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Abstract
Measurement extraction is an information ex-
traction subtask focused on extracting quan-
tities and their dependent entities within a
given scientific text. Quantity extraction is
the first and most important step in measure-
ment extraction. Most existing approaches
model the problem as a sequence-labeling task
using pre-trained language models (PLMs).
However, none of the existing systems have
utilised explicit syntactic knowledge to ex-
tend the PLM-based modeling. We propose a
syntax-enriched extension by integrating depen-
dency tree representations as syntactic knowl-
edge into transformer-based language models
to address the task of quantity extraction. We
apply our approach to a range of established
transformer-based models to evaluate our ap-
proach and analyze its impact in experiments
on scientific literature datasets. Our experimen-
tal results and in-depth analysis show that our
approach, syntax-enriched RoBERTa, outper-
forms the other models, even in situations with
scarce training data in the scientific domain.
The results demonstrate the adaptability of the
proposed model to the tasks, especially useful
in low-resource scenarios.1

1 Introduction

Current growth rates in scientific publishing in-
crease the interest in extracting information from
scientific documents to provide scientists with
improved methods for organising, indexing, and
querying the vast existing literature (Nasar et al.,
2018; Weston et al., 2019; Hong et al., 2021). Infor-
mation extraction (IE) is a task enabling extracting
and organising information from large amounts of
data from unstructured sources. IE includes several
subtasks, such as named entity recognition (NER),
relation extraction (RE), and relation classifica-
tion (RC). Properties specific to scientific docu-
ments result in IE subtasks tailored for IE in the

1The code is publicly available at https://github.com/
adalin16/syntax_NER.

scientific literature and applied in various domains,
e.g., biomedical (Lewis et al., 2020; Zhang, 2021;
Gérardin et al., 2023) or chemistry (Rocktäschel
et al., 2012; Luo et al., 2018; He et al., 2020).

One such example is the subtask of extracting
measurements and their contexts, as scientific re-
search often relies on precise measurements for
the reproducibility of experimental methods. The
reproducibility supports extending and building
on top of others’ work, thus promoting scientific
progress. The automatic detection of the measure-
ments and their contexts in scientific texts is a key
enabling factor for producing high-quality quantity-
centric search systems for scientific literature (Liu
et al., 2017; Kang et al., 2017; Kononova et al.,
2019).

Figure 1: Subtasks of MeasEval shared task (Harper
et al., 2021).

Measurement extraction (ME) is a type of IE
subtask for scientific documents focused on the
identification of quantities and related information
and classification of relations between identified
quantities and related entities (Göpfert et al., 2022).
A large body of research in ME is centered around
MeasEval (Harper et al., 2021), a shared task that
also introduced a new annotated ME dataset con-
sisting of scientific articles from different scholarly
domains. MeasEval decomposes the ME into five
finer subtasks, presented in Figure 1.

• Subtask 1: Quantity Extraction is the task of
identifying quantities—numeric values with
corresponding (optional) units of measure-
ment and modifiers2. For example, in an ex-
pression ‘over 5 tonnes’, 5 is the numeric

2Modifiers are tokens in the quantity span that modify the

https://github.com/adalin16/syntax_NER
https://github.com/adalin16/syntax_NER
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Figure 2: Sample sentences with annotation of quantity and dependent entities.

value, ‘tonnes’ is the unit of measurement,
and ‘over’ is the modifier.

• Subtask 2: Unit Detection & Modifier Extrac-
tion has two sub-problems. Unit detection is
the task of extraction of units from extracted
quantities and Modifier Extraction is the task
of classifying quantities into different modi-
fiers (e.g., ‘count’, ‘range’, ‘mean’, etc.).

• Subtask 3: Measured Entity (ME) & Mea-
sured Property (MP) Extraction is the task
of extracting dependent entities that elaborate
the extracted quantity (e.g., ME: ‘GHQ symp-
tom caseness’, ‘response categories’, etc., MP:
‘sensitive’, ‘scores’, ‘transit depths’, etc.).

• Subtask 4: Qualifier (QUAL) Extraction is the
task of extracting dependent entities which
qualify the extracted quantity (e.g., ‘after 13
passages’, ‘orbits the planet’ etc.).

• Subtask 5: Relation Extraction is the task of
extracting relations (‘has quantity’, ‘has prop-
erty’, ‘qualifies’) between extracted quantities
and dependent entities (‘measured properties’,
‘measured entities’, ‘qualifiers’) and their rela-
tions to the extracted quantities.

Here, we focus on the first subtask—quantity
extraction—which is required for the other sub-
tasks: its results are directly used for subtasks 2, 3,
and 4. Finally, the results of subtask 1 and 4 are
used for subtask 5. This highlights the importance
of quantity extraction to the overall success of the
ME models, as errors incurred at this stage are prop-
agated downstream (Göpfert et al., 2022). Sample
sentences for quantities and dependent entities are
given in Figure 2.

Existing methods for quantity extraction model
the problem as a sequence labeling task and
usually fine-tune pre-trained language models
(PLMs) (Davletov et al., 2021a; Gangwar et al.,

meaning of the quantity, for example, ‘greater than’, ‘over’,
‘fewer than’.

2021b). However, such models do not capture
some of the syntactic relations and long-range
word dependencies, which have been proven to
have a positive impact on natural language under-
standing (Du et al., 2021). So far, the integration
of linguistic knowledge and graph structures into
transformer-based PLMs has been proposed for var-
ious natural language processing (NLP) problems
(e.g., Machine Translation (MT) (Bugliarello and
Okazaki, 2019; Akoury et al., 2019), Semantic Tex-
tual Similarity (STS) (Peng et al., 2021)), but not
for quantity extraction.

Here, we propose to improve the self-attention
mechanism of PLMs to incorporate syntactic infor-
mation for quantity extraction – Syntax-Enriched
Quantity Extraction (SEQE) (§3.2)3. Similar to
previous studies that used dependency tree rep-
resentation as syntactic information (Bugliarello
and Okazaki, 2019; Guo et al., 2021), we use the
dependency tree representation of the input sen-
tence to generate syntax-enriched local attention of
the PLM encoder, which provides structural infor-
mation representing human understanding of the
text. Since there are numerous PLMs pre-trained
on different NLP data and the size of these mod-
els varies in terms of the number of parameters,
we test our proposed model SEQE with different
PLMs: BERT (Devlin et al., 2019), RoBERTa (Liu
et al., 2019), and LUKE (Yamada et al., 2020) (see
§4). Our method is simple yet effective, improves
the task of quantity extraction, and achieves perfor-
mance gains over baseline PLMs.

Overall, we provide a detailed analysis with pre-
diction interpretation and error analysis pointing to
future research directions in measurement extrac-
tion (see §5).

2 Related Work

Quantity Extraction In the literature, quantity
extraction is often solved as a sequence label-

3“Syntax-enriched" and “syntax-aware" are used inter-
changeably in the literature implying integration of syntactic
information into the systems.
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Figure 3: The overall Architecture of SEQE. Note that the syntax mask is generated from the dependency tree
representation of the input, where m=1 is used for the sample sentence and the dark green color in the mask
represents the value ‘1’ and the light-green color represents the value ‘0’.)

ing problem using several methods, such as Con-
ditional Random Field (CRF) (Foppiano et al.,
2019), Bidirectional Long Short-Term Memory
(BiLSTM) (Huang et al., 2015), transformer-based
pre-trained language models (PLMs) with fine-
tuning (Davletov et al., 2021b; Cao et al., 2021).
Most of the systems submitted to the MeasEval
shared task use PLMs for the problem. Davletov
et al. (2021b) fine-tune LUKE NER model (Ya-
mada et al., 2020) for quantity extraction as se-
quence labeling problem. Cao et al. (2021) ap-
ply a cascaded approach, extracting quantities via
RoBERTa (Liu et al., 2019) encoder with an en-
sembling of PointerNet (Vinyals et al., 2015) and
a CRF layers on top of the encoder. Gangwar et al.
(2021a) extract quantities using SciBERT with a
CRF layer for the sequence labeling problem (SciB-
ERT (Beltagy et al., 2019) is another BERT variant
pre-trained on papers from the scientific corpus (se-
manticscholar.org)). Karia et al. (2021) use a simi-
lar approach with BioBERT (Lee et al., 2020)—a
BERT variant pre-trained on a biomedical corpus
from a BERT checkpoint.

Syntax-Enriched Models Recently, models that
integrate syntactic information—so-called syntax-
enriched models—have been applied to various
NLP problems, such as machine translation (Bast-
ings et al., 2017; Nguyen et al., 2020), semantic
role labeling (Wang et al., 2019; Marcheggiani and
Titov, 2019), and question answering (Schlichtkrull
et al., 2020). These models have gained attention
due to their enhanced ability to capture information

over long distances, especially between discontinu-
ous constituents (Wang and Li, 2022). In contrast
to these models, we incorporate the syntactic infor-
mation using a distance-based masking approach
and use it to alter the activation propagation in the
attention heads of PLMs to improve the quantity
extraction task. There are also studies that inte-
grate syntactic information into the attention mech-
anisms of transformer-based models such as LISA
(Linguistically-Informed Self-Attention) (Strubell
et al., 2018) and Syntax-BERT (Bai et al., 2021).
These models inject syntactic information by using
only syntactic parents of tokens as masks to the
one attention head (Strubell et al., 2018), or by gen-
erating 3 masks (parent, child, and sibling masks)
from the syntax tree and injecting them into the
attention mechanism of PLMS by utilising topical
attention layer to aggregate task-oriented represen-
tations. Both of these approaches are different from
the method proposed in this paper.

Although there is no attempt in the literature to
extract quantities using syntactic information, there
are studies that show promise in using syntactic in-
formation for RE (Tian et al., 2021, 2022; Sun and
Grishman, 2022) and NER (Aguilar and Solorio,
2019; Nie et al., 2020; Xiong et al., 2022). How-
ever, these approaches do not integrate syntactic
information in the attention-level of transformer-
based PLMs.
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3 Method

In this section, we present the proposed model
that exploits syntactic information for quantity ex-
traction. We base our model on the architecture
of Transformer (Vaswani et al., 2017) and inte-
grate syntactic information into the encoder with
a syntax-enriched local attention mechanism for
quantity extraction task. This method allows to
incorporate syntactical constraints and long-range
syntactic word dependencies into the sentence with
syntactic representation without external informa-
tion for the problem.

First, we describe the self-attention mechanism
in Section 3.1. Then, we introduce the syntax-
enriched quantity extraction model (SEQE) in Sec-
tion 3.2.

3.1 Preliminaries
Self-Attention Transformer architecture intro-
duced by Vaswani et al. (2017), has become ubiq-
uitous in modern NLP, as it offers significant ef-
fectiveness improvements on many problems. The
transformer consists of encoder-decoder blocks and
uses stacked self-attention to encode contextual
information for input tokens in which three com-
ponents of queries Q, keys K, and values V are
learned during training.

Attention is described as a mapping between Q,
and (K, V) pairs to obtain an output vector. We
describe the simplest form, single-head attention
A which is computed using the scalar-dot prod-
uct between a query and the keys, followed by its
softmax to obtain the weights of values:

A(Q,K,V) = softmax(
QKT

√
d

)V, (1)

where d is the dimension of keys which is used
as a scaling factor in the equation. We note
that, in practice, the attention matrix is a se-
ries of such attention heads, called multi-head
attention, given by MultiHead(Q,K, V ) =
concat(head1, · · · , headh)WO.

3.2 Syntax-Enriched Quantity Extraction
As mentioned earlier, one limitation of PLMs is
that they take a sequence of tokens as input with-
out explicitly incorporating structural information.
Some previous works have tried to induce syntactic
structure into the self-attention layer (Strubell et al.,
2018; Bai et al., 2021). Syntax-Enriched Quan-
tity Extraction (SEQE) is designed to incorporate

syntactic information in the self-attention layer of
transformer-based PLM for quantity extraction task.
The overall architecture of the proposed model is
illustrated in Figure 3. As shown in the figure, we
generate a syntax mask for the input sentence in
a preprocessing step: (1) the dependency tree rep-
resentation of the input sentence is generated by
an external parser, (2) the dependency matrix is
extracted from the dependency tree representation
given as a graph G = (V,E,X), where V is the
set of nodes (skipping ROOT node), E is the set
of labeled edges representing dependency relations
(without labels), and X is the set of tokens of the
sentence. Each token xi is mapped to a node vi
and the distance, from node vi to vj is denoted by
dis(vi, vj)) and D(i, j) = min dis(vk, vj), k ∈
[i− 1, i+ 2]. (3) syntax mask is generated using a
dependency matrix as follows:

Mij =

{
0 D(i, j) ≤ m

−∞ otherwise,
(2)

where m is a distance threshold hyperparameter for
syntax mask that needs to be fine-tuned.

Next, the sentence is embedded similarly to
a standard PLM and given as input to the self-
attention layer with a syntax-enriched local atten-
tion mechanism. Syntax-enriched local attention,
where tokens can attend to other tokens if they are
close in the dependency tree representation (m), is
computed as follows for a given query Q and key
K:

softmax(
QKT

√
d

+M)V (3)

4 Experiments

4.1 Task

Quantity Extraction task is based on the extrac-
tion of quantities q1, · · · , qm from a given sen-
tence s = w1, · · · , wn where a quantity qi is a
sequence of words. The problem can be formu-
lated as a token-level classification task in which
the model takes a set of input-output pairs Z =
{(w1, y1), · · · (wn, yn)} and try to classify using a
function f : X → R that maps given words into
a set of labels y ∈ Y (B-Quantity, I-Quantity, O),
BIO tags for NER problem.

4.2 Datasets

We use two English datasets for the quantity extrac-
tion task:
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• MeasEval4 (Harper et al., 2021) dataset con-
tains 110 articles from 10 different subject
areas.

• Grobid (GeneRation Of BIbliographic
Data)5 (Foppiano et al., 2019) dataset is
composed of 32 scientific publications and 3
patents, a total 35 documents, collected across
different domains and annotated for quantity
and unit extraction.

Table 1 reports the statistics of the datasets.

Dataset Train Valid Test Avg l

MeasEval 1,284 427 755 8.37
Grobid 5,669 - 1,285 8.68

Table 1: Number of sentences in each dataset with avg l
which denotes the average length of quantities

4.3 Evaluations
Our method, SEQE, is an extension of PLMs. For
this reason, we use base versions of the PLMs and
LISA (Strubell et al., 2018)6 as the baselines to
compare our model against. Conceptually, LISA
(also an ‘add-on’ to other PLMs) is the closest
method to SEQE. In LISA syntactic information
is injected into only a single attention head, where
each token is attending only to its syntactic par-
ent. We run experiments on both datasets, with all
models fine-tuned on training subsets. We use the
following PLMs in the experiments: BERT (De-
vlin et al., 2019), RoBERTa (Liu et al., 2019), and
LUKE (Yamada et al., 2020). We use two variants
of each PLM, where the ‘-base’ variant consists
of 12 layers, 12 attention heads, and 768 hidden
dimensions, while the ‘-large’ variant has 24 layers,
16 attention heads, and 1024 hidden dimensions.

For both experiments, in addition to the baseline
PLMs (baseline models), we also compare our re-
sults with state-of-the-art models: LIORI (Davletov
et al., 2021a) and Grobid (Foppiano et al., 2019).

Evaluation Metric As an evaluation metric, in
addition to the token-level macro F1 score, we also
used the macro F1 score from Seqeval (Nakayama,
2018), span-level evaluation metric, since we try
to solve quantity extraction problem as a sequence
labeling problem and the important label is only
quantity.

4https://github.com/harperco/MeasEval
5https://github.com/kermitt2/

grobid-quantities
6https://github.com/strubell/LISA

4.4 Experimental setup

We utilise Hugging Face7 library for the baseline
experiments which are fine-tuning PLMs. We fine-
tune the baseline BERT model using Optuna (Ak-
iba et al., 2019), a hyperparameter optimization
framework, and apply the same hyperparameters
for other PLMs (batch size of 32, max length of
128, the learning rate of 1e-5 and 10 epoch of train-
ing). For the proposed model experiments, we
extract dependency tree representations from the
texts utilising an external deep biaffine dependency
parser (Dozat and Manning, 2016)8 integrated into
the SpaCy library9 (Honnibal and Montani, 2017).
We use the English model en_core_web_sm of
SpaCy in the experiments. Since the nodes in the
dependency tree representation are words, in the
attention mechanism of SEQE we apply the same
masking value (that would have corresponded to
the full word) to the sub-word tokens produced by
specific tokenisers (WordPiece, byte-level BPE).
We finetune the syntax-enriched BERT model us-
ing Optuna and apply the same hyperparameters
for other syntax-enriched PLMs (distance thresh-
old of 3, batch size of 8, learning rate of 5e-5 and
5 epoch of training). We train all experiments on a
single NVIDIA Quadro RTX 5000 GPU.

We train each model five times with different
random seeds and report the mean and standard
deviation of the results to account for the training
variance of the models.

Statistical significance The statistical signifi-
cance of the differences in macro F1 score is evalu-
ated with an approximate randomization test (Chin-
chor, 1992) with 99, 999 iterations and significance
level α = 0.05 for each baseline PLM and its
syntax-enriched version (e.g., BERT → Syntax-
enriched BERT). For significance testing, we used
outputs yielding the 3rd-best results for each of the
models (so, a median from the 5 runs reported to
account for variance).

5 Results and Discussion

5.1 Main Results

Experimental results are shown in Table 2 and 3
for the base and large models, respectively. We
report the results on the test sets of MeasEval and

7https://huggingface.co/
8The parser achieves 95.7% UAS and 94.1% LAS on the

most popular English PTB dataset (Marcus et al., 1993).
9https://spacy.io/

https://github.com/harperco/MeasEval
https://github.com/kermitt2/grobid-quantities
https://github.com/kermitt2/grobid-quantities
https://github.com/strubell/LISA
https://huggingface.co/
https://spacy.io/
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MeasEval Grobid
Models Params Macro F1 Seq F1 Macro F1 Seq F1
Base Models
BERT (Devlin et al., 2019) 110M 87.26±1.66 57.15±7.24 89.45±1.42 72.28± 6.45

+ LISA 89.45±1.15 68.41± 5.89 89.51±1.31 73.47± 6.18
+ SEQE (Ours) + 0.01M 92.38↑±1.42 74.17↑±6.45 93.45↑±1.54 78.36↑±6.58

SciBERT (Beltagy et al., 2019) 110M 88.78±1.43 60.41±4.86 90.32±1.25 74.57±5.14
+ LISA 90.18±1.52 67.11±3.52 89.47±1.51 76.25±4.18
+ SEQE (Ours) + 0.01M 92.32↑±1.30 73.98↑±2.36 83.38±1.26 79.22↑±3.14

RoBERTa (Liu et al., 2019) 125M 89.63±1.33 65.62±5.54 91.24±1.32 75.42±6.21
+ LISA 90.17±1.25 66.54±5.10 90.89±1.42 75.10±5.89
+ SEQE (Ours) + 0.01M 90.58↑±1.42 69.05↑±4.41 91.25±1.48 75.61±4.48

LUKE (Yamada et al., 2020) 253M 91.22±0.79 72.66±5.06 92.22±0.88 77.68± 4.02
+ LISA 90.23±1.11 73.56±4.99 91.17±1.05 77.15±4.45
+ SEQE (Ours) + 0.01M 90.89±1.02 74.57±5.03 91.77±1.11 79.55±5.18

Table 2: Base PLM results on quantity extraction datasets. ↑ means statistically significant improvement over the
corresponding baseline PLM. Reported results are averaged over 5 runs.

MeasEval Grobid
Models Params Macro F1 Seq F1 Macro F1 Seq F1
State-of-the-art Models
LIORI (Davletov et al., 2021b) - 90.85 75.13 92.46 76.19
Grobid (Foppiano et al., 2019) - 86.13 65.16 80.14 54.92
Large Models
BERT (Devlin et al., 2019) 340M 87.07±1.68 57.75±4.78 88.95±1.54 72.36±5.04

+ LISA 90.45±1.51 68.48±4.15 90.36±1.51 74.47±4.25
+ SEQE (Ours) + 0.02M 91.88↑±1.42 72.762↑±3.78 92.982↑±1.50 76.95↑±4.11

RoBERTa (Liu et al., 2019) 355M 91.74±0.39 77.01±3.33 93.57±1.32 78.63±4.15
+ LISA 91.18±0.56 76.43±3.14 94.01±1.17 78.44±4.16
+ SEQE (Ours) + 0.02M 92.49↑±0.78 77.75↑±2.85 94.28↑±0.82 78.52±3.03

LUKE (Yamada et al., 2020) 483M 91.16±0.40 76.22±0.71 93.55±0.52 77.87±1.18
+ LISA 90.89±0.51 76.48±0.69 93.10±0.71 78.15±1.11
+ SEQE (Ours) + 0.02M 91.14±0.67 77.89±0.73 93.48±0.72 79.83↑±1.21

Table 3: Large PLM results on quantity extraction datasets. ↑ means statistically significant improvement over the
corresponding baseline PLM. Reported results are averaged over 5 runs.

Grobid datasets. The results show that the pro-
posed SEQE method achieves consistent gains over
the baseline PLMs and LISA for the quantity ex-
traction task, especially for BERT. Even though
the baseline RoBERTa performs best among all
the baseline models, it shows that the quantity
extraction task benefits from injecting syntactic
information into the PLMs. The proposed ap-
proach outperforms LISA and among the exper-
iments of syntax-enriched PLMs, syntax-enriched
RoBERTa achieves the highest score and outper-
forms baseline RoBERTa with an increase of 0.75
and 0.71 in the Macro F1 score for the MeasE-
val and Grobid datasets, respectively. Syntactic
information does not result in a notable improve-
ment for LUKE, which is a word- and entity-
level model (pre-trained with a large amount of
entity-annotated corpus) using entity-aware atten-
tion mechanism. SEQE decreased the Macro

Target
MeasEval Grobid

Source MeasEval 92.49±0.78 90.45±1.45
Grobid 90.17±0.95 94.28±0.82

Table 4: Token-level Macro F1 scores of RoBERTa
(large) + SEQE for cross-domain experiments.

F1 score for LUKE-large. However, we obtain
the highest span-level Macro F1 with the syntax-
enriched LUKE-large, which mainly shows the
weakness of word-level models for this evaluation
metric. Importantly, syntax-enriched PLMs with
fewer parameters (BERT, SciBERT) outperform
their large baseline counterpart PLMs (Wang and
Wang, 2020; Yang et al., 2020), showing the impor-
tance of syntactic information to the small models.

5.2 Cross-Domain Results
Cross-domain NER focuses on transferring from
a source domain to a target domain. We run
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Predicted
B-Q I-Q O

True
B-Q 476 31 59
I-Q 43 889 78
O 24 42 8403

(a) MeasEval dataset

Predicted
B-Q I-Q O

True
B-Q 390 53 99
I-Q 12 912 49
O 40 123 7340

(b) Grobid dataset

Table 5: Confusion matrix for the syntax-enriched
RoBERTa (large) for quantity extraction task. (B-
Quantity (B-Q), I-Quantity (I-Q))

cross-domain experiments with syntax-enriched
RoBERTa (large) yielding the best token-level
Macro F1 scores on MeasEval and Grobid datasets.
Cross-domain experimental results are shown in
Table 4.

When we compare the within-domain and cross-
domain results, we observe a slight decrease for
both datasets. The macro F1 scores for the within-
domain experiments for MeasEval and Grobid are
92.49% (MeasEval → MeasEval)and 94.28% (Gro-
bid → Grobid), respectively, while for the cross-
domain experiments they are 90.17% (Grobid →
MeasEval) and 90.45% (MeasEval → Grobid). De-
spite the effectiveness decrease, the results are still
comparable to those of the baseline models.

5.3 Error Analysis

In Table 5, we show the confusion matrices for
the predictions of the model with the best results
(syntax-enriched RoBERTa) for the MeasEval (Ta-
ble 5a) and Grobid (Table 5b) datasets. Typically,
the model does not confuse the Quantity tags (B-
Quantity, I-Quantity), but instead makes errors in
deciding whether a token is a quantity or not. This
makes sense, since the number of O tags is higher
than the number of Quantity tags. We perform a
comprehensive analysis of the errors made by the
models to understand which quantity formats the
model performs well on, and which it performs
poorly on.

We categorise the prediction errors made by the
model by exploring the properties of individual
tokens for which the model made incorrect predic-
tions for each of the datasets. For MeasEval, of the
24 tags for which the model confused an O tag for
a B-Quantity, 7 are punctuation characters and 7

are numbers written as numeric or alphabetic, and
the others are modifiers for quantities that occur
frequently in the datasets, such as approximately,
low, etc. Out of the 42 tags where the model con-
fused an O tag for an I-Quantity, 10 are units, and
6 are numbers written as numeric or alphabetic.

For the Grobid dataset, of the 40 tags where the
model confused a O tag for a B-Quantity, 7 are
numbers written as numeric or alphabetic, and 10
are punctuations. Interestingly, 10 of the misla-
beled tokens are units, such as m, %. Out of the
123 tags where the model confused a O tag for an
I-Quantity, 16 are units, 24 are numbers written as
numeric or alphabetic and 33 are punctuations.

After analyzing all the errors made by the mod-
els, we found that the syntax-enriched model tends
to find longer quantity spans compared to the base-
line PLMs. The common errors made by both
models can be divided into 3 categories: (1) label-
ing modifier words as O (e.g., range, between), (2)
labeling numbers written as numeric or alphabetic
as B-Quantity, (3) labeling stop words in quantities
as O (e.g., a, the).

5.4 Discussion

Based on the results, we analyse the impact of the
syntax-enriched attention mechanism on the prob-
lem by visualising the model’s decision. For this
purpose, we used the transformers-interpret10, a
post-hoc explanation tool compatible with models
from the transformers package designed for the
sequence labeling problem. Tokens are assigned
an importance score indicating how their presence
contributes to the prediction of a particular posi-
tive token (Attribution Label) with the cumulative
importance scores (Attribution score) for that to-
ken. Tokens highlighted in green have a positive
contribution to the model’s decision, while tokens
highlighted in red have a negative contribution.

We randomly select a few sentences from the
test set and analyze the predictions of the best-
performing model (syntax-enriched RoBERTa-
large) and its baseline version (RoBERTa-large)11.
Figure 4 shows the visualisation of the models for
the sentence “In addition, the number of emerged
Striga plants for each plot was recorded at 67, 101
and 121 das." with the quantity “67, 101 and 121
das". While the baseline model correctly predicts

10https://github.com/cdpierse/
transformers-interpret

11Dependency tree representations of the sentences are
given in Figure 6.

https://github.com/cdpierse/transformers-interpret
https://github.com/cdpierse/transformers-interpret
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(a) RoBERTa-large

(b) Syntax-enriched RoBERTa-large

Figure 4: Visualisation of the sentence “In addition, the number of emerged Striga plants for each plot was recorded
at 67, 101 and 121 das."

(a) RoBERTa-large

(b) Syntax-enriched RoBERTa-large

Figure 5: Visualisation of the sentence “The colored letters indicate a comparatively high expression level of the
MHC-I allele, comprising >10% of cDNA sequence reads."

the quantity, lots of tokens have positive and neg-
ative effects on the prediction of token labels, es-
pecially some distant tokens (e.g., the word ‘addi-
tion’). In the syntax-enriched model, on the other
hand, the contributing tokens are closer together,
due to dependency relations extracted from the sen-
tence’s dependency tree and incorporated in the
attention mechanism. In particular, the syntax-
enriched model appears to base its decision on the
positive contribution of a predicate syntactically
close the quantity span (here, ‘recorded’).

We observe similar results in Figure 5 for the
sentence “The colored letters indicate a compar-
atively high expression level of the MHC-I allele,
comprising >10% of cDNA sequence reads." with

the quantity “>10%". Since numbers written as
numeric or alphabetic are usually placed at the be-
ginning of quantities, both models tend to label 10
as B-Quantity. Apart from this result, we see that
close tokens have a positive effect in predicting
token labels for the syntax-enriched model.

6 Conclusion

We introduce the SEQE model that integrates syn-
tactic information into the Transformer attention
mechanism to provide a complementary structure
for the quantity extraction modeled as a sequence
labeling problem. We demonstrate the effective-
ness of the proposed SEQE model, which uses
syntactic information, by comparing it to baseline
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PLMs on the quantity extraction task. We find
that the proposed method outperforms the baseline
PLMs and SOTA models and the syntax-enriched
RoBERTa achieves the best effectiveness among all
evaluated methods. We also find that syntactic in-
formation added at the attention-level of the PLMs
contributes to more accurate entity span extraction,
which is also very important for other (downstream)
subtasks of ME, as these other subtasks depend di-
rectly on the quality of quantity extraction. Finally,
the SEQE model is versatile in a sense that it can be
easily integrated into all tasks that use pre-trained
transformer models.

In future work, we will explore the perfor-
mance of the transformer models extended using
semantic representations such as AMR (Banarescu
et al., 2013), UMR (Van Gysel et al., 2021), and
UCCA (Abend and Rappoport, 2013).

Our work aims to explicitly extract quantity ex-
traction using linguistic knowledge as syntactic in-
formation integrated into the attention mechanism
of the PLMs encoder. We focus on autoencoding
models (BERT, RoBERTa, LUKE) that rely on the
encoder part of the original transformer. However,
autoregressive models (e.g., GPT (Radford et al.,
2018), GPT-2 (Radford et al., 2019)) and seq2seq
models (e.g., BART (Lewis et al., 2019), T5 (Raf-
fel et al., 2020)) are widely used in the literature
for the token classification problem. In addition,
non-autoregressive models (Gu et al., 2017) have
become popular due to their fast inference speed, as
they omit the sequential dependencies in inference.
We hope to extend our study on syntax-enriched
masking for quantity extraction to these models.

Finally, we will investigate the impact of our
approach on downstream subtasks of ME defined
in the MeasEval shared task (Harper et al., 2021).

Limitations

Even though our proposed model outperforms the
baselines, there are still limitations, mainly based
on the syntax-enriched mask integrated into PLMs.
We utilised dependency tree representations in the
syntax-enriched attention mechanism. Although
the labels of the dependency arcs give the syntax
type of the relation between the connected words,
we ignore the arc labels to keep the masking simple.
In addition, our model depends on the effectiveness
of the dependency parser model used ‘off-the-self’
in our method.

Ethical Statement

The datasets used in our experiments are publicly
available. Both these datasets are focused on pro-
cessing (publicly available) scientific literature,
thus constituting a low-risk setting.
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A Multilingual PLMs

We primarily use monolingual PLMs for our ex-
periments. However, syntax-enriched multilingual
PLMs are applied to various tasks. Therefore,
we perform experiments with multilingual PLMs:

XLM (Cao et al., 2021) and the multilingual ver-
sion of LUKE (Ri et al., 2022). The results are
given in Table 6. We observe that the improvements
of quantity extraction with multilingual PLMs are
relatively smaller than with monolingual PLMs.

B Syntactic Representation

Figure 6 shows the dependency tree visualisation
of sentences given in Section 5.4.
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MeasEval Grobid
Base-size Baseline Models
XLM 125M 88.58±0.82 61.34±5.18 89.57±0.97 73.18±5.89
mLUKE 585M 88.98±0.72 62.59±3.21 88.75±0.75 73.61±3.18
Large-size Baseline Models
XLM 355M 89.37±0.79 67.22±2.96 90.20±0.75 75.69± 3.47
mLUKE 868M 88.83±0.66 63.81±3.68 87.94±0.44 74.15±3.08
Syntax-Enriched Base-size Models
XLM 125M + 0.01M 89.45±1.15 68.32±4.25 90.03±0.98 74.66±4.67
MLUKE 585M + 0.01M 87.55±0.82 62.05±2.36 87.16±0.78 73.18 ±1.94
Syntax-Enriched Large-size Models
XLM 355M + 0.02M 90.22±0.56 76.21±0.92 91.36±0.61 78.35±1.45
MLUKE 868M + 0.02M 88.62±0.65 64.56±2.45 88.03±0.66 74.31±2.51

Table 6: Multilingual PLM results on quantity extraction datasets. Reported results are averaged over 5 runs.

(a) In addition, the number of emerged Striga plants for each plot was recorded at 67, 101 and 121 das.

(b) The colored letters indicate a comparatively high expression level of the MHC-I allele, comprising >10% of cDNA sequence
reads.

Figure 6: Dependency tree visualisation of sentences given in Section 5.4


