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Abstract

We present the results of the WASSA 2023001
Shared-Task 2: Emotion Classification on code-002
mixed text messages (Roman Urdu + English),003
which included two tracks for emotion classi-004
fication: multi-label and multi-class. The par-005
ticipants were provided with a dataset of code-006
mixed SMS messages in English and Roman007
Urdu labeled with 12 emotions for both tracks.008
A total of 5 teams (19 team members) partici-009
pated in the shared task. We summarized the010
methods, resources, and tools used by the par-011
ticipating teams. We also made the data freely012
available for further improvements to the task.013

1 Introduction014

In recent times, the growing number of Internet015

users and the proliferation of diverse online plat-016

forms have led to a significant surge in individuals017

expressing their opinions and attitudes on govern-018

ment websites, microblogs, and other social media019

platforms. Consequently, there is growing inter-020

est in effectively extracting people’s sentiments021

and emotions towards events from such subjective022

information. To address this, Natural Language023

Processing (NLP) employs emotion analysis called024

Emotion Classification. Emotion Classification is025

one of the most challenging NLP tasks, in which a026

given text is assigned to the most appropriate emo-027

tion(s) that best reflect the author’s mental state028

of mind (Tao and Fang, 2020), where emotions029

can be anger, joy, sadness, surprise, etc. People030

freely express their feelings, arguments, opinions,031

and thoughts on social media. Therefore, this task032

plays a pivotal role in uncovering valuable insights033

from user-generated content, and more and more034

attention is being paid to automatic tools for clas-035

sifying users’ emotion(s) from written text. Emo-036

tion classification has applications in several do-037

mains, including financial marketing (Zhang et al.,038

2016; Yang et al., 2020; Lysova and Rasskazova,039

2019), medicine (Lin et al., 2016; Saffar et al.,040

2022; Huang et al., 2023), education (Huang and 041

Zhang, 2019; Zhang et al., 2020b; Carstens et al., 042

2019), etc. 043

There are two different views on the classifica- 044

tion of emotions. Ameer et al. (2020) stated that 045

emotions are dependent; one emotional expres- 046

sion can be linked to multiple emotions (Deng and 047

Ren, 2020). Therefore, the emotion classification 048

problem should be defined as Multi-Label Emotion 049

Classification (MLEC). MLEC is the task of as- 050

signing all possible emotions for a written text that 051

best presents the author’s mental state. The other 052

view is that written data is associated with only one 053

emotion (Ameer et al., 2022), which defines the 054

problem as a Multi-class Emotion Classification 055

(MCEC) problem. MCEC is the task of assigning 056

one most dominating emotion to the given piece 057

of text that best represents the mental state of an 058

author. 059

In this paper, we present the WASSA 2023 060

Shared Task: Multi-Label and Multi-Class Emo- 061

tion Classification on Code-Mixed Text Messages. 062

We used the same dataset provided by (Ameer et al., 063

2022) composed of code-mixed (English + Ro- 064

man Urdu) SMS messages originally collected for 065

MLEC. Each SMS message is annotated for the 066

absence/presence of 12 multiple emotions (anger, 067

anticipation, disgust, fear, joy, love, optimism, pes- 068

simism, sadness, surprise, trust, and neutral (no 069

emotion)) provided by SemEval-2018 Task 1: Af- 070

fect in Tweets (Mohammad et al., 2018) (see Sec- 071

tion 3 for more details). The shared task consists 072

of two tracks: 073

• Track 1 - MLEC: The formulation of this track 074

is to predict all possible emotion labels from 075

code-mixed SMS messages. 076

• Track 2 - MCEC: The formulation of this track 077

is to predict a single most dominating emotion 078

from code-mixed SMS messages. 079
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7 teams participated in this shared task: 3 teams080

submitted results to MLEC and 7 teams submitted081

results to MCEC tracks1. The tracks were designed082

using CodaLab2, allowing teams to submit one offi-083

cial result during the evaluation phase and multiple084

results during the training phase. During the evalu-085

ation phase, each team was allowed to submit their086

results by a certain deadline, after which the final087

submission was considered for ranking. The best088

result for Track 1 - MLEC was Multi-Label Ac-089

curacy = 0.9782, and the best result for Track 2 -090

MCEC was Macro F1 = 0.9329.091

The rest of the paper is structured as follows:092

Section 2 provides an overview of related work.093

Section 3 presents the details of the datasets for094

both tracks. The task description is outlined in095

Section 4, while the official results are presented096

in Section 5. Section 6 provides a discussion of097

the various systems that participated in both tracks.098

Finally, our work is concluded in Section 7.099

2 Related Work100

In recent years, extensive research has been con-101

ducted on emotion classification (Ren et al., 2017;102

Tang et al., 2019; Zhang et al., 2020a). Among103

supervised machine learning techniques, Random104

Forest, Logistic Regression, Naïve Bayes, Support105

Vector Machine, Bagging, AdaBoost, and Deci-106

sion Tree are widely used for emotion classification107

problems (Ameer et al., 2020, 2022; Hadwan et al.,108

2022; Edalati et al., 2022).109

The success of deep learning models in vari-110

ous NLP tasks, including Neural Machine Transla-111

tion (NMT) (Wang et al., 2017; Song et al., 2019)112

and Semantic Textual Similarity (STS) (Wu et al.,113

2021; Zhang and Lan, 2021), has led them to be114

applied to the emotion classification problem as115

well. Notably, deep learning models, LSTM (Bazi-116

otis et al., 2018; Gee and Wang, 2018), CNN (Kim117

et al., 2018), GRU (Eisner et al., 2016; Alswaidan118

and Menai, 2020), GNN (Ameer et al., 2023b) and119

Transformers (e.g., BERT, XLNet, DistilBERT, and120

RoBERTa) (Ameer et al., 2020; Ding et al., 2020;121

Ameer et al., 2022, 2023a) have been utilized in122

this context.123

There have been several efforts in the literature124

to construct benchmark corpora for emotion clas-125

sification tasks (Illendula and Sheth, 2019; Dem-126

1Only 5 of the teams submitted system description papers.
2Details of task descriptions, datasets, and results are in

CodaLab https://codalab.lisn.upsaclay.fr/competi
tions/10864

szky et al., 2020; Xu et al., 2015; Saputra et al., 127

2022; Ashraf et al., 2022; Ilyas et al., 2023). How- 128

ever, the existing efforts have primarily focused 129

on monolingual datasets. In particular, SemEval 130

has organized a number of international competi- 131

tions (Mohammad et al., 2018; Strapparava and 132

Mihalcea, 2007) that have published monolingual 133

benchmark corpora for MLEC, which serve as valu- 134

able resources for developing, comparing, and eval- 135

uating approaches. Regarding the code-mixed task, 136

a few benchmark corpora have been developed for 137

MLEC (Vijay et al., 2018; Sinha et al., 2021; Sasid- 138

har et al., 2020; Lee and Wang, 2015; Tan et al., 139

2020; Plaza-del Arco et al., 2020). 140

Vijay et al. (2018) developed a Hindi-English 141

code-mixed corpus by collecting 2,866 tweets from 142

the past eight years. The corpus was annotated with 143

Ekman’s six emotion labels, including anger, dis- 144

gust, fear, happiness, sadness, and surprise. Each 145

tweet in the corpus was labeled with its source lan- 146

guage and the causal language of the expressed 147

emotion. Another effort by Sinha et al. (2021) 148

involved the development of a Hindi-English code- 149

mixed corpus of 15,997 Facebook status updates. 150

These updates were annotated with emotions such 151

as joy, sadness, anger, fear, trust, disgust, surprise, 152

anticipation, and love. Similarly, Sasidhar et al. 153

(2020) created a Hindi-English code-mixed corpus 154

for single-label emotion classification. This corpus 155

consisted of 12,000 texts gathered from Twitter, 156

Instagram, and Facebook posts. It was manually 157

annotated with three basic emotion labels: happy, 158

sad, and anger. 159

For Chinese-English code-mixed corpora, Lee 160

and Wang (2015) compiled a multilingual corpus 161

by collecting code-switching data from Weibo.com, 162

a popular Chinese social networking website. The 163

corpus contained 2,313 posts annotated with five 164

basic emotions: anger, fear, happiness, sadness, 165

and surprise. The posts covered various domains 166

such as life, finance, service, celebrities, products, 167

and politics, with happiness being the most domi- 168

nant emotion. 169

In the context of Malaysian code-mixed cor- 170

pora, Tan et al. (2020) developed a large Twitter cor- 171

pus consisting of 295,817 Tweets in the Malaysian 172

language (Malay, Malaysian slang, and English). 173

The corpus was annotated with six basic emotion 174

classes: anger, fear, happiness, love, sadness, and 175

surprise. Additionally, Plaza-del Arco et al. (2020) 176

compiled a multi-label and code-mixed emotion 177
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corpus based on events in April 2019. The corpus178

included 7,303 English tweets and 8,409 Spanish179

tweets. Each tweet was assigned one of Ekman’s180

fundamental emotions, such as anger, surprise, dis-181

gust, enjoyment, fear, and sadness, or labeled as182

neutral or other emotions.183

While existing code-mixed corpora mainly184

focused on English combined with Spanish,185

Malaysian, Hindi, and other languages for tweets,186

a benchmark code-mixed (English + Roman Urdu)187

dataset with proposed models to solve the problem188

for the MLEC task was lacking. To address this189

gap, the code-mixed dataset developed by Ameer190

et al. (2022) for MLEC was used for the shared task191

by extending the problem for MLEC and MCEC192

problems.193

3 Dataset Compilation Process194

The dataset–CM-MEC-21 corpus–utilized for the195

shared task is developed for the MLEC task and196

consists of code-mixed (English + Roman Urdu)197

SMS messages (Ameer et al., 2022). In this section,198

we first provide the details of the original dataset199

and then describe the dataset preparation process200

for the MCEC track of the shared task.201

The dataset contains code-mixed (English + Ro-202

man Urdu) SMS messages which are manually203

selected from SMS-AP-18 corpus (Fatima et al.,204

2018) and annotated by three annotators for the205

presence/absence of 12 emotions as in SemEval-206

2018 (Mohammad et al., 2018) for the MLEC task.207

Therefore, we used the dataset for the MLEC track208

of the shared task since it is already annotated for209

the MLEC using a set of 12 emotions: anger, an-210

ticipation, disgust, fear, joy, love, optimism, pes-211

simism, sadness, surprise, trust, and neutral (no212

emotion).213

For the MCEC track, the annotators annotated214

each code-mixed (English + Roman Urdu) SMS215

message with the most dominating emotion among216

all the labels assigned for MLEC. In cases where217

a code-mixed SMS message did not convey any218

particular emotion, only the “neutral" label was219

assigned.220

We randomly split the MLEC and MCEC track221

datasets into train (80%), development (10%), and222

test (10%) sets. Table 1 represents the train, de-223

velopment, and test splits. The distributions of224

emotions for MLEC and MCEC tracks for each225

set are presented in Tables 2 and 3, respectively.226

The dataset used in the shared task is publicly avail-227

able3. 228

Track Train Dev Test Total
MLEC 9530 1191 1191 11912
MCEC 9530 1191 1191 11912

Table 1: Statistical details of train, development, and
test set for MLEC and MCEC tracks.

Emotion Train Dev Test
Anger 271 41 35
Anticipation 1046 135 134
Disgust 955 134 124
Fear 522 58 51
Joy 1213 144 142
Love 265 34 34
Neutral 3247 404 394
Optimism 1065 133 121
Pessimism 219 26 29
Sadness 638 65 85
Surprise 281 27 34
Trust 1185 145 160

Table 2: Distribution of emotion labels in the MLEC
track.

Emotion Train Dev Test
Anger 226 35 26
Anticipation 832 94 97
Disgust 687 113 98
Fear 453 52 55
Joy 1022 131 123
Love 187 17 24
Neutral 3262 388 399
Optimism 880 110 103
Pessimism 178 29 35
Sadness 486 62 69
Surprise 199 35 28
Trust 1118 125 134

Table 3: Distribution of emotion labels in the MCEC
track.

4 Task Description 229

We set up the tracks in CodaLab4. Section 4.1 230

describe the tracks of the shared task and dataset, 231

resources, and evaluation metrics are explained in 232

Section 4.2. 233
3https://github.com/wassa23codemixed/codemixed
4https://codalab.lisn.upsaclay.fr/competition

s/10864
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4.1 Tracks234

Track 1 - Multi-Label Emotion Classification235

(MLEC): The problem of this task is to classify236

each code-mixed SMS message as “neutral or no237

emotion" or as one or more of eleven given emo-238

tions (anger, anticipation, disgust, fear, joy love,239

optimism, pessimism, sadness, surprise, trust) that240

best represent the mental state of the author.241

Track 2 - Multi-Class Emotion Classification242

(MCEC): The problem of this task is to predict243

an emotion label from the emotion set, as well as244

no emotion tag (neutral) for each code-mixed SMS245

message.246

4.2 Setup247

Dataset: Participants are provided with the248

dataset described in Section 3. Participants are al-249

lowed to use external datasets in the training phase250

or use data augmentation techniques to improve251

their systems.

Team Accuracy Micro F1 Macro F1
YNU-HPCC 0.9782 0.9854 0.9869

CTcloud 0.9723 0.9815 0.9833
wsl&zt 0.9110 0.9407 0.9464
baseline 0.7321 0.8514 0.8347

Table 4: Results of the teams participating in the MLEC
track.

252

Emotion YNU-HPCC CTcloud wsl&zt
Anger 86.67 97.80 80.00
Anticipation 90.49 88.81 81.69
Disgust 95.00 95.54 93.12
Fear 97.67 96.00 94.36
Joy 92.13 98.97 86.83
Love 91.97 90.70 90.00
Optimism 96.46 88.95 82.44
Pessimism 89.25 80.00 84.55
Sadness 95.17 98.91 95.75
Surprise 93.33 97.19 97.40
Trust 85.90 85.43 85.44

Table 5: Class-wise MLEC results (*100) of the teams
participating in the MLEC track.

Resources and Systems Restrictions: The orga-253

nizers allowed participants to use any third-party254

tools, lexical resources, additional train data, or255

synthetic datasets generated by AI models for the256

tasks, nor did they apply any restrictions on the257

participants.258

System Evaluation: The official competition259

evaluation script for MLEC was multi-label accu-260

racy (or Jaccard index), and Macro F1 was used261

for MCEC. In addition to the official evaluation 262

metrics, Micro and Macro F1 scores for MLEC 263

and Accuracy, Macro Precision, and Macro Recall 264

for MCEC were also used as secondary evaluation 265

metrics to provide a different perspective on the 266

results. 267

5 Results and Discussion 268

5.1 Multi-Label Emotion Classification 269

Table 4 presents the main results for the MLEC 270

track. 3 teams submitted their results (2 of them 271

submitted their papers). YNU-HPCC ranked first 272

in MLEC track (Multi-label Accuracy = 0.9782), 273

which is very close to team CTcloud (Multi-label 274

Accuracy = 0.9723), which ranked second. Table 5 275

provides the class-wise Macro F1 results for the 276

teams participating in the MLEC track. 277

5.2 Multi-Class Emotion Classification 278

Table 6 presents the main results for the MCEC 279

track. 7 teams submitted their results (5 of them 280

submitted their system description papers), and the 281

best-performing team was YNU-HPCC (Macro F1 282

= 0.9329). 283

We also provided class-wise Macro F1 results 284

of the teams participating in the MCEC track in 285

Table 7 to get more insights. Due to the high fre- 286

quency in the training set of the dataset, the submit- 287

ted systems achieved higher Macro F1 scores for 288

Neutral, Trust, Joy, and Optimism labels compared 289

to other emotion labels. 290

6 Summary of Participating Systems 291

WASSA 2023 Shared Task on Multi-Label and 292

Multi-Class Emotion Classification on Code- 293

Mixed Text Messages received 5 system descrip- 294

tion papers. The results of the systems are repre- 295

sented in Tables 4 and 6 for MLEC and MCEC 296

tracks, respectively. Only two five systems at- 297

tempted the MLEC and MCEC tasks, while the 298

others did not submit results for the MLEC task. 299

6.1 Machine Learning Architectures 300

All systems submitted results to the shared task ap- 301

plied deep learning models for MLEC and MCEC 302

tracks. Table 8 provides a high-level summary 303

of the frequency of architectures and techniques 304

used by multiple systems. There are similarities 305

between the four systems based on transformer- 306

based language models. One system deviated from 307

the others using ChatGPT with prompt tuning for 308
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Team Macro F1 Accuracy Macro Precision Macro Recall
YNU-HPCC 0.9329 0.9488 0.9488 0.9488

CTcloud 0.8917 0.9219 0.9219 0.9219
wsl&zt 0.7359 0.7699 0.7699 0.7699

anedilko 0.7038 0.7313 0.7313 0.7313
baseline 0.7014 0.7298 0.7298 0.7298

PrecogIIITh 0.6061 0.6734 0.6734 0.6734
BpHigh 0.3764 0.5642 0.5642 0.5642

Table 6: Results of the teams participating in the MCEC track.

Emotion YNU-HPCC CTcloud wsl&zt anedilko PrecogIIITh BpHigh
Anger 90.20 80.85 66.67 65.45 53.06 0.00
Anticipation 92.55 87.70 68.11 56.11 58.88 35.64
Disgust 91.63 89.20 67.80 69.32 57.00 37.17
Fear 96.49 91.07 75.73 75.25 60.00 26.53
Joy 94.17 93.23 88.16 80.00 82.20 82.03
Love 91.30 77.27 75.00 72.34 57.89 45.71
Neutral 97.48 95.31 80.09 79.14 73.15 71.93
Optimism 94.34 93.72 74.37 70.94 67.94 58.45
Pessimism 94.29 93.94 67.80 67.69 55.56 0.00
Sadness 94.96 91.04 75.71 77.61 67.16 42.67
Surprise 97.27 84.00 65.22 60.87 28.57 0.00
Trust 94.81 92.72 78.46 69.80 65.93 51.56

Table 7: Class-wise MCEC results (*100) of the teams participating in the MCEC track.

Technique / Model Submission Count
BERT 1
MBERT 1
RoBERTa 1
XLM-RoBERTa 3
IndicBERT 1
MuRIL 1
XGBClassifier 1
Prompt Tuning 1
Prompt Engineering 1

Table 8: Summary of techniques and architectures used
in submissions.

the shard task tracks. Three of the systems ap-309

plied pre-processing (using an emoticon dictionary310

(CTcloud), English translation of code-mixed sen-311

tences using ChatGPT (PrecogIIITh), converting312

multi-class labels to multi-label labels with one313

hot encoding (YNU-HPCC)). Only one of the sys-314

tems used data augmentation in the training phase315

(BpHigh).316

With increasing attention to prompt tuning and317

prompt engineering for extracting knowledge from318

language models, two of the five systems attempted 319

prompt tuning and engineering for the tasks. 320

6.2 Features and Resources 321

For a given code-mixed text, emotion(s) classifi- 322

cation is a challenging task in the NLP domain. 323

Teams were allowed to use external resources, 324

which can be data, a lexicon, or contextual em- 325

beddings that can improve the performance of sys- 326

tems. Table 9 provides the details of features and 327

resources used in the submitted system description 328

papers. 329

Features # of team MLEC MCEC
Emotion lexicon 1 ✓ ✓

ChatGPT 2 ✓
External dataset 1 ✓

Framework 2 ✓ ✓

Table 9: Features and resources used in the submitted
system description papers.

The emotion lexicon is created by gathering 330

the icons in the training set and collecting more 331

icons from the Internet 5 (CTcloud). ChatGPT is 332

5https://en.wikipedia.org/wiki/ListofemoticonsLastvisited :

5
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Team Name # of Authors MCEC MLEC Algorithm
YNU-HPCC 5 ✓ ✓ Finetune PLM

CTcloud 5 ✓ ✓ Prompt Tuning
wsl&zt - ✓ ✓

anedilko 1 ✓ Prompt Engineering
Arenborg - ✓ Finetune PLM

PrecogIIITh 4 ✓ Finetune PLM
BpHigh 1 ✓ Finetune PLM & Contrastive Learning

Table 10: Summary of all the teams that reported their results

used in the submitted system description papers for333

translation (PrecogIIITH) and prompt engineering334

(anedilko).335

Moreover, participants used external datasets in336

the shared task, such as HS-RU-20 (Khan et al.,337

2021), Roman Urdu Hate Speech (Rizwan et al.,338

2020), and Hing-Corpus (Nayak and Joshi, 2022).339

These datasets are used to train the transformer340

model with contrastive learning (BpHigh).341

SetFit6 (Tunstall et al., 2022) (BpHigh) and342

OpenPrompt7 (Ding et al., 2021) (CTcloud) are343

used as frameworks in the systems. While Set-344

Fit is a framework to build a robust sentence clas-345

sifier for small datasets that helps finetune sen-346

tence transformers on the dataset with contrastive347

learning, Openprompt is a framework to adapt pre-348

trained language models (PLMs) to downstream349

NLP tasks.350

6.3 System Specifies351

YNU-HPCC, the team ranked first, developed a352

model using a hybrid dataset approach–combined353

MLEC and MCEC datasets with a unified mul-354

tilingual pre-trained model. They applied pre-355

processing step in the training phase to convert356

multi-class labels to multi-label labels with one357

hot encoding. They applied Kullback-Leibler358

(KL) (Eguchi and Copas, 2006) to obtain mixed359

annotation labels, combining two tracks and fine-360

tuning XLM-RoBERTA (Conneau et al., 2019). In361

inference, they separately obtained the results for362

two tracks with fine-tuned XLM-RoBERTa.363

CTcloud, the team ranked second, applied pre-364

processing before the training phase, mapping365

emoticons to textual form using icon-emotion and366

Unicode-short name mapping to leverage their rich367

06− 08− 2023.
6https://github.com/huggingface/setfit Last

visited: 06-08-2023.
7https://github.com/thunlp/OpenPrompt Last vis-

ited: 06-08-2023.

emotional information for the problem. They ap- 368

plied prompt tuning with zero-shot and few-shot 369

approaches for GPT-3. They also applied soft- 370

prompt following Zhu et al. (2022) with manual 371

and soft verbalizer using XLM-RoBERTa (Con- 372

neau et al., 2019). The best results are obtained 373

with soft prompts and soft verbalizers. They built 374

their system using OpenPrompt (Zhu et al., 2022). 375

In the experiments, they test base and large ver- 376

sions of XLM-RoBERTa as well as the fine-tuned 377

XLM-ROBERTa for the problem. It is found that 378

when the fine-tuned model is used, only a small 379

amount of prompt tuning is required to obtain satis- 380

factory results. On the other hand, XLM-RoBERTa 381

requires more prompt tuning. 382

anedilko developed a system for MCEC track 383

with prompt engineering on Chat-GPT API. For the 384

prompts, they chose 100 samples from the training 385

set in terms of the cosine similarity of the samples 386

in the training and development sets using embed- 387

ding API8. They also apply XGB Classifier (Chen 388

and Guestrin, 2016), which used character n-grams 389

as features as the baseline model. 390

PrecogIIITh fine-tuned multi-lingual 391

transformer-based models, XLM-RoBERTa (Con- 392

neau et al., 2019) and IndicBERT (Doddapaneni 393

et al., 2022) for MCEC track. As a third experi- 394

ment, they used ChatGPT interface9 to translate 395

code-mixed sentences into English and fine-tuned 396

XLM-RoBERTa with the translated sentences. 397

BpHigh applied SimCSE (Gao et al., 2021), 398

which uses contrastive learning to obtain sen- 399

tence embeddings using MuRIL–a transformer- 400

based BERT architecture that supports 17 Indic 401

languages, including English. To train SimCSE, 402

they combined 3 datasets, such as HS-RU-20 (Khan 403

et al., 2021), Roman Urdu Hate Speech (Rizwan 404

et al., 2020), and Hing-Corpus dataset (Nayak and 405

8https://platform.openai.com/docs/guides/embeddings
9https://openai.com/blog/chatgpt
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Joshi, 2022).406

Table 10 presents the details of the submitted407

systems to the shared task.408

7 Conclusions409

This paper presents a shared task on multi-label and410

multi-class emotion classification for code-mixed411

(English and Roman Urdu) SMS messages. We412

provide a comprehensive overview of the task, in-413

cluding its design, data, evaluation process, results,414

and participating systems. Through the analysis415

of the systems, we find that most of them employ416

fine-tuned pre-trained language models for the task417

of multi-class emotion classification. While these418

models have shown success in this domain, our419

observations indicate the need for additional infor-420

mation to fully leverage their potential. Further-421

more, prompt tuning emerges as a prominent area422

of research, holding great promise for multi-label423

and multi-class classification tasks, particularly in424

the context of code-mixed datasets and challeng-425

ing domains like emotion classification. Finally,426

prompt engineering emerges as an area that de-427

mands further investigation to effectively address428

the challenges posed by these problems.429
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