@inproceedings{sutton-etal-2023-read,
title = "You Are What You Read: Inferring Personality From Consumed Textual Content",
author = "Sutton, Adam and
Simchon, Almog and
Edwards, Matthew and
Lewandowsky, Stephan",
editor = "Barnes, Jeremy and
De Clercq, Orph{\'e}e and
Klinger, Roman",
booktitle = "Proceedings of the 13th Workshop on Computational Approaches to Subjectivity, Sentiment, {\&} Social Media Analysis",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.wassa-1.4",
doi = "10.18653/v1/2023.wassa-1.4",
pages = "28--38",
abstract = "In this work we use consumed text to infer Big-5 personality inventories using data we have collected from the social media platform Reddit. We test our model on two datasets, sampled from participants who consumed either fiction content ($N = 913$) or news content ($N = 213$). We show that state-of-the-art models from a similar task using authored text do not translate well to this task, with average correlations of $r=.06$ between the model{'}s predictions and ground-truth personality inventory dimensions. We propose an alternate method of generating average personality labels for each piece of text consumed, under which our model achieves correlations as high as $r=.34$ when predicting personality from the text being read.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="sutton-etal-2023-read">
<titleInfo>
<title>You Are What You Read: Inferring Personality From Consumed Textual Content</title>
</titleInfo>
<name type="personal">
<namePart type="given">Adam</namePart>
<namePart type="family">Sutton</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Almog</namePart>
<namePart type="family">Simchon</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Matthew</namePart>
<namePart type="family">Edwards</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stephan</namePart>
<namePart type="family">Lewandowsky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 13th Workshop on Computational Approaches to Subjectivity, Sentiment, & Social Media Analysis</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jeremy</namePart>
<namePart type="family">Barnes</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Orphée</namePart>
<namePart type="family">De Clercq</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roman</namePart>
<namePart type="family">Klinger</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Toronto, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this work we use consumed text to infer Big-5 personality inventories using data we have collected from the social media platform Reddit. We test our model on two datasets, sampled from participants who consumed either fiction content (N = 913) or news content (N = 213). We show that state-of-the-art models from a similar task using authored text do not translate well to this task, with average correlations of r=.06 between the model’s predictions and ground-truth personality inventory dimensions. We propose an alternate method of generating average personality labels for each piece of text consumed, under which our model achieves correlations as high as r=.34 when predicting personality from the text being read.</abstract>
<identifier type="citekey">sutton-etal-2023-read</identifier>
<identifier type="doi">10.18653/v1/2023.wassa-1.4</identifier>
<location>
<url>https://aclanthology.org/2023.wassa-1.4</url>
</location>
<part>
<date>2023-07</date>
<extent unit="page">
<start>28</start>
<end>38</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T You Are What You Read: Inferring Personality From Consumed Textual Content
%A Sutton, Adam
%A Simchon, Almog
%A Edwards, Matthew
%A Lewandowsky, Stephan
%Y Barnes, Jeremy
%Y De Clercq, Orphée
%Y Klinger, Roman
%S Proceedings of the 13th Workshop on Computational Approaches to Subjectivity, Sentiment, & Social Media Analysis
%D 2023
%8 July
%I Association for Computational Linguistics
%C Toronto, Canada
%F sutton-etal-2023-read
%X In this work we use consumed text to infer Big-5 personality inventories using data we have collected from the social media platform Reddit. We test our model on two datasets, sampled from participants who consumed either fiction content (N = 913) or news content (N = 213). We show that state-of-the-art models from a similar task using authored text do not translate well to this task, with average correlations of r=.06 between the model’s predictions and ground-truth personality inventory dimensions. We propose an alternate method of generating average personality labels for each piece of text consumed, under which our model achieves correlations as high as r=.34 when predicting personality from the text being read.
%R 10.18653/v1/2023.wassa-1.4
%U https://aclanthology.org/2023.wassa-1.4
%U https://doi.org/10.18653/v1/2023.wassa-1.4
%P 28-38
Markdown (Informal)
[You Are What You Read: Inferring Personality From Consumed Textual Content](https://aclanthology.org/2023.wassa-1.4) (Sutton et al., WASSA 2023)
ACL