanations

is particularly high for SHAP in combination with
LSTM or BERT.

Explainability Model BERT LSTM CNN
LIME 1549 4744 308
IG 498 40 63
Saliency 486 42 59
SHAP 13362 53917 1245

Table 8: Computational efficiency. We report the mean
speed in seconds for generating a saliency map for the
test dataset

6 Final Discussion

In this paper, we introduced a new benchmark cor-
pus compiled from online news articles, annotated
by 3 domain experts for document-level sentiment.
Moreover, it contains multiple rationales that pro-
vide evidence for the annotators choice of the over-
all sentiment. Since many articles have a mixed
sentiment, including borderline cases that are dif-
ficult to classify, highlighting positive as well as
negative aspects mentioned in one single article,
yields increased transparency.

We used the corpus as a benchmark for the Ger-
man language, where resources for studying ex-
plainability are scarce. We investigated several ML
architectures for the task, in combination with dif-
ferent post-hoc explainability methods. Since there
is no single solution that is best suited to every use
case, our analysis allows identifying the strengths
and limitations of each method.

Our findings indicate that BERT yields the best
performance in terms of sentiment classification
accuracy. In combination with SHAP, it offers a
global view of feature importance, which helps de-
tecting spurious features and bias. We think that
end users will profit from XAI methods which al-
low to get an aggregated view of feature impor-
tance for a particular topic category, or based on
a specific time frame. However, due to the high
dimension of our data, local explanations are over-
all not very plausible, regardless of the underlying
ML model and explainability method. Moreover,
the BERT model is less faithful than CNN and
LSTM, due to high complexity of the model. For
our use case, the computational time for generating
explanations with LIME, IG or Saliency would be
acceptable in a real-time application, except for
SHAP which suffers from a long computational
time.
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In future work, we seek to identify the
training data points responsible for model mis-
classifications and find training instances that show
bias through influence functions (Koh and Liang,
2017), and investigate the impact of the pretrained
embeddings and model.
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A Appendix

A.1 Query Synonyms

q1: ["Elektromobilität","Elektroauto","Stromer",
"Elektrofahrzeug", "BEV","PHEV", "Elec-
tromobility", "e-mobility", "e-car", "electric
car","emobility", "e-mobilität", "Emobilität"]

q2: ["autonomes Fahren","autonomes
Auto","autonomes Fahrzeug","selbstfahrendes
Auto", "selbstfahrendes Fahrzeug","fahrerloses
Fahren","fahrerloses Auto","fahrerloses Fahrzeug",
"autonomous driving","Robotaxi", "autonomes
Taxi", "autonomes Shuttle", "autonome Mobilitäts-
dienstleistungen","robotaxi"]

q3: ["Wasserstoff", "Hydrogen", "FCEV",
"Brennstoffzelle", "Wasserstofffahrzeug", "Wasser-
stoffauto", "Brennstoffzellenfahrzeug", "Brennstof-
fzellenauto", "fuel cell", "hydrogen", "Power-to-
X"]

q4: ["Diesel"]
q5: ["SynFuels", "SynFuel", "Synthetische

Kraftstoffe", "Syn-Fuels", "EFuels", "E-Fuels", "al-
ternative Kraftstoffe"]

A.2 Implementation Details

A.2.1 SVM
We utilize a linear svm model operating on bag of
word features weigthed by tf.idf, and lowercasing

all words. To optimize the models, we employ full-
batch gradient descent with L1 regularization on
the weight matrices.

A.2.2 CNN
For CNN, we employ an embedding dimension of
300, which is initialized by the GloVe embeddings.
The batch size is 64, with a 0.1 dropout rate. We
utilize the AdamW optimizer with a learning rate
of 5e-5. Window sizes ∈ [2, 3, 4, 5] were selected,
with 100 out channels. Regarding stride, we keep
the hyperparameter at the default value 1. CNN
models are trained using an early stop over the
validation set and up to 50 training epochs.

A.2.3 LSTM
For LSTM, we employ an embedding dimension of
300, which is initialized by the GloVe embeddings.
The batch size is 64, and the dropout rate 0.1. We
use a learning rate of 5e-5 along with the AdamW
optimizer. 4 LSTM layers were selected, with a
hidden layer size of 300. LSTM models are trained
using an early stop over the validation set and up
to 50 training epochs.

A.2.4 Transformer
As a base for all our experiments we use the Ger-
man BERT-BASE model which consists of 12 lay-
ers, a hidden state size of 768 dimensions per token
amounting to a total of 110 million parameters.
The parameters of this model are initialized using
bert-base-german-cased, which has been released
by deepset.ai. We trained the model with a learn-
ing rate of 5e-5. We chose the best model using
early stopping with the best number of epochs de-
termined by using the validation splits.
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