@inproceedings{ran-etal-2023-ynu,
title = "{YNU}-{HPCC} at {WASSA} 2023: Using Text-Mixed Data Augmentation for Emotion Classification on Code-Mixed Text Message",
author = "Ran, Xuqiao and
Zhang, You and
Wang, Jin and
Xu, Dan and
Zhang, Xuejie",
editor = "Barnes, Jeremy and
De Clercq, Orph{\'e}e and
Klinger, Roman",
booktitle = "Proceedings of the 13th Workshop on Computational Approaches to Subjectivity, Sentiment, {\&} Social Media Analysis",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.wassa-1.60/",
doi = "10.18653/v1/2023.wassa-1.60",
pages = "611--615",
abstract = "Emotion classification on code-mixed texts has been widely used in real-world applications. In this paper, we build a system that participates in the WASSA 2023 Shared Task 2 for emotion classification on code-mixed text messages from Roman Urdu and English. The main goal of the proposed method is to adopt a text-mixed data augmentation for robust code-mixed text representation. We mix texts with both multi-label (track 1) and multi-class (track 2) annotations in a unified multilingual pre-trained model, i.e., XLM-RoBERTa, for both subtasks. Our results show that the proposed text-mixed method performs competitively, ranking first in both tracks, achieving an average Macro F1 score of 0.9782 on the multi-label track and of 0.9329 on the multi-class track."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ran-etal-2023-ynu">
<titleInfo>
<title>YNU-HPCC at WASSA 2023: Using Text-Mixed Data Augmentation for Emotion Classification on Code-Mixed Text Message</title>
</titleInfo>
<name type="personal">
<namePart type="given">Xuqiao</namePart>
<namePart type="family">Ran</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">You</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jin</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dan</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xuejie</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 13th Workshop on Computational Approaches to Subjectivity, Sentiment, & Social Media Analysis</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jeremy</namePart>
<namePart type="family">Barnes</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Orphée</namePart>
<namePart type="family">De Clercq</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roman</namePart>
<namePart type="family">Klinger</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Toronto, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Emotion classification on code-mixed texts has been widely used in real-world applications. In this paper, we build a system that participates in the WASSA 2023 Shared Task 2 for emotion classification on code-mixed text messages from Roman Urdu and English. The main goal of the proposed method is to adopt a text-mixed data augmentation for robust code-mixed text representation. We mix texts with both multi-label (track 1) and multi-class (track 2) annotations in a unified multilingual pre-trained model, i.e., XLM-RoBERTa, for both subtasks. Our results show that the proposed text-mixed method performs competitively, ranking first in both tracks, achieving an average Macro F1 score of 0.9782 on the multi-label track and of 0.9329 on the multi-class track.</abstract>
<identifier type="citekey">ran-etal-2023-ynu</identifier>
<identifier type="doi">10.18653/v1/2023.wassa-1.60</identifier>
<location>
<url>https://aclanthology.org/2023.wassa-1.60/</url>
</location>
<part>
<date>2023-07</date>
<extent unit="page">
<start>611</start>
<end>615</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T YNU-HPCC at WASSA 2023: Using Text-Mixed Data Augmentation for Emotion Classification on Code-Mixed Text Message
%A Ran, Xuqiao
%A Zhang, You
%A Wang, Jin
%A Xu, Dan
%A Zhang, Xuejie
%Y Barnes, Jeremy
%Y De Clercq, Orphée
%Y Klinger, Roman
%S Proceedings of the 13th Workshop on Computational Approaches to Subjectivity, Sentiment, & Social Media Analysis
%D 2023
%8 July
%I Association for Computational Linguistics
%C Toronto, Canada
%F ran-etal-2023-ynu
%X Emotion classification on code-mixed texts has been widely used in real-world applications. In this paper, we build a system that participates in the WASSA 2023 Shared Task 2 for emotion classification on code-mixed text messages from Roman Urdu and English. The main goal of the proposed method is to adopt a text-mixed data augmentation for robust code-mixed text representation. We mix texts with both multi-label (track 1) and multi-class (track 2) annotations in a unified multilingual pre-trained model, i.e., XLM-RoBERTa, for both subtasks. Our results show that the proposed text-mixed method performs competitively, ranking first in both tracks, achieving an average Macro F1 score of 0.9782 on the multi-label track and of 0.9329 on the multi-class track.
%R 10.18653/v1/2023.wassa-1.60
%U https://aclanthology.org/2023.wassa-1.60/
%U https://doi.org/10.18653/v1/2023.wassa-1.60
%P 611-615
Markdown (Informal)
[YNU-HPCC at WASSA 2023: Using Text-Mixed Data Augmentation for Emotion Classification on Code-Mixed Text Message](https://aclanthology.org/2023.wassa-1.60/) (Ran et al., WASSA 2023)
ACL