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Abstract

Machine Learning models in the field of Infor-
mation Extraction for Scientific Publications
require high-quality labeled data. The large
amount of easily accessible LATEX source code
is a treasure trove of high-quality labeled data.
However, existing datasets comprised of docu-
ment collections and PDF extraction tools have
limitations: (1) The hierarchical structure of
papers is lost because labeling is done in terms
of pages rather than documents; (2) The read-
ing order is not extracted, which potentially
muddles the extracted contextual structure; (3)
Papers included in the datasets are not likely
to be up-to-date.To address these challenges,
we propose LATEX Rainbow, a framework that
bridges LATEX to PDF that can automatically an-
notate and extract semantic and layout informa-
tion from LATEX source code. This framework
extends existing annotation methods by taking
into account the properties of different existing
approaches. It can produce token-level seman-
tic structure annotations, preserve the paper’s
reading order, and extract the table of contents,
i.e., the article’s section structure. LATEX Rain-
bow enables anyone to extend their datasets
with the latest documents. The project is open-
sourced on GitHub1 for community contribu-
tions and use.

1 Introduction

Scientific publications are often delivered in a form
that is unstructured from the perspective of the un-
derlying data, notably layout-focused formats such
as PDFs.These formats, while visually appealing
and optimized for human comprehension, present
significant challenges when it comes to automatic
Information Extraction (IE). For example, it is dif-
ficult for PDF extraction software to distinguish
which part of a PDF page constitute the actual con-
tents of the paper as opposed to other elements
such as headers, metadata, author and affiliation

1https://github.com/InsightsNet/texannotate

etc. and multimodal contents such as images, ta-
bles, equations etc. and their captions (Meuschke
et al., 2023; Bast and Korzen, 2017). Addition-
ally, these documents often contain elements that
are not directly related to the core content, such as
watermarks (Chia et al., 2018), publisher details
and header information that serves navigation in
collections. These elements, often introduced by
the publishing process, further complicate the ex-
traction process as they are not semantically linked
to the main content. They appear within the layout
of the page, but are hard to distinguish from the
paper contents.

In order to solve these problems, there has been
a surge in the development of document under-
standing machine learning models over the past
few years (Cui, 2021; Subramani et al., 2021; Han
et al., 2023). These models are designed to delve
deep into documents, extracting semantic infor-
mation by harnessing both their visual and tex-
tual attributes. However, machine learning, be-
ing a data-driven approach, requires extensive la-
beled data. Considering that existing PDF extrac-
tion tools cannot guarantee the accuracy of the ex-
traction (Meuschke et al., 2023). In this context,
LATEX code has emerged as a valuable resource.
Many of the weakly supervised annotated docu-
ment IE datasets have their genesis in LATEX code
(Li et al., 2020b; Schmitt-Koopmann et al., 2022;
Anitei et al., 2023).

LATEX is a typesetting system commonly used for
scientific publication, and LATEX code can be easily
compiled into PDF format. The explicit markup in
LATEX code describes the structure and formatting
of the document.Given that scientific publications
inherently maintain a hierarchical and semantic
structure, such as sections, subsections, figures, ta-
bles, equations, etc. These elements are all clearly
defined within LATEX commands. This clarity facil-
itates automatic annotation systems in identifying
and categorizing document elements, as they are al-

https://github.com/InsightsNet/texannotate
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Figure 1: Process of document annotation and extraction. In this figure example, a paper (Cohen et al., 2016) from
arXiv is annotated by color and have been extracted with the semantic layout label for each token.

ready explicitly delineated and classified by the au-
thor’s markup (Ogawa, 1994). The author’s intent
can be inferred more effectively from the structural
and semantic cues within LATEX code, leading to a
more accurate and context-aware interpretation of
the document. With the increasing release of scien-
tific publications in LATEX source code, particularly
on arXiv2, there has been a surge in the number
of PDF Information Extraction datasets derived
from LATEX. These datasets predominantly utilize
LATEX coloring features, namely colored fonts or
drawing of colored boxes within the PDF. However,
there are notable shortcomings in the current PDF
Information Extraction datasets. One of the key
issues is that current annotations are often made on
a per page basis, and no popular datasets explicitly
annotate whether an element spanning two pages
belongs to the same entity, e.g. a paragraph or item-
ized list. As a result, an element spanning across
multiple pages might be interpreted as two distinct
entities instead of one continuous element. This dis-
crepancy also affects the hierarchical structure of
scientific publications. Consider that document dig-
itization standards, including Journal Article Tag
Suite (JATS)3 and Text Encoding Initiative (TEI)4

provide definitions of section trees, which are ben-
eficial to IE (Kikuchi et al., 2014; Hu et al., 2022;
Landolsi et al., 2023). It would be a shame to lose

2https://info.arxiv.org/help/submit/index.html
3https://jats.nlm.nih.gov/articleauthoring/

tag-library/1.3/element/sec.html
4https://tei-c.org/release/doc/tei-p5-doc/en/

html/ref-tree.html

the hierarchy.
Additionally, recent models and datasets derived

from LATEX often omit reading order details (Li
et al., 2020b; Blecher et al., 2023). LATEX is a
complex ecosystem with a vast collection of pack-
ages filled with numerous command definitions
via Comprehensive TeX Archive Network (CTAN).
Various templates each have their own unique writ-
ing conventions. This leads to the possibility that
some elements may be mislabeled. Given that dif-
ferent publications adopt varied page layouts and
LATEX autonomously determines the positioning of
tables and figures based on its internal rules (Mit-
telbach et al., 2004), there’s a significant risk that
automated information extraction tools might mis-
interpret the intended reading order and context.

Moreover, authors of such resources do not al-
ways publish the code used in compiling the dataset.
This means that current datasets are unlikely to in-
corporate the most recent papers or newer version
of old papers. This hampers reproducibility of the
process of dataset building as well as impeding scal-
ability. Meanwhile, it is difficult for users to modify
the annotation style to match their demands.

In this paper, we build upon several approaches
for automatic PDF annotation of datasets and
introduce a generalized framework that yields
document-oriented, fine-grained, reading-ordered
annotations that exclude extraneous content based
on LATEX source code. Figure 1 is a simplified rep-
resentation of the labeling process. Our framework
improves the accuracy and robustness of IE for
scientific publications that has LATEX code. Further-

https://info.arxiv.org/help/submit/index.html
https://jats.nlm.nih.gov/articleauthoring/tag-library/1.3/element/sec.html
https://jats.nlm.nih.gov/articleauthoring/tag-library/1.3/element/sec.html
https://tei-c.org/release/doc/tei-p5-doc/en/html/ref-tree.html
https://tei-c.org/release/doc/tei-p5-doc/en/html/ref-tree.html
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more, we believe the new annotated data comes
from our framework could drive more accurate IE
machine learning models for PDF only papers, i.e.
scanned paper. Our contributions are:

1. Our framework refine the categories, per doc-
ument based reading order and hierarchy
through a well-designed coloring strategy.

2. Enhancing code parsing capabilities by invok-
ing the parsing databases of modern LATEX
integrated writing environment.

3. Providing CSV tables output per PDF docu-
ment, easily modifiable to meet user needs.

This framework is free software and available under
the Apache 2.0 license.

2 Related Work

2.1 PDF Information Extraction Softwares
Currently there are many software solutions or ser-
vices that provide PDF content extraction func-
tions. Adobe Extract5 and Apache Tika6 provide
API service to extract texts from PDF, but they
do not provide fine-grained labeling. Camelot7

and Tabula8 focus on table extraction. RefExtract9

specializes in extracting references. CERMINE
(Tkaczyk et al., 2015), GROBID 10 PdfAct11 and
Science Parse12 support the identification of more
categories. PyMuPDF13 allows access to informa-
tion about the more underlying details of the PDF
file. However, a benchmark demonstrates their im-
perfect performance (Meuschke et al., 2023).

2.2 Document Datasets
Many of the datasets’ annotation were taken from
LATEX. TableBank (Li et al., 2020a) specialize in
table extraction. DocBank (Li et al., 2020b) ex-
tended from TableBank, provides token-level fine-
grained categories labeling. FormulaNet (Schmitt-
Koopmann et al., 2022) and IBEM (Anitei et al.,
2023) focus on mathematical formulas, especially
in-line formulas, which can easily be confused with

5https://www.adobe.io/apis/documentcloud/
dcsdk/pdf-extract.html

6https://tika.apache.org/
7https://github.com/camelot-dev/camelot
8https://github.com/chezou/tabula-py
9https://github.com/inspirehep/refextract

10https://github.com/kermitt2/grobid
11https://github.com/ad-freiburg/pdfact
12https://github.com/allenai/science-parse
13https://github.com/pymupdf/PyMuPDF

plain-texts. SciBank (Grijalva et al., 2022) pro-
duces block-level annotations.

There are also many datasets from non-LATEX
sources. PubLayNet (Zhong et al., 2019) and Do-
cLayNet (Pfitzmann et al., 2022) obtained particu-
larly large amounts of labeling using automated and
manual methods, respectively. XFUND (Xu et al.,
2022) manually labeled multilingual tabular data.
ReadingBank (Wang et al., 2021) is extracted from
Microsoft Word documents, which standardize the
reading order of blocks within a page. M6Doc
(Cheng et al., 2023) extracted large-scale data us-
ing a half machine learning, half manual approach.

2.3 Document Understanding Models

With the gradual enrichment of document data IE
resources, machine learning model development
is driven by increasingly larger datasets using dif-
ferent approaches. LayoutLMs (Xu et al., 2020,
2021a,b; Huang et al., 2022) and its variants (Shen
et al., 2022), make it possible to analyze document
layout from the 2D coordinates of texts plus visual
features. Donut (Kim et al., 2022), on the other
hand, changes the structure of model to a sepa-
rate visual encoder and language model decoder
without obtaining texts directly from the document.
Nougat (Blecher et al., 2023) follows Donut in im-
plementing PDF to markup language conversion.
However, Nougat’s approach is page-based, and
cross-page paragraphs may be incorrectly sliced by
figures or tables on a page. With the explosion of
Large Language Models (LLM), a number of on-
line document understanding systems have sprung
up, such as Explainpaper14 and OpenRead15, but
these platforms are commercial and closed-source.
In this paper we present a framework that is freely
available and can support the community to en-
hance the open-source approach.

3 Methodology

We present a five-step approach to annotate the
LATEX code to PDF annotation. (1) Initially, the
PDF file is processed the existing font colors and
shapes in the file are captured. (2) Subsequently,
the corresponding LATEX source code of the PDF
is parsed. Each token within the file is assigned a
distinct color. Furthermore, figures within the doc-
ument are enclosed within borderless rectangles
and are highlighted with unique background colors.

14https://www.explainpaper.com/
15https://www.openread.academy/

https://www.adobe.io/apis/documentcloud/dcsdk/pdf-extract.html
https://www.adobe.io/apis/documentcloud/dcsdk/pdf-extract.html
https://tika.apache.org/
https://github.com/camelot-dev/camelot
https://github.com/chezou/tabula-py
https://github.com/inspirehep/refextract
https://github.com/kermitt2/grobid
https://github.com/ad-freiburg/pdfact
https://github.com/allenai/science-parse
https://github.com/pymupdf/PyMuPDF
https://www.explainpaper.com/
https://www.openread.academy/
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These specific colors act as pointers to the respec-
tive segments of the LATEX source code, ensuring
traceability. (3) Upon completing the LATEX pars-
ing, the source code is compiled into a color-coded
PDF. (4) The framework then aligns text and fig-
ures from the PDF document with their respective
segments in the LATEX source code by color. This
alignment facilitates the extraction of semantic an-
notations and coordinates of each token and the
establishment of a hierarchical structure through-
out the document. (5) Finally, we packaged all the
annotation as CSV files.

In order to complete these steps, the framework
needs three functions: PDF Element and Color
Extraction, Color Generation and Annotation, and
PDF Compilation. The subsequent sections pro-
vide the implementation of each function in detail.

3.1 Element and Color Extraction from PDF
In this function we use an off-the-shelf Python
package pdfplumber16 to read the details inside
the PDF file. This tool is proficient in pinpoint-
ing the position, font, and color of every character
on a page. Additionally, it can determine the po-
sition and color attributes of all rectangles on the
page, which encompasses both border and fill col-
ors. By default, pdfplumber utilizes DeviceRGB
color space, extracting colors as tuples of three
floating-point numbers. For example, the color
black is represented as (0.0, 0.0, 0.0) while red is
(1.0, 0.0, 0.0). However, modern computer lan-
guages, sometimes struggle with accurately storing
and accessing floating-point numbers. This inher-
ent inaccuracy implies that color matching based
on these numbers might be prone to errors, stem-
ming from cumulative inaccuracies.

In our framework, colors for fonts are repre-
sented as tuples of 8-bit values, namely red is rep-
resented as (255, 0, 0) or #ff00000 in hexadecimal.
When pdfplumber extracts colors from PDF doc-
ument, each tuple element value is incremented
in steps of 0.00392, for instance, 8-bit (0, 1, 2)
translates to floating-point (0.0, 0.00392, 0.00784).
Given that 1

255 = 0.00392156862, we are already
dealing with a discrepancy. To mitigate this threat,
we employed matplotlib’s to_hex()17 method to
ensure precise floating-point to 8-bit RGB value
matches. We also provide details in the selection
of tools for extracting color in Appendix A.

16https://github.com/jsvine/pdfplumber
17https://matplotlib.org/stable/api/_as_gen/

matplotlib.colors.to_hex.html

3.2 Colors Generation and Annotation
In this function, we process the LATEX source code
to determine color assignments for each element.
Ideally, each element should have a unique color.
A straightforward approach would be to incremen-
tally assign hexadecimal numbers from #000000
to #ffffff. However in practice we have found that
such an increment leads to a very insignificant color
change. For instance, the token gradually changes
from black #000000 to a blue shade almost indistin-
guishable from black #000001, then #000002, until
it reaches full blue #0000ff. This makes neigh-
boring tokens almost the same color, and distin-
guishing between them can be challenging for both
computer displays and humans eyes.

To enhance visibility and facilitate manual error-
checking, we adopted a hue-based color generation
strategy. More specifically, we use the Hue, Satura-
tion, Value (HSV) color space to cyclically extract
colors and rearrange them into appropriate groups.
Each HSV color is then converted to an RGB tuple.
Finally, around 9 million colors were grouped and
sorted to be used in the next step of color marking.

For every recognized token, it gets substituted
with:

{\color[RGB]{0,0,1}<TOKEN>}

Where <token> is the token to be colored. Each
identified figure is replaced with:

\colorbox[rgb]{0,0,1}{<FIGURE>}

Where <FIGURE> is the command of including the
figure file, or the block of drawing a figure. Distinct
colors are allocated to each segment.

We also insert rules that ensure the required pack-
ages are imported and any rectangle placed beneath
an figure does not disrupt the document’s original
layout.

\usepackage{xcolor}
\usepackage{tcolorbox}
\setlength { \fboxsep }{ 0pt }
\setlength { \fboxrule }{ 0pt }

Next we need to parse LATEX source code and
apply the above annotation rules to them.

3.2.1 LATEX Parsing and Annotation
Broadly, elements in LATEX source code comprises
four classes: body text, macro, environment, and
comments. We have the following parsing strate-
gies for each of these elements.

https://github.com/jsvine/pdfplumber
https://matplotlib.org/stable/api/_as_gen/matplotlib.colors.to_hex.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.colors.to_hex.html
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• Body text segment undergoes tokenization
using spaCy18 tokenizer in order to split punc-
tuation correctly. We track of the number
of space characters after each token to main-
tain the integrity the original PDF page layout.
Each token is color-marked and recorded.

• Macro begins with a backslash, and its argu-
ments are encompassed within braces. We
focus on labeling certain macros such as
\title{} and \author{}, attributing their
parameter literals with relevant semantic struc-
ture labels. Arguments within the curly
braces will be parsed as body text if it
will appear in the compiled PDF. Notably,
\includegraphics{} will be treated as a
whole and marked with a colorful borderless
rectangle, as it is an inserted figure without
fonts. \input{} and \include{} will point
to another source code file, and we recursively
parse the contents of the file.

• Environment consists of entities encap-
sulated between start and end commands.
Elements within a environment are recursively
parsed as macro or body text. For example,
\begin{table}...\end{table} is a table
environment and the elements within this table
element such as \caption{} will be parsed
as macro. Specifically, drawing environment
\begin{tikzpicture}...\end{tikzpicture}
will be treated as a whole block and marked
with a colorful borderless rectangle. Note
that only elements within the document
environment are colored.

• Comment element starts with a percent sign
% and continues until the end of this line in the
LATEX source code. We ignore the annotation
of comment as it does not affect any part of
the compiled PDF.

We employ the Python package pylatexenc19

to traverse and parse the LATEX source code, charac-
ter by character. pylatexenc contains a collection
of commands created by the contributors, which
defines: the name of commands; whether the com-
mand has a variant or not e.g. \section{} and
\section*{}; and the number of command ar-
guments, including optional arguments in square
brackets and required arguments in curly braces.

18https://spacy.io/
19https://github.com/phfaist/pylatexenc

In practice, we found these predefined rules in-
sufficient, prompting us to manually augment the
definition file.

However, as the number of parsed source codes
increases, the trend of newly encountered unde-
fined commands does not stop. We introduced
the parsing database from LaTeX Workshop20 and
TeXstudio21 in order to extend our database of
parsing rules once and for all. LaTeX Workshop is
an extension for a popular code editor Visual Stu-
dio Code22, aiming to provide all-in-one features
and utilities for LATEX typesetting. TeXstudio is an
integrated writing environment for creating LATEX
documents. They are featured by a particularly
complete database of automatically generated com-
mands from CTAN. We implemented the method
to download all the definitions from the repository
in JSON format. They are stored on a package-
by-package basis, i.e., each package that can be
referenced by LATEX with \usepackage{} has a
corresponding JSON file that contains all the com-
mands for the package, including macros and envi-
ronments. Our parser first traverses through LATEX
source code, collects all package loads, and then
reads the relevant JSON entries. These commands
are subsequently transformed and integrated into
the parsing rules for pylatexenc.

Next, we allocate each color the semantic layout
label to which it belongs. The set of labels aligns
with those used in GROBID and DocBank:

• Abstract is assigned to body texts within
abstract environment, or argument of macro
\abstract{} and its variants.

• Author is assigned to argument of macro
\author[]{}, \address{} and their variants.

• Caption is assigned to macro \caption{}
within table or figure environment.

• Equation is assigned to all the element
that marked with mathematical mode by
pylatexenc.

• Figure is assigned to drawings or imported
figures.

• List is assigned to body texts within itemize
or enumerate environment.

20https://github.com/James-Yu/LaTeX-Workshop
21https://www.texstudio.org/
22https://code.visualstudio.com/

https://spacy.io/
https://github.com/phfaist/pylatexenc
https://github.com/James-Yu/LaTeX-Workshop
https://www.texstudio.org/
https://code.visualstudio.com/
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• Paragraph is assigned to body texts within
document environment.

• Reference is assigned to body texts within
bibliography environment, or macro
\bibliography{}.

• Section is assigned to macros that indicate a
new section in command.

• Table is assigned to environments that include
tabular in command.

• Title is assigned to argument of macro
\title[]{} and its variants.

With the annotations in place, the LATEX source
code is ready for compilation. Following this,
pdfplumber could determine the color and posi-
tion of each letter, utilizing the letter’s color to
match the corresponding annotation.

Simultaneously, the article’s hierarchical struc-
ture is encapsulated within a tree data structure.
LATEX delineates a hierarchy spanning seven levels
through its macro command23. We record for each
colored element the node of the tree it belongs to.
To ensure a coherent hierarchy, we additionally de-
fine the paper title as the root level of document.
That is, all tokens in the title of a scientific paper
belong to Title node, while all tokens in the Intro-
duction section belong to the Introduction node,
and Introduction node is a child of Title node in the
tree of this document. In addition we discuss the
argument of hierarchical structure in Appendix B.

3.3 PDF Compilation
To initiate PDF Compilation process, two specific
lines of code are added to the beginning of the
source file: \pdfoutput=1 instructs the compiler
to produce a PDF instead of PostScript, an alter-
native publication format; \interactionmode=1
signals the compiler to persist with the output gen-
eration, even if it encounters an error on a page.

Publications that accept submissions in LATEX
format, including arXiv, often recommend using
pdftex as their preferred rendering engine. This
engine is integrated into the contemporary LATEX
distribution, TeXLive. Given the complexities in
setting up this distribution, we opted for the Docker
image24 of TeXLive 2023 to establish our compila-
tion environment.

23https://www.overleaf.com/learn/latex/
Sections_and_chapters

24https://hub.docker.com/r/texlive/texlive

Automated LATEX compilation presents a chal-
lenge, especially in pinpointing the master source
file. This is because LATEX allows for multiple .tex
source files to be consolidated and compiled into
one overarching master PDF. To navigate this chal-
lenge, we integrated arXiv’s AutoTeX25 automatic
compilation system. AutoTeX, a Perl-based toolkit,
excels at discerning the primary source file within a
project. Our PDF compilation mechanism derives
some of its functionalities from an open-source
AutoTeX wrapper26.

However, during our practice, we observed Au-
toTeX’s compilation regulations as overly stringent.
There were instances when it halted the compila-
tion due to minor errors, even when the same con-
tent had successfully passed arXiv’s publication
standards. Specifically, AutoTeX will stop com-
piling and try other compilers immediately after
the compiler returns an error code, even if the ig-
nored error signal placed in front of the compiler
to successfully output the compiled PDF file. The
PDF file produced in this step is wrong because
of the BibTeX mechanism. BibTeX is reference
management software for formatting lists of refer-
ences, which needs to be run twice by the compiler
in order to correctly output references, and in-text
citations. To address this, we modified AutoTeX’s
code27, enabling it to bypass certain errors and per-
sist with PDF generation. We configured AutoTeX
to control the compiler to run at least twice, even if
an error code is returned initially.

In conclusion, we combine TeXLive 2023, Auto-
TeX, and a Python-based API service into a single
container. This container, accessible via HTTP,
accepts source code and efficiently returns the com-
pilation outcomes.

4 Capabilities Overview

During the export phase, outputs are organized into
two DataFrames:

• The first DataFrame represents the Table of
Contents nodes, which was created during the
annotation process. Each line denotes a tree
node, with every node possessing a unique ID
and an ID indicating its parent. This structured
approach ensures that the succeeding page

25https://metacpan.org/pod/TeX::AutoTeX
26https://github.com/andrewhead/texcompile
27The modified AutoTeX can be found at https://github.

com/Fireblossom/TeX-AutoTeX-Mod

https://www.overleaf.com/learn/latex/Sections_and_chapters
https://www.overleaf.com/learn/latex/Sections_and_chapters
https://hub.docker.com/r/texlive/texlive
https://metacpan.org/pod/TeX::AutoTeX
https://github.com/andrewhead/texcompile
https://github.com/Fireblossom/TeX-AutoTeX-Mod
https://github.com/Fireblossom/TeX-AutoTeX-Mod
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Figure 2: Extracting reading order from an elementally
complex page. This example is taken from the second
page of (Cohen et al., 2016).

elements to be exported can be systematically
assigned to their respective nodes.

• Every row in the second DataFrame denotes
either a figure or token extracted from the
PDF. These tokens are allocated a number
indicating their reading order and a section
ID, if they are part of the author’s main con-
tent, starting from 0. A value of -1 in read-
ing order indicates elements not penned by
the author, and auto-generated by the LATEX
template. This facilitates a straightforward ex-
clusion of such elements during further analy-
sis. The label column encompasses semantic
structure labels including: Abstract, Author,
Caption, Equation, Figure, Footer, List, Para-
graph, Reference, Section, Table, and Title.

Both DataFrames can be exported as CSV files.

4.1 Use Case: Text Extraction with Reading
Orders

Reading order refers to the sequence in which con-
tent is meant to be read. In documents, it usually

follows a top-to-bottom, left-to-right pattern, but
there can be exceptions, especially in multilingual
or complex layout documents.

Figure 2 illustrates such a scenario. The labels in
the figure represent the order of the text extracted
by the different methods. In this case, starting
from the sixth block, the paragraphs extracted using
pdfplumber are interrupted by tables and pictures.

4.2 Use Case: Section-Weighted Scientific
Paper Summarization using LLM

Scientific papers are structured documents with
different sections, each serving a distinct purpose
(Wcg, 2008). While traditional summarization
techniques consider the entire document holis-
tically (Ibrahim Altmami and El Bachir Menai,
2022), section-weighted summarization assigns dif-
ferent weights to different sections, recognizing
that some parts of a paper may be more informa-
tive or critical than others for a quick understanding
(Cohan et al., 2018). The advantage of our frame-
work is the ability to accurately obtain sections as
compared to any current PDF extraction tool. We
provide a simple example in our GitHub repository.

5 Validation of Annotations

In addition to the unique features introduced in Sec-
tion 4, we also have to verify its consistency with
the annotation methods for existing datasets. We
use the DocBank dataset (Li et al., 2020b) to assess
the reliability of annotations generated by LATEX
Rainbow framework. Docbank dataset contains an-
notations for 1.5 million content elements across
500K scientific publication pages. It comprises pa-
pers from arXiv published between 2014 and 2018,
spanning fields like physics, mathematics, and com-
puter science. Due to its extensive size, range of
subjects, numerous annotated elements, and label-
ing method, Docbank is considered a benchmark
dataset for LATEX sources.

Since DocBank is a very large dataset, we ex-
tracted a subset for time and feasibility reasons.
We extracted LATEX source code of 100 papers in
DocBank from arXiv. They are then annotated and
compiled by our framework, 61 papers are suc-
cessfully annotated and compiled. 39 papers raise
errors. We summarize the reasons and numbers for
failures:

1. Parsing errors in the source code, such as un-
matched bracket pairs or expressions that are
digestible by pdfTeX but not by pylatexenc,
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Labels Precision Recall F1-Score
Abstract 0.9779 0.8197 0.8918
Author 0.5027 0.5515 0.5260
Caption 0.4676 0.3851 0.4224
Equation 0.1957 0.9016 0.3216
Footer 0.2029 0.2612 0.2284
List 0.4462 0.1762 0.2526
Paragraph 0.9379 0.6080 0.7377
Reference 0.8355 0.9718 0.8985
Section 0.5119 0.3777 0.4347
Table 0.8806 0.7939 0.8350
Title 0.3429 0.5320 0.4170

Table 1: Precision, Recall, and F1-Score of annotations
from LATEX Rainbow, compare to DocBank.

cause the parser to misread and yield empty
results. (23)

2. Compilation failures. It was reported28 that
some source code could not be compiled suc-
cessfully due to change of compilation envi-
ronment. (15)

3. File encoding problem. The source code con-
tains characters that Python cannot handle. (1)

To gauge consistency across annotated datasets,
Cohen’s Kappa Coefficient κ = po−pe

1−pe
is applied to

test consistency across annotated datasets. where
po is the empirical probability of agreement on the
label assigned to any sample, and pe is the expected
agreement when both annotators assign labels ran-
domly. pe is estimated using a per-annotator empir-
ical prior over the class labels (Artstein and Poesio,
2008). Cohen suggested the Kappa result be inter-
preted as follows: values ≤ 0 as indicating no agree-
ment and 0.01–0.20 as none to slight, 0.21–0.40
as fair, 0.41– 0.60 as moderate, 0.61–0.80 as sub-
stantial, and 0.81–1.00 as almost perfect agreement
(McHugh, 2012). We get κ = 0.32. This value
demonstrates the fair consistency of our approach
with the existing baseline .

We further assessed Precision, Recall, and F1-
Score using DocBank’s annotations as the gold
standard. As detailed in Table 1, our framework’s
annotations align closely with DocBank in the Ab-
stract, Paragraph, Reference, and Table categories,
and differs in other categories. Notably, there is
a considerable degree of inconsistency in the se-
mantic labeling of some categories. The reasons

28https://info.arxiv.org/help/faq/texlive.html

for these inconsistencies are mainly differences in
annotation strategies and difficulties in aligning our
annotations with DocBank. We delve deeper into
the inconsistencies in Appendix C.

6 Known Issues and Future Work

In the future, our primary goal is to update the
parser so that it can tolerate syntax errors that the
pdfTeX compiler can tolerate.

We also plan to expand the LATEX Rainbow
framework with parallelization capabilities. Be-
cause the pdfTeX engine does not support multi-
threaded parallelism, this makes them slow to com-
pile, especially for long files. The idea is to enable
parallelism at the scale of multiple files. Given
the containerized nature of our PDF compilation
service, this transition should be seamless.

For extensive projects, consider the example of
Proceedings of the 61st Annual Meeting of the As-
sociation for Computational Linguistics (Volume
1: Long Papers), which comprises 912 papers. The
cumulative number of tokens in such projects might
surpass the maximum number of colors that can
be allocated (9 million). In these cases, the LATEX
Rainbow framework is unable to perform the an-
notation. Our next steps include refining the color
system to enhance its usability and distinctiveness.

Coloring the LATEX element doesn’t always work.
For example, \url{} command forces its argu-
ments to be blue, instead of the color we assigned.
In addition to the coloring method, there is also the
SyncTeX (Laurens, 2008) plugin that allows com-
piled PDF elements to be linked back to the LATEX
source code. It is directly involved in the com-
pilation process and records the correspondence
through the internal auxiliary files. Our plan is to
go deeper into its mechanisms to establish a more
robust PDF to LATEX source code correspondence.

Different publisher templates interpret LATEX
terms uniquely, making it challenging for our
database to account for every variation. For ex-
ample, \lstinputlisting[]{} defines the con-
tent to be displayed to the PDF with a substring
value in the optional argument. This is significantly
different from the definition of most commands.
As mentioned in Section 5, there are many papers
that cannot yet be parsed correctly. Therefore, we
greatly welcome and depend on the open-source
community to contribute the detailed parsing rules
for each template.

https://info.arxiv.org/help/faq/texlive.html
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7 Conclusion

In this paper we introduce a framework which can
be used to establish a correspondence between
LATEX code and PDF elements, exporting detailed
semantic annotations. Our framework meticulously
extracts semantic markup, maintaining the layout
fidelity of the associated PDF files. The structured
information extracted by our framework helps in
better document indexing, searching and analysis.
It improves document accessibility and helps de-
velop and refine document understanding tools.

Our framework is more than just yet another
toolkit to the growing list of document datasets. By
ensuring versatility and adaptability as well as scal-
ability, we aim for it to become a universal tool that
can facilitate enhanced document analysis across
multiple disciplines and applications. We sincerely
hope that open-source community can derive inno-
vative uses and benefits from our solution.
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A Selection of Color Extraction Tools

In Addition to pdfplumber. We also experimented
with the PyMuPDF29 package for color extraction,
enticed by its capacity to extract colors as integer
values. However, it uses the sRGB color space,
which introduced mismatches between our annota-
tions and extracted values. A notable misalignment
was observed with colors #000000 and #000100
in RGB are both being misconstrued as the singu-
lar color #000000 in sRGB. As PyMuPDF features
in able to extract more refined information, such
as block number, line number, whether it is ital-
icized or superscript, and so on. Some valuable
information is lost by not using this package. We
will continue to study underlying logic of the pack-
ages and adjust the implementation described in
this paper.

B Note on Non-hierarchical Structure of
Document

In the realm of document digitization, there’s on-
going debate regarding the hierarchical structure of
articles. Specifically, discussions revolve around
overlapping structures within the XML and TEI
communities30 (Marcoux et al., 2013; Hasibi and
Bratsberg, 2014). Overlaps arise when a docu-
ment embodies multiple structures that intersect
non-hierarchically, making it impossible to repre-
sent the document as a tree. Such as a metrical
structure of feet and lines in poetry. Since our ex-
ported tree isn’t an XML file, we can sidestep the
non-hierarchical structure issue by distinctly defin-
ing section elements and overlapping elements.

C Inconsistencies to DocBank

There are several categories in Table 1 that differ
very much. In this section we summarize the po-
tential causes from two perspectives.

C.1 Labeling Strategies
Among them Equation and Title have particularly
high recall values and very low precision. Addition-
ally, Paragraph’s recall is relatively low. This is due

29https://github.com/pymupdf/PyMuPDF
30https://tei-c.org/release/doc/tei-p5-doc/it/

html/NH.html

to the difference in annotation strategies between
DocBank and our approach.

More specifically, our rules recognize more com-
mands as Title and Equation than Paragraph in
DocBank.

• For Title, DocBank only recognizes the ex-
act \title{}, while LATEX Rainbow frame-
work recognizes all commands that contain
the word title. Such as \aistatstitle{} or
\begin{title}.

• For Equation, we not only recognize specific
commands like \begin{equation}. We also
annotate the mathematical expressions on the
line. We do realize that it can introduce po-
tential inaccuracies, for example in practice
we have found in-line formulas used as italics
instead of mathematical formulas. We will
refine the rules in future updates.

• In DocBank, any text not color-coded, in-
cluding page numbers, headers, and copy-
rights, is defined as a Paragraph. In contrast,
LATEX Rainbow doesn’t tag these elements
with a semantic layout label. This approach
in DocBank seems imprecise and could intro-
duce potential biases.

C.2 DocBank and LATEX Rainbow annotations
are not aligned

In practical we found that using tokens position
doesn’t consistently match the labeling. Namely,
for identical pages of the same paper from arXiv,
the tokens in the same locations differ between
DocBank and LATEX Rainbow. Upon close exam-
ination of the annotated pages, we observed that
DocBank’s annotation coordinates diverge from the
arXiv document’s. We summarize two reasons for
this.

• Papers may have been updated since the re-
lease of DocBank and we annotate the lat-
est version of the paper. This may result in
changes to the content and layout of the paper.

• Changes in compilation environments and
compiler versions may also have led to subtle
differences in compiled PDF layout.

For tokens that could not be linked, we had to
use matching of contexts and tokens, which may
have caused misalignment. This in turn affects the
evaluation.

https://doi.org/10.1109/ICDAR.2019.00166
https://doi.org/10.1109/ICDAR.2019.00166
https://github.com/pymupdf/PyMuPDF
https://tei-c.org/release/doc/tei-p5-doc/it/html/NH.html
https://tei-c.org/release/doc/tei-p5-doc/it/html/NH.html
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The evaluation is available as a Jupyter notebook
in the GitHub repository.
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