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Abstract

Domain adaptation is an important and widely
studied problem in natural language process-
ing. A large body of literature tries to solve
this problem by adapting models trained on
the source domain to the target domain. In
this paper, we instead solve this problem from
a dataset perspective. We modify the source
domain dataset with simple lexical transforma-
tions to reduce the domain shift between the
source dataset distribution and the target dataset
distribution. We find that models trained on the
transformed source domain dataset performs
significantly better than zero-shot models. Us-
ing our proposed transformations to convert
standard English to tweets, we reach an unsu-
pervised part-of-speech (POS) tagging accu-
racy of 92.14% (from 81.54% zero shot accu-
racy), which is only slightly below the super-
vised performance of 94.45%. We also use our
proposed transformations to synthetically gen-
erate tweets and augment the Twitter dataset to
achieve state-of-the-art performance for POS
tagging.

1 Introduction

In a typical machine learning setting, training, de-
velopment and test sets are usually carved out of
the same data collection effort. In doing this, we
caveat our models with an implicit assumption -
the deployment dataset should belong to the same
distribution as the training dataset. This is rarely
the case and we see significant drops in perfor-
mance when the model is deployed. The mismatch
between the deployment data distribution, or tar-
get domain, and the training data distribution, or
source domain, is known as domain shift (Ramponi
and Plank, 2020; Ruder and Plank, 2018) and the
process of adapting to target domain distributions is
known as domain adaptation (Blitzer et al., 2006).

The most widely studied domain adaptation
methods are model-centric methods (Ramponi and
Plank, 2020), where parts of the model, includ-

Figure 1: The Anatomy of a Tweet - This figure shows
lexical features of a tweet like hashtags, user-mentions,
emojis, re-tweets.

ing the feature space, the loss function or even the
structure of the model are altered (Blitzer et al.,
2006; Pan et al., 2010; Ganin et al., 2016; März
et al., 2019). Data-centric methods (Ramponi and
Plank, 2020) usually involve some form of boot-
strapping and pseudo-labelling of the target domain
data (Abney, 2007; Cui and Bollegala, 2019; Ruder
and Plank, 2018; Gupta et al., 2021). A popular
data-centric domain adaptation method is data se-
lection, which is an intermediate training step that
aims to select a subset of data that is closest to the
target domain (Moore and Lewis, 2010; Axelrod
et al., 2011; Aharoni and Goldberg, 2020; Iter and
Grangier, 2021). We refer the reader to domain
adaptation surveys in natural language processing
for a detailed overview (Ramponi and Plank, 2020;
Chu and Wang, 2018; Jiang, 2013; Margolis, 2011).

To the best of our knowledge, none of the works
we encounter in literature address the fundamental
reason behind the need for domain adaptation - do-
main shift. If we are able to transform the source
domain dataset such that the domain mismatch be-
tween the source domain and the target domain is
reduced, while being able to exploit the annota-
tions of the source domain corpus, then the models
trained on such a transformed source domain data
will naturally perform better on the target domain.
This is the main motivation behind our work. All
model-centric and data-centric domain adaptation
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Figure 2: Examples of original sentences from GUM
dataset and how they look like after different Lexical
Transformations and Label Injections. Note the POS
labels injected post transformations.

methods can be applied on top of our proposed
method and are complementary to it.

In this paper, we transform the source domain
dataset to resemble the target domain dataset more
closely through a series of transformations. In our
case, the source domain consists of standard En-
glish sentences and the target domain consists of
tweets. Through these transformations, we are able
to improve the zero-shot POS tagging accuracy by
10.39% when averaged over five different BERT
models. Also, when we combine the transformed
data to augment the original target dataset, we
achieve state-of-the-art POS tagging performance
on the target dataset.

2 Lexical Transformations and Label
Injections

Standard English sentences and Tweets have both
semantic and lexical differences. Tweets are more
likely to be subjective and polarized (appendix A.1).
On the other hand, tweets also contain unique lexi-
cal features like acronyms, emojis, user mentions,
retweets, hashtags, as shown in Figure 1, and can
be used as different parts of speech (Table 6, ap-
pendix A.2). In this paper, we focus on converting
standard English sentences into tweets by making
lexical transformations and injecting labels wher-
ever required. Example transformations are shown
in Figure 2.

Lexcial transformations add target domain-
specific lexical features to the source domain
dataset such that these properties are ‘distribution-
ally’ conserved. For example, when our target
domain is Twitter, we expect Tweets to contain
emojis. We can measure the distributional presence
of emojis in tweets, like the percentage of tweets
that on average contain emojis or how they are dis-
tributed within the sentence, i.e. if they are more
likely to occur in the beginning, middle, or end
of a sentence. In lexical transformations, we add

Dataset Split Sentences Tokens
GUM Train 6,917 124,923
TBv2 Train 1,639 24,753

Test 1,201 19,911

Table 1: Table showing the dataset statistics for GUM
and Tweebank datasets (TBv2). In this paper, all models
are tested on the test set of TBv2, which is our target
domain set. For compelete statistics, refer to A.1.

these distributional properties to the source domain
sentences. Since we are adding these features to
an annotated dataset, we also inject the label of the
lexical feature wherever required. The process is
discussed in detail in section 4. The resulting sen-
tences are almost indistinguishable from Tweets,
as can be seen in Figure 2. It is not trivial to in-
ject these lexical features into the standard English
sentences as the same feature can correspond to
multiple parts of speech, as shown in Table 6.

3 Datasets

In this paper, we work with two annotated POS
tagging datasets. For standard English, we use the
GUM (Georgetown University Multilayer Corpus)
dataset (Zeldes, 2017). For Twitter data, we use
Tweebank (TBv2) (Liu et al., 2018) dataset. We
choose these two datasets because they are both
labelled using the universal dependencies (Nivre
et al., 2016) framework, thus each of the datasets
have identical 17 POS tags. The dataset statistics
are shown in Table 1.

The GUM dataset acts as our source domain
dataset and is about 5 times larger than TBv2,
which is our target domain dataset. GUM dataset is
made up of articles and interviews from Wikinews,
instructional articles from wikiHow and travel
guides from Wikivoyage (Zeldes, 2017). The
GUM dataset contains longer sentences compared
to the Tweebank dataset. The Tweebank dataset
gets higher average polarity and subjectivity scores
when compared to the GUM dataset. The exper-
iments analysing dataset properties are shared in
appendix A.1.

4 Experiments

In this section, we present four different types of
Lexical Transformations and corresponding label
injection methods for Twitter as target domain.
All transformations are performed on the GUM
train-split (the standard English dataset). Models
trained on the transformed dataset are tested on
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Method POS BERT-base RoBERTa-base BERT-large RoBERTa-Large BERTweet
Zero Shot - 79.74 (0.26) 80.87 (0.19) 81.52 (0.23) 81.83 (0.23) 80.73 (0.25)
Emoji Injection SYM 80.12 (0.19) 80.85 (0.43) 81.08 (0.68) 81.77 (0.51) 81.59 (0.60)
ILN - 80.66 (0.23) 79.43 (0.18) 81.33 (0.13) 80.95 (0.45) 80.46 (0.34)
@,#ht PROPN 81.89 (0.06) 80.87 (0.08) 82.28 (0.04) 81.92 (0.19) 82.15 (0.14)
RT,#ht,url X 89.33 (0.08) 88.09 (0.12) 89.76 (0.09) 88.95 (0.21) 88.89 (0.17)

Table 2: This table shows the performance boost for unsupervised domain adaptation from standard English to
Tweets when the four different lexical transformations are used individually.

the TBv2 test set (the Twitter dataset). All experi-
ments shown in this paper report accuracy scores on
TBv2 test set, in accordance with previous works
(Owoputi et al., 2013; Meftah et al., 2019, 2020;
Nguyen et al., 2020). Each experiment is repeated
five times and the mean score is reported with stan-
dard deviations reported in brackets.

All experiments in this paper are done us-
ing the Huggingface implementations of different
BERT models. We use five different BERT mod-
els, the original BERT-base-uncased and BERT-
large-uncased (Devlin et al., 2018) models, the
RoBERTa-base and RoBERTa-large models (Liu
et al., 2019) and the BERTweet model (Nguyen
et al., 2020).

4.1 Zero-Shot Experiments
We begin by training the model on the original
GUM train-split and testing it on the TBv2 dataset.
This experiment sets our baseline for unsupervised
domain adaptation as it represents zero-shot appli-
cation of a model trained on standard English, and
then applied to tweets. The results are shown as
the Zero Shot results of Table 2.

4.2 Emoji Injections
Social media text is filled with emojis and emoti-
cons. In this paper, we refer to both as Emojis. To
convert standard English sentences to Tweets, we
inject emojis into standard English sentences. Emo-
jis belong to the ‘SYM:symbol’ class in the uni-
versal dependencies framework, which is inserted
as the label for the injected emoji in the source
domain dataset.

To place an emoji within a standard English sen-
tence, we first randomly select an emoji from a
pre-decided list of emojis. Then we place the emoji
inside a sentence according to a Gaussian distribu-
tion which is fit to the location of occurrence of
emojis in a tweet. We randomly add emojis to 25%
of the sentences in the GUM dataset. The different
experiments done to reach the above methodology
for emoji injection are described in appendix A.3.

The results for emoji injection are shown in Table
2.

4.3 Inverse Lexical Normalization
Lexical normalization is a common task where non-
standard English tokens are corrected to standard
English (Han et al., 2013). This includes expanding
acronyms like wru -> where are you and correct-
ing spelling errors. In this paper, we convert stan-
dard English to its lexically un-normalized version.
We call this process Inverse Lexical Normaliza-
tion (ILN). To do so, we use a lexical normaliza-
tion dataset (Baldwin et al., 2015) as a dictionary
lookup and create a mapping between lexically cor-
rect words and their un-normalized version. For
example, you is written in various different ways
including u, uuuu, youuuu. We randomly replace
the correct tokens with their un-normalized ver-
sions 75% of the times. The ablation experiments
for this lexical transformation are shown in A.4.
The POS tag of the original word is retained in
the transformation. BERT-base observes maximum
improvement with ILN (Table 2).

4.4 Converting PROPN to User-Mentions and
Hashtags

Another distinguishing lexical features of Tweets
is the use of user-mentions and hashtags. In this
transformation, we randomly pick existing proper
nouns in the GUM dataset and convert them into
user-mentions or hashtags by adding an ’@’ or ’#’
symbol in front of the token, with a probability of
50% and 20% respectively. The existing proper
noun labels are kept for the converted tokens. The
ablations for this transformation can be found in ap-
pendix A.5. We see consistent improvements with
this transformation for all models except RoBERTa
models (Table 2).

4.5 Injecting ReTweets, URLS, user-mentions
and hashtags as X

The ‘X’ part of speech tag or the other category in
the universal dependency framework (Nivre et al.,
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Type Train Dataset BERT-base RoBERTa-base BERT-large RoBERTa-Large BERTweet
Unsupervised GUM 79.74 (0.26) 80.87 (0.19) 81.52 (0.23) 81.83 (0.23) 80.73 (0.25)

GUM-T (UDA) 91.82 (0.07) 90.85 (0.08) 92.14 (0.12) 90.86 (0.61) 90.99 (0.24)
Supervised TBv2 93.88 (0.05) 93.00 (0.03) 94.45 (0.04) 93.85 (0.08) 93.85 (0.09)

TBv2 + GUM 94.31 (0.06) 94.16 (0.06) 94.51 (0.05) 94.61 (0.08) 94.71 (0.08)
TBv2 + GUM-T 94.81 (0.02) 94.84 (0.06) 95.01 (0.05) 95.04 (0.04) 95.21 (0.03)

Table 3: This table shows the final Unsupervised Domain Adaptation performance using our proposed data
transformations. All these models are test on the TBv2 test set and trained on the datasets described above. We
combine the transformed data with the original dataset to achieve state-of-the-art results on the Tweebank test set.

2016) is defined as - "The tag X is used for words
that for some reason cannot be assigned a real
POS category. It should be used very restrictively".
While the ‘X’ POS tag is used sparingly in standard
English, a large number of tokens in tweets fall into
this category. In this transformation, we insert re-
tweets (at the beginning of sentences), urls (usually
at the back of the sentences) and hashtags (ran-
domly sampled from a Gaussian calculated from
tweets). Re-tweets are added in 30% of the sen-
tences, URL’s are added in 60% of the sentences
and hashtags are added in 10% of the sentences.
The ablations can be found in appendix A.6. The
label ‘X’ is added with these lexical transforma-
tions.

We see massive improvements across the board
by adding this lexical transformation. This is be-
cause the ‘X’ POS tag, which is probably the most
under-utilized tag when dealing with standard En-
glish, becomes vital when dealing with tweets. All
Re-tweets, URL’s and many hashtags and user men-
tions fall under this category.

5 Results

We now combine all transformations together, as
shown in Table 3. The first section in Table 3 repre-
sents our unsupervised domain adaptation results.
The first row in Table 3 shows models trained on the
original GUM dataset (standard English) and tested
on TBv2 test set, representing zero-shot domain
transfer results. The GUM-T dataset represents
the transformed dataset containing all the previ-
ously described transformations. Models trained
on the GUM-T dataset represent our unsupervised
domain adaptation performance, which improves
on the zero-shot POS tagging accuracy by 10.39%,
without ever seeing a single tweet (when averaged
over all five models). The class-wise F1 improve-
ments for different POS tags are shown in Table 12.
BERT-base witnesses the maximum gain from our
transformations (12.08%) and performs better than

System POS Accuracy
(Owoputi et al., 2013) 94.6
(Meftah et al., 2019) 94.95
(Nguyen et al., 2020) 95.2
BERTweet [TBv2 + GUM-T] (ours) 95.21 (0.03)

Table 4: Table showing the dataset statistics for GUM
and Tweebank datasets (TBv2). In this paper, all models
are tested on the test set of TBv2, which is our target
domain set.

RoBERTa-large and BERTweet.
The second section in Table 3 contains super-

vised experiments where the training dataset con-
tains tweets. We check the efficacy of our proposed
transformations as a synthetic data generation pro-
cess. We first augment the TBv2 dataset with the
original GUM dataset and compare it with the im-
provements we get when TBv2 is combined with
GUM-T. We see that the combination of TBv2 and
GUM-T datasets outperforms all supervised mod-
els and gives 1.6 to 8 times larger performance
boost over augmenting with the original GUM
dataset. The TBv2 + GUM-T combination reaches
(a saturated) state-of-the-art maxima for POS tag-
ging on the TBv2 dataset, as shown in Table 4.

6 Conclusion

A lot of focus in literature has been given to con-
verting noisy social media text to standard English.
In our work, we convert standard English into noisy
social media-like text using simple lexical transfor-
mations and show that it can be used as an effec-
tive unsupervised domain adaptation and data aug-
mentation method. The fundamental idea behind
our work is to reduce domain shift by transform-
ing the source domain into the target domain. We
present experiments for these transformations be-
tween standard English and Twitter domain and
find an average accuracy boost for POS tagging of
10.39% across 5 different BERT models, without
ever using a single tweet for supervised training.
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7 Limitations

In this paper, we focus on lexical transformations
between source domain and target domain to re-
duce the domain shift between them. To do this,
we identify unique lexical features in the target do-
main and place them in the source domain so that
the transformed domain is distributionally similar
to the target domain. But there are also semantic
differences between the two domains in terms of
content, domain-specific jargon, and other nuances.
This work does not take into account those transfor-
mations. Also, we use Twitter as the target domain
for our work. While the general principles of our
work are applicable to any source-target domain
pairs, the transformations discussed in this work
cater broadly to social media text, and specifically
to Twitter data. The generalizability to other tar-
get domains has not been tested in this paper and
remains a topic of further investigation.

In this paper, we work with a POS tagging
dataset. POS tagging is a token level task where
we classify each token as belonging to a certain
category. We feel that because POS tagging is
dependent on each token in the sentence, domain
transfer affects this task most adversely. Sequence
classification tasks like sentiment analysis that only
require a high level representation of the entire sen-
tence to make classification decisions might wit-
ness different levels of improvement. The current
method needs to be tested for other task types, in-

cluding sequence classification tasks like sentiment
analysis, or generative tasks like question answer-
ing and text summarization. This was beyond the
scope of a short paper.
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Dataset Split Sentences Tokens
GUM Train 6,917 124,923

Dev 1,117 19,654
Test 1,096 19,911

TBv2 Train 1,639 24,753
Dev 7,10 11,759
Test 1,201 19,911

Table 5: Table showing the complete dataset statistics
for GUM and Tweebank datasets (TBv2).

A Appendix

A.1 Dataset
In this paper, we work with two part-of-speech
(POS) tagging datasets. The GUM dataset (Zeldes,
2017), which is made up of standard English sen-
tences from different wiki-sources like wikiNews,
wikiHow etc., and the Tweebankv2 (TBv2) dataset
(Liu et al., 2018), which consists of tweets. The
GUM dataset acts as our source domain dataset,
while TBv2 acts as our target domain dataset.

The number of sentences and the number of to-
kens in each dataset are given in Table 5. Figure 3
shows the sentence length distribution between the
GUM and the TBv2 dataset. We see that the GUM
dataset contains longer sentences when compared
to the TBv2 dataset. The mean tokens per sentence
for GUM is 18.06 (std = 13.3) whereas the mean
tokens per sentence for the TBv2 dataset is 15.10
(std = 7.74). This shows us that TBv2 not only has
shorter sentences, but their spread is also shorter.

We measure average subjectivity and polarity
scores for the two datasets to indicate semantic dif-
ferences. We find higher average subjectivity and
polarity scores for the TBv2 dataset compared to
the GUM dataset. To measure these, we use the
spaCY textblob 1 library to calculate subjectivity
and polarity scores. Polarity is scored between -1
and 1 indicating the sentiment expressed in the sen-
tence. We take the absolute value of the polarity
scores since we consider both positive and negative
sentiment since we are interested in the presence
and absence of polarity in tweets. The mean polar-
ity score for the TBv2 dataset was 0.23 compared
to 0.13 for the GUM dataset. Subjectivity is scored
between 0 and 1, with 0.0 being very objective and
1.0 being very subjective. TBv2 had a mean subjec-
tivity score of 0.36 compared to 0.27 for the GUM
dataset.

1https://spacy.io/universe/project/
spacy-textblob

Figure 3: Sentence length distribution between GUM
and Tweebankv2 (TBv2) dataset. We see that GUM has
more longer and shorter sentences compared to TBv2.

Lexical Features Associated POS tags
Emoji SYM
Re-Tweets X
URLs X
User Mentions X, PROPN
Hashtags X, VERB, PROPN ...
Un-normalized words VERB, INTJ, ADP ...

Table 6: Table showing the different lexical features
seen in tweets and the corresponding part of speech tags
the features can take.

A.2 Lexical Features

Some of the lexical features specific to tweets that
we are concerned with in this paper are - emojis,
re-tweets, user-mentions, hashtags, URL’s and un-
normalized tokens. It is not trivial to inject these
into the standard English sentences as same lex-
ical feature can correspond to multiple parts of
speech. This can also be seen in Figure 1, where
user-mentions are used both for the category ’X’ as
well as proper nouns. A more detailed description
of the different lexical features and the correspond-
ing parts of speech the features can take can be seen
in Table 6. Lexical features like user-mentions can
take two parts of speech, where hashtags and un-
normalized words can essentially be any part of
speech.

A.3 Emoji Injections Ablation

Emoji Injection is a lexical transformation where
we insert emojis in standard English sentences such
that the distributional properties of the transformed
text resemble a Twitter dataset. Lexical emoji in-

190

https://spacy.io/universe/project/spacy-textblob
https://spacy.io/universe/project/spacy-textblob


Emoji Injection Method POS Tagging Accuracy
Zero-shot 79.746 (0.256)
RANDOM-PLACEMENT 79.103 (0.275)
LOCATION-SAMPLING 80.125 (0.192)

Table 7: Comparison between random-emoji injection
and location-sampling based emoji injection. We find
that location-sampling performs significantly better than
random placement.

jection is done in two steps:

• Emoji Selection - Sample an emoji from a
pre-selected list of emojis

• Emoji Placement - Select a location in the
standard English sentence to place the se-
lected emoji

Both these steps can be done randomly or based
on a particular distribution. The selection step can
be done by selecting an emoji based on the distribu-
tion of its occurrence in Twitter feeds. Although in
this paper, in the emoji selection step, we select an
emoji randomly from a pre-decided list of emojis.

Similarly, the emoji placement step can be done
in two ways. The selected emoji can be placed
randomly anywhere in the sentence. This is called
RANDOM-PLACEMENT. The alternative is to
place the emojis in a sentence based on a certain
distribution and sample the location of placement
from that distribution. This method of placement
is called LOCATION-SAMPLING. The distribu-
tion is found by studying the locations at which
different emojis occur in a Twitter feed and fitting
the location of their occurrence to a Gaussian dis-
tribution. We use the TBv2 train-split to calculate
the distribution parameters. We experiment with
these two methods for emoji injection for the BERT-
base model by injecting tweets in 25% sentences
in the GUM dataset. The models are trained on
the transformed dataset and tested on the TBv2 test
set. The results are shown in Table 7. We find
that LOCATION-SAMPLING is significantly su-
perior to the RANDOM-PLACEMENT method of
emoji-injection.

We also experimented with different thresholds
for emoji injection. We found that injecting emojis
into a larger number of sentences hurts the model
performance as shown in Table 8. Thus, we do
emoji injection with a 25% probability.

Emoji Injection Method POS Tagging Accuracy
Zero-shot 79.746 (0.256)
EI (25%) 80.123 (0.192)
EI (50%) 79.671 (0.331)
EI (75%) 79.473 (0.389)

Table 8: Comparison between different probability
thresholds of emoji injection. We find a 25% probability
of adding emojis to a sentence performs optimally.

ILN Method POS Tagging Accuracy
Zero-shot 79.746 (0.256)
ILN (25%) 80.329 (0.327)
ILN (50%) 80.504 (0.292)
ILN (75%) 80.668 (0.236)

Table 9: Comparison between different probability
thresholds for inverse lexical normalization. This proba-
bility threshold is for converting each token in a sentence
to its un-normalized version.

A.4 Inverse Lexcical Normalization Ablation

Inverse Lexical Normalization (ILN) aims to con-
vert standard English text into its un-normalized
versions. This includes converting correct spellings
to their noisy versions as used in social media and
converting certain texts to corresponding acronyms.
Some examples of such a conversion would be con-
verting you -> u, that - dat, how are you -> hru.

We do this by using the dataset released by (Bald-
win et al., 2015) for lexical normalization. We use
the training set as a dictionary and find mappings
between the lexically-correct tokens and their noisy
usage in social media. When a word in this dictio-
nary is found in the standard English sentence, it
is converted into its un-normalized version with a
probability of 75%. The ablation experiments with
BERT-base are shown in Table 9.

A.5 Injecting User Mentions and Hashtags as
PROPN - Ablation

User mentions and hashtags are often used as
proper nouns (PROPN) as shown in the two ex-
amples below :

• #FOLLOW us #CHECKOUT the multi
- talented Spanglish Pop Singer Model
@USER779 aka Lady Boom Boom URL107

• Today I went to watch #Metallica #themosta-
mazingconcertever

In the first tweet, @USER779 mention is used as
a proper noun. In the second example #Metallica is
used as a proper noun followed by another hashtag
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PROPN Injection Method POS Tagging Accuracy
Zero-shot 79.746 (0.256)
@(25%), #(10%) 81.604 (0.064)
@(50%), #(20%) 81.896 (0.061)
@(75%), #(30%) 81.742 (0.055)

Table 10: Comparison between different probability
thresholds for converting proper nouns present in stan-
dard English sentence to user mentions and hashtags.

X-Injection Method POS Tagging Accuracy
Zero-shot 79.746 (0.256)
RT(30%), URL(60%), #(10%) 89.334 (0.079)
RT(60%), URL(60%), #(20%) 89.253 (0.094)
RT(90%), URL(60%), #(30%) 89.173 (0.081)

Table 11: Comparison between different probability
thresholds for injecting re-tweets, URLs and hashtags
into a standard English sentence as the POS label ‘X’.

which refers to a totally different part-of-speech. In
this transformation, we convert pre-existing proper
nouns in standard English sentences into user men-
tions or hashtags. In a brief analysis of Twitter feed,
we found that user mentions were more common
than hashtags. Thus we start by randomly changing
proper nouns into user mentions with a probability
of 25% and into hashtags with a probability of 10%.
The ablation experiments with BERT-base model
are shown in Table 10.

A.6 Injecting Re-Tweets, URLS, User
Mentions and Hashtags as X - Ablation

Re-tweets involving user mentions are separate
from when user mentions are used as proper nouns
and are classified in the ’X:other’ POS category.
URLs and some hashtags also fall into this cate-
gory. Examples of tweets containing these lexical
features can be seen in Figure 1. Injecting these
features is simpler than the other lexical features
and yet results in the largest improvements. Re-
tweets are almost always present at the beginning
of a tweet. URLs are almost always present at the
end of the tweet. We make a pre-selected list of
certain hashtags that fall into the ’X:other’ POS tag
category and place them randomly in a sentence.
We experiment with the relative probability of such
injections in Table 11.

A.7 Combining All Lexical Data
Transformations

When we combine all lexical data transformations,
we achieve significant boost in performance on the
Twitter dataset. When a model trained on the GUM

POS class Zero-Shot F1 Transformed F1 Tokens
NOUN 0.85 0.87 2669
NUM 0.80 0.92 304
PROPN 0.63 0.97 1716
SYM 0.53 0.79 209
VERN 0.87 0.93 1985
X 0.01 0.94 2056

Table 12: Class-wise F1 improvement for unsupervised
domain adaptation for BERT-large model for selected
classes. Zero-shot F1 shows the class-wise F1 scores be-
fore applying lexical data transformations. Transformed
F1 shows the class-wise F1 score for unsupervised do-
main adaptation of BERT-large model after application
of lexical data transformations.

dataset (standard English, source domain) is tested
on the Tweebankv2 test set (Twitter dataset, target
domain), we see that the model has about 81.52%
accuracy using BERT-large for POS tagging (Table
3, first row, Unsupervised). When we use all lexi-
cal transformations to transform standard English
dataset to Twitter like sentences, called GUM-T,
we achieve 92.14% accuracy, and see a significant
boost of 10.62% over the zero-shot performance.
This shows us that our simple lexical data transfor-
mations give the model a massive boost without
training on actual tweets annotated for POS tag-
ging. Our lexical data transformations can be used
both for unsupervised domain adaptation and data
augmentation, as shown in Table 3.

A.7.1 The ‘X:other’ POS class for Twitter
The class-wise F1 score improvements in BERT-
large for unsupervised domain adaptation are
shown in Table 12. We see significant improve-
ments for all POS classes. The improvement is
massive for the ‘X’ POS class because this class
works very differently in standard English and
tweets. Tweets contain a lot of hashtags, URLs,
and re-tweets, which is completely different from
standard English. Thus, the ‘X’ POS class is the
biggest lexical differentiator between standard En-
glish and how people communicate on Twitter.
This is also why the performance of a POS tag-
ger trained on standard English dataset performed
abysmally, with and F1 score of 0.01.

A.8 Lexicalally Transformed Sentences

Some examples of the lexicalally transformed sen-
tences from standard English to tweets are shown
in Figure 4. The examples show different features
including emojis, user mentions, re-tweets, URLs
and lexically incorrect tokens.
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Figure 4: Figure shows various examples of lexicalally
transformed standard English sentences. The sentence
in the bold font corresponds to the lexicalally trans-
formed sentence for the original standard English sen-
tence written directly above it regular font.

A.9 Average Runtimes, Hyperparameters and
Hardware

All experiments were performed on a single Tesla
T4 GPU with 16GB GPU memory in a system
with 16GB RAM. The run-time for base models
per epoch was approximately 2 minutes for the
Tweebank train-split and 6 minutes for the GUM
train-split. For large models, the time taken per
epoch was approximately 6 minutes for Tweebank
train-split and 18 minutes for GUM train-split. The
best performance and best dev-accuracy were cho-
sen. We kept a batch size of 32, a learning rate of
1e-5 and maximum sequence length of 256. All
models are trained for 25 epochs. We run each
configuration 5 times and report the mean scores
and standard deviation.
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