@inproceedings{vedula-etal-2023-precogiiith,
title = "{P}recog{IIITH}@{WASSA}2023: Emotion Detection for {U}rdu-{E}nglish Code-mixed Text",
author = "Vedula, Bhaskara Hanuma and
Kodali, Prashant and
Shrivastava, Manish and
Kumaraguru, Ponnurangam",
editor = "Barnes, Jeremy and
De Clercq, Orph{\'e}e and
Klinger, Roman",
booktitle = "Proceedings of the 13th Workshop on Computational Approaches to Subjectivity, Sentiment, {\&} Social Media Analysis",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.wassa-1.58",
doi = "10.18653/v1/2023.wassa-1.58",
pages = "601--605",
abstract = "Code-mixing refers to the phenomenon of using two or more languages interchangeably within a speech or discourse context. This practice is particularly prevalent on social media platforms, and determining the embedded affects in a code-mixed sentence remains as a challenging problem. In this submission we describe our system for WASSA 2023 Shared Task on Emotion Detection in English-Urdu code-mixed text. In our system we implement a multiclass emotion detection model with label space of 11 emotions. Samples are code-mixed English-Urdu text, where Urdu is written in romanised form. Our submission is limited to one of the subtasks - Multi Class classification and we leverage transformer-based Multilingual Large Language Models (MLLMs), XLM-RoBERTa and Indic-BERT. We fine-tune MLLMs on the released data splits, with and without pre-processing steps (translation to english), for classifying texts into the appropriate emotion category. Our methods did not surpass the baseline, and our submission is ranked sixth overall.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="vedula-etal-2023-precogiiith">
<titleInfo>
<title>PrecogIIITH@WASSA2023: Emotion Detection for Urdu-English Code-mixed Text</title>
</titleInfo>
<name type="personal">
<namePart type="given">Bhaskara</namePart>
<namePart type="given">Hanuma</namePart>
<namePart type="family">Vedula</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Prashant</namePart>
<namePart type="family">Kodali</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Manish</namePart>
<namePart type="family">Shrivastava</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ponnurangam</namePart>
<namePart type="family">Kumaraguru</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 13th Workshop on Computational Approaches to Subjectivity, Sentiment, & Social Media Analysis</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jeremy</namePart>
<namePart type="family">Barnes</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Orphée</namePart>
<namePart type="family">De Clercq</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roman</namePart>
<namePart type="family">Klinger</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Toronto, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Code-mixing refers to the phenomenon of using two or more languages interchangeably within a speech or discourse context. This practice is particularly prevalent on social media platforms, and determining the embedded affects in a code-mixed sentence remains as a challenging problem. In this submission we describe our system for WASSA 2023 Shared Task on Emotion Detection in English-Urdu code-mixed text. In our system we implement a multiclass emotion detection model with label space of 11 emotions. Samples are code-mixed English-Urdu text, where Urdu is written in romanised form. Our submission is limited to one of the subtasks - Multi Class classification and we leverage transformer-based Multilingual Large Language Models (MLLMs), XLM-RoBERTa and Indic-BERT. We fine-tune MLLMs on the released data splits, with and without pre-processing steps (translation to english), for classifying texts into the appropriate emotion category. Our methods did not surpass the baseline, and our submission is ranked sixth overall.</abstract>
<identifier type="citekey">vedula-etal-2023-precogiiith</identifier>
<identifier type="doi">10.18653/v1/2023.wassa-1.58</identifier>
<location>
<url>https://aclanthology.org/2023.wassa-1.58</url>
</location>
<part>
<date>2023-07</date>
<extent unit="page">
<start>601</start>
<end>605</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T PrecogIIITH@WASSA2023: Emotion Detection for Urdu-English Code-mixed Text
%A Vedula, Bhaskara Hanuma
%A Kodali, Prashant
%A Shrivastava, Manish
%A Kumaraguru, Ponnurangam
%Y Barnes, Jeremy
%Y De Clercq, Orphée
%Y Klinger, Roman
%S Proceedings of the 13th Workshop on Computational Approaches to Subjectivity, Sentiment, & Social Media Analysis
%D 2023
%8 July
%I Association for Computational Linguistics
%C Toronto, Canada
%F vedula-etal-2023-precogiiith
%X Code-mixing refers to the phenomenon of using two or more languages interchangeably within a speech or discourse context. This practice is particularly prevalent on social media platforms, and determining the embedded affects in a code-mixed sentence remains as a challenging problem. In this submission we describe our system for WASSA 2023 Shared Task on Emotion Detection in English-Urdu code-mixed text. In our system we implement a multiclass emotion detection model with label space of 11 emotions. Samples are code-mixed English-Urdu text, where Urdu is written in romanised form. Our submission is limited to one of the subtasks - Multi Class classification and we leverage transformer-based Multilingual Large Language Models (MLLMs), XLM-RoBERTa and Indic-BERT. We fine-tune MLLMs on the released data splits, with and without pre-processing steps (translation to english), for classifying texts into the appropriate emotion category. Our methods did not surpass the baseline, and our submission is ranked sixth overall.
%R 10.18653/v1/2023.wassa-1.58
%U https://aclanthology.org/2023.wassa-1.58
%U https://doi.org/10.18653/v1/2023.wassa-1.58
%P 601-605
Markdown (Informal)
[PrecogIIITH@WASSA2023: Emotion Detection for Urdu-English Code-mixed Text](https://aclanthology.org/2023.wassa-1.58) (Vedula et al., WASSA 2023)
ACL