
Proceedings of the 2nd Workshop on Information Extraction from Scientific Publications, pages 74–83
Nov 1, 2023. ©2023 Association for Computational Linguistics

74

Enhancing Academic Title Generation Using SciBERT and Linguistic Rules
Elena Callegari

University of Iceland
Reykjavík, Iceland
ecallegari@hi.is

Peter Vajdecka
Prague Univ. of Economics and Business

Prague, Czechia
vajp02@vse.cz

Desara Xhura
SageWrite ehf.

Reykjavík, Iceland
desara@sagewrite.com

Anton Karl Ingason
University of Iceland
Reykjavík, Iceland
antoni@hi.is

Abstract
This study tackles the challenge of generating
appropriate academic titles based on the paper’s
abstract. We approach this task as a high-level
text summarization problem and introduce an
innovative post-processing method that com-
bines a predictive model with a set of linguistic
rules to enhance the quality of the title gen-
eration. We start by evaluating three Natural
Language Generation models (BART, T5, Flan
T5), by identifying the top-performing model
and by configuring it to generate diverse titles.
We then conduct experiments employing vari-
ous post-processing strategies -using SciBERT
and linguistic rules- to select the best title out
of all machine-generated options. Finally, we
assess our title selection methods in relation to
human evaluations.

1 Introduction

Titles of academic articles are more than simple
labels; they serve as a concise representation of
the contents of the paper, providing a glimpse into
its purpose. Since titles serve as an initial touch-
point, they play an indispensable role in piquing
readers’ interest, emphasizing the relevance of the
research, and enhancing its visibility within the vast
scholarly landscape. Crafting the right title can be
difficult, as one must distill potentially very com-
plex research into a single, concise statement. This
can be particularly challenging as the title must re-
flect both the depth and breadth of the paper, while
also appealing to a diverse academic audience. Se-
lecting an appropriate title also holds significance
in the context of citations: according to both Paiva
et al. (2012) and Deng (2015), papers with titles
that have specific characteristics, such as a certain
maximum length, get cited more often than papers
that do not meet such criteria.

Traditionally, researchers have relied on their
own judgment and expertise to craft compelling

titles that summarize the findings of their research
articles. In this paper, we delve into the task of au-
tomatically generating stylistically and discipline-
appropriate titles for academic articles. To do that,
we thought of generating titles using an article’s
abstract as input, as abstracts capture key passages
and findings of a paper. An alternative would be
to use the full paper as input, but using only the
abstract allows us to reduce run times and hence
costs.

Generating a title on the basis of a paper’s ab-
stract can be thought of as a special kind of summa-
rization process: the abstract must be condensed
into a short “sentence" that is maximally descrip-
tive of its contents. Accordingly, we approach the
task of automatically generating titles for academic
abstracts as a summarization task. This is in line
with existing research on title generation or com-
parable tasks. Unlike existing methods, however,
our key contribution lies in experimenting with dif-
ferent post-processing strategies to further refine
the quality of automatically generated titles. A par-
ticularly novel approach is that of using linguistic-
stylistic rules, which we use to automatically filter
out generated titles that do not adhere to accepted
conventions on what constitutes an optimal aca-
demic title.

1.1 Related Work

We will review the literature on both title gener-
ation itself as well as headline generation, which
pertains to the automatic creation of news-article
headlines and is thus a task similar to title genera-
tion.

In contemporary research, automatic ti-
tle/headline generation is often approached as a
text summarization problem. The field of text
summarization is generally split into two primary
categories: extractive and abstractive summariza-
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Model Rouge-1 F-score Rouge-2 F-score Rouge-L F-score Rouge-1 P Rouge-2 P Rouge-L P Rouge-1 R Rouge-2 R Rouge-L R
BART Large 0.249 0.077 0.214 0.256 0.081 0.218 0.267 0.083 0.231
T5 Large 0.255 0.094 0.231 0.270 0.100 0.244 0.262 0.097 0.237
Flan T5 Large 0.242 0.073 0.213 0.259 0.078 0.227 0.245 0.074 0.215

Table 1: Initial title generation results

tion. Presently, both these categories are addressed
using methodologies anchored in the Transformer
architecture (Song et al., 2020; Bukhtiyarov and
Gusev, 2020; Liu and Lapata, 2019). A prevalent
strategy for both forms of summarization is the
encoder-decoder language model, exemplified by
models like BertSumExt (Liu and Lapata, 2019)
and PEGASUS (Zhang et al., 2020). Viewing
summarization as a seq2seq challenge aligns
well with the encoder-decoder framework, given
the presence of a source and target text, akin
to NMT scenarios. In this configuration, the
generative decoder section conducts abstractive
summarization. For strictly extractive endeavors,
decoders are typically substituted by a specific
classifier determining which input tokens will
appear in the final summary. Another strategy is
to fine-tune a GPT-2 (Radford et al., 2019) style
auto-regressive model for the summarization task;
this approach was adopted by both Koppatz et al.
(2022) for headline generation and Mishra et al.
(2021) for title generation.

Many contemporary title and headline genera-
tion methods have adopted metrics like BLEU or
ROUGE to assess model performance (Matsumaru
et al., 2020; Bukhtiyarov and Gusev, 2020; Tilk
and Alumäe, 2017; Mishra et al., 2021); these are
also standard for summarization evaluation. An
exception is Koppatz et al. (2022), who also rely
on manual structured review by domain experts to
assess the quality of their automatically generated
headlines. While human evaluations (especially if
by domain experts) represent a gold standard, they
are both expensive and time-consuming to obtain.
This is especially true for academic titles, as eval-
uating how well a title captures the essence of an
academic paper means being able to make sense of
potentially extremely technical, specialized infor-
mation.

2 Title Generation

2.1 Dataset

We created an initial dataset containing 136,640
academic articles. We obtained this dataset
by downloading the Huggingface ArXiv

dataset (https://huggingface.co/datasets/
scientific_papers) and the Kaggle ArXiv
dataset (https://www.kaggle.com/datasets/
Cornell-University/arxiv), by selecting
those articles that appeared in both datasets (by
cross-referencing article ids), and by extracting
the following information for each article: title,
abstract, category, and full article text. Merging
the two datasets was necessary as the Huggingface
ArXiv dataset does not contain the full text of a
paper, nor its category. While we are not using the
full text of articles for this specific study, we plan
on doing so in the future for a follow-up study,
hence it was important for us to have a dataset
containing all parts of the articles we use.

2.2 Testing out Different Models

As we decided to treat title generation as a summa-
rization task, we looked into models that could best
handle summarization. We considered three dif-
ferent state-of-the-art language models: T5 Large
(Raffel et al., 2020), Flan T5 Large (Chung et al.,
2022) and BART Large (Lewis et al., 2019).

T5 treats every NLP task as a text-to-text prob-
lem, which suits title generation perfectly –the
model reads in the abstract as text input and outputs
the generated title as text. Flan T5 Large stands as
an improved version of the T5 model, having under-
gone fine-tuning across a blend of tasks. Demon-
strating superior performance, Flan T5 outperforms
its predecessor by handling more ubiquitous tasks.
However, we wanted to see how these models com-
pare on a less common task such as summarizing
academic abstracts to generate titles. On the other
hand, BART, with its unique architecture that is
both auto-regressive and auto-encoding, can also
be used to input an abstract and output a short
summary in the form of a title. BART’s ability to
consider the context from both directions enables
the model to generate fluent and coherent titles that
accurately represent the content of the abstracts.

As a first step, we tried generating titles using
all three language models. To do that, we split
our dataset into a training subset, a validation sub-
set and a test subset (70:15:15 split), and trained

https://huggingface.co/datasets/scientific_papers
https://huggingface.co/datasets/scientific_papers
https://www.kaggle.com/datasets/Cornell-University/arxiv
https://www.kaggle.com/datasets/Cornell-University/arxiv
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BART Large, T5 Large and Flan T5 Large. We
employed PyTorch as the framework for training
our generating models and utilized the same set
of hyperparameters to train each generating model.
We trained all models for 3 epochs with a learn-
ing rate of 1e-5, a batch size of 6, and using the
Adam optimizer (Kingma and Ba, 2014). We set
the maximum input sequence length to 512 tokens
and the maximum output sequence length to 128 to-
kens. To promote diversity and exploration during
training, we employed a sampling parameter set
to true. To ensure reproducibility and control the
randomization during training, we set the random
seed to 42.

2.3 Final Model Selection

We evaluated the performance of our three models
by comparing the title generated by each model
to the original title of the paper, to determine how
(dis)similar artificial titles were with respect to the
original. While similarity to the original title is
not in itself a measure of the quality of a machine-
generated title (a maximally dissimilar title might
still be an excellent title), we reasoned that comput-
ing similarity scores could be an at least partial indi-
cation of a machine-generated title being “human-
like" (i.e. similar to what a human writer would
come up with) and hence a good title. Considering
that most of the evaluation mechanisms based on
similarity scores are highly correlated (Fabbri et al.,
2021), we decided to resort to ROUGE (Lin, 2004).
The results are given in Table 1. T5 Large per-
formed best on almost all ROUGE metrics except
ROUGE 1 Recall, where BART Large performed
better.

One of the goals of our study was to determine
how much we could improve the performance of
our best-performing model through further post-
processing. Based on Table 1, we thus decided
to settle on T5 Large as the model to use for all
additional post-processing experiments.

Our post-processing consisted of two steps: re-
fining title generation through SciBERT, and re-
fining title generation through linguistic-stylistic
rules.

3 Post-Processing, Step 1: SciBERT

For the first post-processing step, we wanted to de-
termine whether we could obtain higher ROUGE
scores by generating multiple titles for each ab-
stract using T5 Large, selecting the most represen-

tative titles out of all those generated, and creating
a synthetic dataset using these most representative
titles.

3.1 Extraction of Oracles

Using T5 Large, we generated five titles for each
of the abstracts in our training and validation sub-
sets. Below we provide an example of the types of
titles that were generated using T5 Large. Using
the example abstract displayed in Fig.1, originally
from a paper by Mallick et al. (2017) titled "Energy-
dependent variability of the bare Seyfert 1 galaxy
Ark 120", we generated the following five titles:

1. A long-period XMM-Newton observation of
the bare Seyfert 1 galaxy Ark 120

2. Ark 120: spectral-timing analysis of XMM-
Newton observance over four consecutive or-
bits in 2014

3. Ark 120: spectral-timing analysis and
hardness-intensity diagram

4. Broad-band X-ray spectroscopy of Ark 120:
A spectral-timing analysis of a long 486 ks
XMM-Newton observation

5. A spectral-timing analysis of the long 486 ks
XMM-Newton observation of the bare Seyfert
1 galaxy Ark 120

For each of the titles generated by T5 Large, we
computed a ROUGE score by comparing the gen-
erated title to the paper’s original title. Following
this, we created a synthetic dataset with a specific
labeling scheme: the title with the top ROUGE
score was labeled as “1” (we refer to this as the or-
acle), while the title with the lowest score received
a “0” label. Note that titles with intermediate scores
were neither labeled nor included in this dataset.
The purpose of this was to focus on the two most
distinct title generations for a given abstract.

3.2 Fine-tuning SciBERT on the Synthetic
Dataset

We trained SciBERT (Beltagy et al., 2019) on the
obtained synthetic dataset. We decided to use SciB-
ERT as it outperforms BERT in a variety of tasks
in the scientific domain (Beltagy et al., 2019) and
achieves SOTA performance in multi-class text
classification on the SciCite dataset (Cohan et al.,
2019).

In our study, we used a modified version of SciB-
ERT, which was previously pre-trained to optimize
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Figure 1: Abstract Example

the performance of the model for scientific text
analysis. This prediction model is influenced by
the success of using the transformer-model architec-
ture for the classification of sentences in extractive
summarization (Liu and Lapata, 2019) or later ap-
plied in fact-checking summarization (Atanasova
et al., 2020). In our experiment, we fine-tune SciB-
ERT model to generate a probability for each gen-
erated title. This probability interprets how similar
the generated title is to the original (human) title,
while the original title does not enter the model in
the prediction. This model learns to distinguish the
titles that are most and least similar to the origi-
nal, human title. Our fine-tuned SciBERT model
could be applied as a classifier as well, but we only
wanted to rank our generated titles by assigning a
SciBERT probability value to each generated title.

To fine-tune our SciBERT model, we followed
the design and optimization decisions described
in Beltagy et al. (2019) and Devlin et al. (2019).
Our approach involved using a linear one-layer
feed-forward classifier with the ReLu activation
function. The classifier took the last hidden state of
the [CLS] token as input, effectively using it as the
sequence’s features. We conducted extensive exper-
iments to determine the optimal hyperparameters
for fine-tuning SciBERT. This included varying the
number of epochs (ranging from 2 to 5), batch sizes
(16, 32, or 50), learning rates (5e-5, 5e-6, 1e-5, or
2e-5), and incorporating or excluding a dropout
rate of 0.1. To optimize the training process, we
utilized the AdamW optimizer and cross-entropy
loss. Our best results were achieved by fine-tuning
the models for 3 epochs, with a batch size of 32
samples, a learning rate of 5e-5, and no dropout ap-
plied. Following this, we applied a linear warmup
and linear decay technique as described in Devlin
et al. (2019). We employed the softmax function
to determine probabilities for predictions, which
served as the initial selection or ranking score for
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Figure 2: PR curve on testing dataset

finding the best title candidate.

3.3 Results

To evaluate the effectiveness of title generation se-
lection, employing Precision-Recall (PR) curves
and the corresponding Area Under Curve (AUC)
(see Fig.2) provides comprehensive and robust test-
ing (Boyd et al., 2013). This quality approach al-
lows for an exhaustive evaluation of the model’s
performance across a broad spectrum of probability
rankings.

The achieved performance of the model Area Un-
der the Precision-Recall Curve (AUC-PR) 0.77 is
particularly interesting because we always labeled
the generated titles with the highest and lowest
ROUGE scores in the synthetic training dataset.

In the initial row of Table 2, we consider the
baseline model as a fine-tuned T5 Large, produc-
ing a single title for each abstract, identical to row
2 in Table 1. In the subsequent row of Table 2,
we analyze the same fine-tuned T5 Large model,
but this time generating five titles for each abstract.
From this set of machine-generated titles, we se-
lect the machine-generated title with the highest
SciBERT probability. Those selected titles for each
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Model Rouge-1 F-score Rouge-2 F-score Rouge-L F-score Rouge-1 Precision Rouge-2 Precision Rouge-L Precision Rouge-1 Recall Rouge-2 Recall Rouge-L Recall
T5 - Baseline 0.255 0.094 0.231 0.270 0.100 0.244 0.262 0.097 0.237
T5 + SciBERT 0.281 0.103 0.253 0.295 0.109 0.265 0.291 0.107 0.262
T5 + SciBERT + Linguistic rules 0.281 0.103 0.253 0.295 0.109 0.266 0.288 0.107 0.260
Oracles by Rouge 1 F-score 0.393 0.176 0.352 0.416 0.188 0.372 0.400 0.179 0.357

Table 2: Improved title generation results

abstract are compared to original human titles. Con-
sequently, in Table 2, the ROUGE metric is consis-
tently calculated based on the same original human
titles, although the chosen artificial titles may differ
across various models. When comparing the sec-
ond row to the first row in the table, we observed
a significant improvement in the overall title qual-
ity by utilizing SciBERT for title selection. This
improvement is evident across all ROUGE metrics.
However, when comparing the second row with
the last row, where ROUGE utilized artificial titles
for evaluation, it becomes evident that there is still
considerable room for further improvement.

4 Post-Processing, Step 2: Linguistic
Rules

To ensure the quality of artificially generated titles
for academic papers, we also implemented a sec-
ond post-processing step that involved evaluating
each title against a set of linguistic-stylistic rules.
These rules were designed to adhere to the con-
ventions of academic titles while at the same time
enhancing clarity, conciseness and outreach poten-
tial of the paper. We employed six distinct rules;
titles that met all rules were assigned a score of 6,
titles meeting only 5 rules were assigned a score
of 5, and so on. The six rules we used are outlined
below. We arrived at these rules after consulting
several papers and online resources on how to write
effective titles for academic papers.

I. Title Length: Titles should be concise, but also
not so short that it is unclear what the paper is
about, or how it differs from related articles
discussing the same topic (Knight and Inger-
soll, 1996; Paiva et al., 2012; SHU Library,
2020). Therefore, for this category, we gave a
0 score to titles longer than 16 words (Word-
vice, 2023) or shorter than 5 words (USC Li-
braries, 2023), and a score of 1 otherwise.

II. Geographical Locations: Paiva et al. (2012)
found a negative correlation between men-
tions of specific geographical locations (e.g.
"Mortality Rates in Sub-Saharan Africa") in
titles and number of citations per article. Ac-

cordingly, we gave a score of 0 to titles con-
taining any reference to geographical loca-
tions, and a score of 1 otherwise.

III. Forbidden Punctuation Marks: Paiva et al.
(2012) found a negative correlation between
the number of citations and the presence of ex-
clamation marks, question marks, and dashes
in titles (see also USC Libraries (2023)). We
thus gave a 0 score to titles containing these
punctuation marks: ‘?’, ‘-’, ‘!’.

IV. Suboptimal Nouns: According to Knight and
Ingersoll (1996), phrases such as "The Effects
of," "A Comparison of," "The Treatment of,"
and "Reports of a Case of" should be avoided
in titles (see also SHU Library (2020); USC
Libraries (2023)). Accordingly, we gave a
0 score to titles containing the nouns "analy-
sis," "effects," "comparison," "treatment," "re-
port/reports".

V. Passive Verbs: Active voice should be pre-
ferred in academic titles (SciPress, 2017). We
gave a 0 score to titles containing verbs in the
passive voice, and a 1 score otherwise.

VI. Abbreviations: We gave a 0 score to titles that
included abbreviations. This rule aimed to
ensure that the titles are accessible to a wide
range of readers without relying on special-
ized knowledge or acronyms (SHU Library,
2020; Wordvice, 2023).

To assign these linguistic scores, we wrote
Python text-processing rules that would take gener-
ated titles as input and assign to each title a score
from 0 to 6 based on how many of the above rules
each title met. While there are many tips on how
to write effective titles for scientific publications,
we specifically chose the above-mentioned rules as
it is easy to code text-processing scripts that check
automatically whether these rules are met. The mo-
tivation for adding this additional post-processing
step was thus to obtain a simple and computation-
ally inexpensive way of further checking machine-
generated titles for adherence to standard norms
in academic writing. We reasoned in particular



79

that adding this type of post-processing could par-
tially eliminate/reduce the scope of work of any
human evaluator who was to manually check each
machine-generated title for quality, which can be a
lengthy and costly process.

4.1 Linguistic Score Results
We normalized the linguistic scores using the fol-
lowing formula:

linguistic score =

∑
(allscores)

6

where allscores indicates the list of linguistic rules
to be summed up in the equation.

This allowed us to obtain a total linguistic score
ranging from 0.0 to 1 for each of the generated
titles, 1 being a title that meets all six linguistic
rules, 0.0 being a title that flouts all rules. For each
title, we then multiplied this normalized linguistic
score by the SciBERT probabilities obtained in the
previous post-processing step to obtain a combined
SciBERT*linguistic score. Titles with the highest
SciBERT*linguistic score were chosen as the best
titles out of all generated options.

We also calculated the number of times a title
ranked first by the combined SciBERT*linguistic
score would also be the title ranked first by SciB-
ERT probability alone. We looked at the titles gen-
erated for 20,000 abstracts, and in this sample, the
highest-ranked title was the same in 18,770 cases
(= 1,230 differences). If we examine these discrep-
ancies more closely, we find that the majority occur
because some of the highest-ranked titles according
to SciBERT probability exceed 16 words in length.

While the addition of a linguistic post-processing
step has not yielded dramatically different results,
it did have an effect. It is possible that if more
stylistic rules were to be implemented, or if more
restrictive rules were to be adopted (for example,
maximum title length could be reduced to 13 words,
as suggested by different academic style guides),
this type of linguistic post-processing could be use-
ful in automatically discarding a larger chunk of
title generations that do not comply with academic
guidelines.

In Table 2 (third row), we also see how ROUGE
metrics on SciBERT probability ranking change if
linguistic scores are considered as well. We see in
particular that, if linguistic scores are also applied,
ROUGE scores are almost comparable to T5 model
with SciBERT probability ranking only (second
row). Note however that this could also be due

to the original title flouting one or more of the
linguistic rules we selected for this post-processing
step.

5 Human Evaluations

As a final step of this study, we sought to under-
stand the nuances of human evaluations vis-à-vis
machine-generated academic titles. To achieve this,
we asked three human annotators to evaluate the
titles that our model generated for a selection of
40 abstracts from our dataset. All three evaluators
were academics themselves.

We decided to include a human evaluation step
for several reasons. First of all, we wanted to deter-
mine whether title evaluation is a purely subjective
matter, or whether there is some consensus among
different individuals concerning what constitutes
a good or a bad title. Secondly, we wanted to de-
termine how feasible of a task it is to ask human
annotators to evaluate the quality of titles of aca-
demic papers. In the specialized realm of academic
articles, titles generally refer to highly technical in-
formation. This raised the question of the extent to
which human evaluators could accurately judge if
an academic title captures the essence of a paper’s
technical depth: even if one only selects evaluators
who are at least familiar with the field of research
of a particular set of abstracts, it is impossible to
expect that each evaluator will be able to fully un-
derstand all of the abstracts they are asked to review.
Finally, we were interested in determining whether
the subtleties introduced by the linguistic improve-
ments in our second post-processing step might
resonate more profoundly with human evaluators.

Evaluators were presented with the original ab-
stract, five machine-generated titles, and the origi-
nal title of the paper from which the abstract was
derived, resulting in a total of six titles to be evalu-
ated. Note that we randomly selected 40 abstracts
from the set of 1,230 abstracts for which SciB-
ERT and SciBERT*linguistics outputted distinct
highest-ranking titles (see again section 4.1).

The sequence in which the titles were presented
was randomized. Furthermore, to prevent any at-
tempt by the evaluators to evaluate the machine-
generated titles by comparing them with the origi-
nal title, evaluators were told that all titles, without
exception, were machine-generated.

The evaluators were asked to read the abstract,
read each of the six titles, and then pick i) what
they thought was the ‘best title’—that is, the title
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they perceived as the most fitting given the content
of the abstract and the intrinsic qualities of the title
itself, ii) what they thought was the second-best
title, and iii) what they thought was the worst title
out of all six title options. Our decision to request
evaluators to pinpoint the best, second-best, and
worst titles, rather than having them rank all six
titles from best to worst, was twofold. Firstly, we
anticipated that the deeply technical nature of some
abstracts could pose challenges in the ranking pro-
cess; we figured that simply selecting best, second-
best and worst title would be a more feasible task.
Secondly, we recognized that when presented with
a set of titles potentially bearing very close similar-
ities, distinguishing and ranking all six titles on a
gradient scale might be problematic. The inclusion
of the original title amidst the machine-generated
ones also served a dual purpose. First of all, we
wanted to assess if evaluators would rank the origi-
nal title of the paper as ‘best title’. Moreover, this
approach also allowed us to determine how fre-
quently machine-generated titles are perceived as
superior to the original title of a given paper.

5.1 Inter-Annotator Agreement
In order to ascertain the inter-annotator agreement
rate, we calculated Fleiss’ kappa (Fleiss, 1971).
The results are reported in Table 3:

Title Fleiss’ Kappa

Best Title 0.5805
Second Best Title 0.5195
Worst Title 0.5962

Table 3: Fleiss’ Kappa Results

For the interpretation of Fleiss’ kappa values, the
following ranges are generally used:

Range Interpretation

κ > 0.75 Excellent agreement
0.40 < κ ≤ 0.75 Fair to good agreement
κ ≤ 0.40 Poor agreement

Table 4: Interpretation of Fleiss’ Kappa Values

We further investigated the degree of consensus
among evaluators by calculating how many times
out of 40 (i.e. the total number of abstracts evalu-
ated by our annotators) at least two reviewers both
picked the same title as best, second-best, or worst
title:

• Number of times at least 2 reviewers agreed
on best title: 31 times

• Number of times at least 2 reviewers agreed
on second best title: 17 times

• Number of times at least 2 reviewers agreed
on worst title: 29 times

Based on these results, we can conclude that
evaluators seemed to frequently agree on what they
deemed to be the best and worst titles, even de-
spite the very technical nature of the abstracts and
titles they were asked to evaluate. This challenges
the notion that title evaluation is purely subjective,
suggesting that consensus among different individ-
uals is in fact quite attainable. Furthermore, these
results also indicate that the evaluators’ rankings
were deliberate and informed, rather than random.

5.2 Human Evaluation vs. Different Methods
As a final step, we wanted to determine how hu-
man evaluations relate to the different title selec-
tion methods we explored in this paper. To do so,
we went through the selections made by our three
evaluators, and created a set of so-called strong
candidate machine-generated titles. A machine-
generated title was deemed to be a strong candidate
if either of the following conditions were met:

i. At least two evaluators selected that specific
machine-generated title as their “best title” or
“second best title” choice.

ii. The machine-generated title was selected by
an evaluator who also selected the original
title for that abstract as their “best title” or
“second-best title” selection. E.g. if an evalua-
tor selected the original title as their “second-
best” choice, the machine-generated title that
they selected as their “best” choice was con-
sidered to be a strong candidate.

These two conditions rested on the following
assumptions:

• Some machine-generated titles might be per-
ceived by evaluators as being of higher quality
than the original paper title.

• If an evaluator chooses the original title as
their “best title” selection, we assume they
understand the contents of the abstract well
enough, and thus that any title that they rank
as “second-best title” must also be a good title
for that specific abstract.
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• If an evaluator chooses the original title as
their “second-best title” selection for a given
article, we assume they understand the con-
tents of the abstract well enough, and thus that
any title that they rank as “best title” must also
be both appropriate for that specific abstract,
and possibly a better title than the original
title.

• If at least two evaluators select a given
machine-generated title as their “best” or
“second-best” selection, the title must be a
good title for that abstract.

Based on these criteria, we compiled a set of
strong candidate machine-generated titles for each
of the 40 abstracts evaluated by human evaluators.
The set typically comprised a maximum of two
candidate titles per abstract.

After identifying the strong candidate titles for
each of the 40 abstracts, we compared how effec-
tive each of the three selection methods used in this
paper (Rouge, SciBERT alone and SciBERT* Lin-
guistics) was in capturing human rankings. Specifi-
cally, we checked if the title ranked as highest by
each of these three methods was part of the strong
candidates list. If the title ranked as highest by a
given method was part of the strong candidates list,
it was marked as a “correct selection".

Our aim was to ascertain the number of correct
selections each method achieves out of 40 trials
(i.e. our forty abstracts). The results are reported
below:

• Rouge (Oracles) made a correct selection 8
times,

• SciBERT made a correct selection 7 times,

• SciBERT*Linguistics topped the list with 10
correct selections.

Although the frequency of correct selections is
not particularly high, likely due to the challenging
nature of the task, it is interesting to see that Rouge
outperformed SciBERT, especially since we trained
SciBERT using similarities identified by Rouge.
Furthermore, it is noteworthy that the integration
of linguistic principles with SciBERT elevated the
number of correct selections from 7 to 10, making
this the most successful method when considering
human evaluations.

6 Concluding remarks

We hypothesized that automatically generating an
adequate research paper title can be treated as a
high-level text summarization problem: a title can
be seen as a very condensed summary of the paper’s
abstract. In this context, we have presented a novel
post-processing approach that combines a SciB-
ERT prediction model enhanced with linguistic-
stylistic rules to tackle the problem of finding ade-
quate titles for research papers.

We started by considering three powerful NLG
models (BART Large, T5 Large, FLAN T5 Large)
and evaluating their text-generation results against
the original titles. Out of these models, we chose
the best-performing one: T5 Large. T5 Large was
then set up to generate multiple diverse titles for the
same abstract. For each abstract, we generated five
different titles and again compared them against
the original title of the paper using ROUGE. Subse-
quently, we created a synthetic dataset by labeling
the title with the top ROUGE score as “1”, and
the title with the lowest ROUGE score as “0”; we
then trained SciBERT on this synthetic dataset. In
addition, we defined a set of linguistic rules a title
should adhere to. Based on these rules, we calcu-
lated a normalized score between 0 and 1 for each
generated title. We then multiplied this normal-
ized linguistic score by the SciBERT probabilities
obtained in the previous post-processing step.

We also assessed our title selection methods in
relation to human evaluations. The human evalua-
tions section was instrumental in providing insights
into the nuances of human perspectives concerning
machine-generated academic titles. Our findings
revealed that while title evaluation can be subjec-
tive to some extent, there exists a noticeable degree
of consensus among evaluators about what con-
stitutes a quality title. The performance compari-
son between various methods, with the linguistics-
enhanced SciBERT emerging as the most success-
ful in capturing human evaluations, further under-
scores the effectiveness of our proposed approach.

In the future, we would like to experiment with
generating titles using a paper’s conclusion section
rather than its abstract. Working with conclusions
is more complicated than working with abstracts,
as not all papers have a self-standing conclusion
section, yet an improvement of our results might be
obtained as conclusions often define in more detail
what the key contributions of a paper are.
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