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Abstract

Automatic evaluation of machine translation
(MT) is a critical tool driving the rapid itera-
tive development of MT systems. While con-
siderable progress has been made on estimat-
ing a single scalar quality score, current met-
rics lack the informativeness of more detailed
schemes that annotate individual errors, such
as Multidimensional Quality Metrics (MQM).
In this paper, we help fill this gap by proposing
AUTOMQM, a prompting technique which
leverages the reasoning and in-context learning
capabilities of large language models (LLMs)
and asks them to identify and categorize errors
in translations. We start by evaluating recent
LLMs, such as PaLM and PaLM-2, through
simple score prediction prompting, and we
study the impact of labeled data through in-
context learning and finetuning. We then eval-
uate AUTOMQM with PaLM-2 models, and
we find that it improves performance compared
to just prompting for scores (with particularly
large gains for larger models) while providing
interpretability through error spans that align
with human annotations.

1 Introduction

Evaluating natural language generation systems has
always been challenging, and as the output qual-
ity of these systems has improved, evaluation has
become even more challenging and critical. For ex-
ample, in Machine Translation (MT), a field where
evaluation has garnered considerable attention, pre-
vious standard automatic surface-level metrics such
as BLEU (Papineni et al., 2002) are becoming less
reliable as the quality of generation systems im-
proves, with little remaining correlation with hu-
man judgments (Freitag et al., 2022).

To keep pace with the constantly improving qual-
ity of MT output, the next generation of automatic
metrics is rapidly evolving. Learned automatic
metrics that leverage human-judgments to finetune

∗ Work done while working part-time at Google.

Source: “Avaliar tradução 
automática é difícil.”

Candidate: “Evaluating 
automatic translation are easy.”

Score the following translation from 0 to 100:

Portuguese: {source}; English:{candidate}

Identify the errors in the translation

Portuguese: {source}; English:{candidate}

Score: 25

Errors: ‘easy’ - major/accuracy; ‘are’ - minor/fluency

MQM Score: -5x1(major) - 1x1(minor) = -6

AᴜᴛᴏMQM

Score Prediction

Figure 1: Illustration of how AUTOMQM uses LLMs
to assess the quality of a translation. Rather than asking
for a single quality score, AUTOMQM prompts mod-
els to identify and classify errors, and uses the MQM
framework to produce a score.

language models (Sellam et al., 2020; Rei et al.,
2022a) currently represent the state-of-the-art in au-
tomatic evaluation benchmarks like the WMT Met-
rics task (Freitag et al., 2022), and show high corre-
lation with human judgments. However, these met-
rics typically output a single, uninterpretable qual-
ity score, making it difficult to understand the type
and extent of errors identified by them. The lack of
insights makes it difficult for model developers to
leverage these metrics to improve their systems.

Unlike automatic metrics that only provide a
single scalar value as quality score, state-of-the-art
human evaluation methodologies like Multidi-
mensional Quality Metrics (MQM; Lommel
et al., 2014; Freitag et al., 2021a) ask professional
annotators to identify and label error spans with
a category and severity. This much richer feedback
can be used to gain a better understanding of the
current limitations of the model under evaluation
and improve it.

In this paper, we ask whether large language
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models (LLMs) in combination with a few human
annotations can be used to design an automatic
metric that generates rich feedback similar to that
generated by human experts in MQM. This work
is motivated by recent papers that demonstrated
that LLMs can be used as automatic metrics (Liu
et al., 2023b) to generate a single quality score. In
particular, Kocmi and Federmann (2023) showed
that LLMs can be prompted to assess the quality
of machine-generated translations, even achieving
state-of-the-art performance on assessing system-
level quality. However, previous work only pro-
vides a limited view of the capabilities of LLMs for
machine translation evaluation: the focus has pre-
dominantly been on score prediction (i.e. predict-
ing a numerical value for quality), without consid-
ering the use of any annotated data (either through
in-context learning or finetuning), and only in high-
resource language pairs.

We provide a large-scale study of the capabilities
of LLMs (from the PaLM and PaLM-2 families;
Chowdhery et al., 2022; Anil et al., 2023) for ma-
chine translation evaluation (both with and without
a reference translation), provide a novel compari-
son between prompting and finetuning, and investi-
gate the performance in the low-resource scenario.
Inspired by findings that the performance of LLMs
can be improved by prompting them for rationales
of their predictions (Wei et al., 2022; Lu et al.,
2023), we also propose AUTOMQM, a prompt-
ing technique for MT evaluation that asks LLMs
to identify error spans in a translation and to clas-
sify these errors according to the MQM framework,
with a quality score derived automatically from the
identified errors. A key advantage of AUTOMQM
is its interpretability, as users can inspect the errors
responsible for a score (Figure 1).

Our contributions can be summarized as follows:

• We confirm the finding of Kocmi and Feder-
mann (2023) that LLMs are zero-shot state-of-
the-art system-level evaluators, but show low
correlation with human judgment compared
to learned metrics at the segment-level.

• We show that finetuning an LLM with hu-
man judgment mitigates its low segment-level
performance (particularly for smaller LLMs),
showing similar correlations with human judg-
ment at both the system-level and segment-
level to state-of-the-art learned metrics.

• We are the first to evaluate LLM-based evalu-
ation methods on low-resource language pairs.

We find that their performance is promising,
but lags behind state-of-the-art learned met-
rics.

• We find that, with AUTOMQM, PaLM-2 mod-
els can be prompted to generate rich MQM-
like annotations, outperforming their score
prediction counterparts at the segment-level.

• Furthermore, annotations predicted by PaLM-
2 models correctly identify over 50% of words
that are part of major errors, and are compa-
rable to the ones produced by state-of-the-art
supervised word-level evaluators.

Our findings might have significant implica-
tions for not only MT evaluation, but evaluation
of machine-generated text in general, and further
highlight the potential of using LLMs to provide
AI Feedback (Fernandes et al., 2023).

The outputs of our models prompted with
AUTOMQM are available at github.com/google-
research/google-research

2 Background: MT Evaluation

Machine translation evaluation is one of the most
well-studied evaluation problems in NLP (Callison-
Burch et al., 2008; Freitag et al., 2022). In this task,
given

1. a source sentence in a (source) language

2. a candidate translation in a (target) language

an evaluation metric assesses the quality of the
candidate translation by how well it conveys the
meaning of the source sentence while considering
other factors like fluency. Like many other natu-
ral language generation evaluation problems, this
task is difficult because the set of correct transla-
tions for a given source sentence is often very large
and not entirely known in advance. To simplify
the problem of machine translation evaluation, of-
ten (3) a reference translation (typically created
by a professional human translator) is included as
additional information when assessing the candi-
date translation. This sub-problem is known as
reference-based evaluation (as opposed reference-
less evaluation or quality estimation).

Up until recently, human evaluation of machine
translation was carried out predominantly with the
aim of assigning a single quality score to a can-
didate translation. Consequently, learned metrics,
which leverage collected human judgment data, are
trained for and evaluated on the same task of score

https://github.com/google-research/google-research/tree/master/palm2_automqm
https://github.com/google-research/google-research/tree/master/palm2_automqm
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prediction (i.e., assigning a single quality score to
a candidate translation), and can achieve high cor-
relation with human-provided scores (Freitag et al.,
2022).

However, framing machine translation evalu-
ation as a score prediction task is problematic:
any scoring or ranking of translations is implicitly
based on an identification of errors in the candidate
translations, and asking raters to solely provide a
single score can lead to rushed and noisy judgments
(Freitag et al., 2021a).

This insight has led to the adoption of the
Multidimensional Quality Metrics (MQM) frame-
work (Lommel et al., 2014; Freitag et al., 2021a)
as the gold standard for evaluating machine transla-
tion. The MQM framework asks human evaluators
to identify error spans in candidate translations and
classify those errors according to various dimen-
sions, e.g., fluency, accuracy, ... (see Appendix A
for a more detailed description of MQM). Impor-
tantly, the MQM framework does not ask anno-
tators to provide a quality score for each transla-
tion, and instead derives one automatically from
the identified error spans and their classifications.
However, despite its richness, most automatic met-
rics that leverage MQM data only use the final qual-
ity score produced by the framework and discard
the error span information and classification.

3 Related Work

The success of learned machine translation met-
rics (Sellam et al., 2020; Rei et al., 2022a; Freitag
et al., 2022; Qin et al., 2022), which finetune neu-
ral network models pretrained on large amounts of
(unsupervised) data, highlighted the importance of
leveraging transfer learning to achieve metrics with
better correlation with human judgments. More re-
cently, generative LLMs (OpenAI, 2023; Anil et al.,
2023) have consistently demonstrated impressive
results in natural language understanding and zero-
and few-shot transfer and, naturally, interest in em-
ploying these models for (translation) evaluation
has increased. Kocmi and Federmann (2023) first
explored the use of GPT models for evaluating
machine translation tasks, showing their potential
as zero-shot evaluators, and others have since ex-
tended GPT-based evaluation to other generation
problems (Jain et al., 2023; Liu et al., 2023b).

Perrella et al. (2022) first highlighted that MQM
annotations could be leveraged to allow pretrained
models to predict major and minor errors and, sim-

ilarly to AUTOMQM, used the identified errors
to automatically score translations. However, their
approach relied on weaker encoder-only or encoder-
decoder language models, required supervised data
to work, and overall underperformed other top met-
rics. We compare against their MaTASe metric in
our experiments. Lu et al. (2023) showed that do-
ing error analysis, a prompting technique similar to
AUTOMQM, could lead to better ChatGPT-based
evaluators. However, they still relied on the LLM
to provide a score once it identified errors (rather
than do it automatically using something like the
MQM framework). Furthermore, they provided
a very limited meta-evaluation using only 40 ex-
amples per language pair. Concurrently with our
work, Xu et al. (2023) proposed INSTRUCTSCORE,
a LLaMA-based evaluator that asks models to iden-
tify and categorize errors in translation (as well as
providing a natural language explanation for each
error). However, the authors only explore a 7B
parameter model and don’t leverage zero- and few-
shot capabilities of models as in this work. Instead,
they rely on a more complex approach of distilling
the knowledge of a more capable GPT-4 LLM.

Additionally, WMT Word-Level Quality Esti-
mation shared tasks (Fonseca et al., 2019; Zerva
et al., 2022) leverage MQM data by converting
span-level annotations of errors (normally of ma-
jor severity) to word-level tags and Task 2 in the
WMT19 Quality Estimation shared task evaluation
explicitly evaluated submissions of span-level anno-
tations (although most submissions still consisted
of models that predicted word-level tags which
were converted to spans). We also compare against
state-of-the-art word-level quality estimation mod-
els.

4 Using LLMs to Predict Quality Scores

Recent works have shown that large language mod-
els are versatile, general-purpose models that can
be used to tackle many problems in NLP, includ-
ing evaluation (Kocmi and Federmann, 2023; Jain
et al., 2023; Liu et al., 2023b). We begin by explor-
ing how LLMs can be used for machine translation
evaluation through score prediction.

4.1 Prompting

We start by measuring how far we can push the
performance of LLMs with just prompting (Liu
et al., 2023a): by defining the task of MT evaluation
and quality estimation as textual templates (with
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a general description of the problem and “slots”
for the inputs and outputs), we can use general-
purpose LLMs to perform these tasks at inference-
time, without any parameter updates.

Throughout the paper, we choose to use Kocmi
and Federmann (2023)’s GEMBA-SQM prompt
(Figure 9, Appendix C), which asks models to gen-
erate (a string representation of) a score from 0-
100. We choose this prompt for two reasons: firstly,
early explorations with various prompts showed
that this generally performed well. Secondly, us-
ing a single prompt ensures a fairer comparison
between the capabilities of different models.1

In-Context Learning A surprising emergent ca-
pability of LLMs is their ability to improve on
prompting-based tasks by including a very small
amount of labeled data as part of the prompt/con-
text (Brown et al., 2020) and without parameter up-
dates, a technique called in-context learning (ICL)
or few-shot prompting. We thus investigate the
impact that ICL has on LLMs’ ability to assess
translation quality. Recent works have shown that
the impact of ICL is tightly tied with the exact
examples included in the prompt, with a poor selec-
tion procedure leading to no improvements or even
worse performance than the zero-shot case (Jain
et al., 2023). We therefore explore two sampling
approaches to select in-context examples from a
pre-defined “pool” of translation quality assess-
ments: uniform and stratified sampling, where
the example pool is bucketed by score ranges and
examples are sampled from each bucket.

4.2 Finetuning

It has previously been shown that LLMs are capa-
ble of zero-shot evaluation (Kocmi and Federmann,
2023), but the extent to which finetuning on human
judgment data can further boost the performance of
LLMs has not been studied. In the WMT’22 Met-
rics Shared Task (Freitag et al., 2022), all top sub-
missions were learned metrics; that is, pretrained
models finetuned on human judgment data2.

Thus, we investigate whether LLMs are
amenable to finetuning on human judgment data.
LLMs used in top-performing metrics are gener-
ally much larger than the pretrained language mod-
els leveraged by previous learned metrics (which

1While this prompt wasn’t the best for system-level, it led
to the best segment-level performance in GEMBA.

2While these metrics all leverage powerful pretrained (lan-
guage) models, these generally aren’t considered LLMs

generally have fewer than 1 billion parameters).
Moreover, most learned metrics leverage pretrained
encoder-only rather than (decoder-only) prefix lan-
guage models. We experiment with finetuning
LLMs using two objectives:

• Regression (R): Commonly used for training
learned metrics (Rei et al., 2022a), the ob-
jective here is a regression loss (e.g., mean
squared error) between continuous scores ob-
tained from the model (for example, with a
regression head) and the human scores.

• Generative Classification (GC): We bucket
scores into discrete classes (e.g. "bad", "ok"
and "good") and treat the MT evaluation task
as a text-to-text classification problem (Raffel
et al., 2020) by having the model generate a
template sentence with the class. See §6.1 for
more details.

5 Using LLMs to Predict Error Spans

While producing quality scores that correlate with
human judgments is an important part of transla-
tion quality assessment, metrics that solely do score
prediction suffer from problems of interpretabil-
ity: if a metric assigns a low score, the downstream
users are left in the dark about which parts of the
translation were responsible for the score and thus
need to be corrected. This is especially problematic
in cases where the metric assigns a wrong score to
a translation, as it is much harder to diagnose why
the evaluation model made a mistake, and iden-
tify and prevent similar mistakes in the future. In
fact, reducing translation quality to a single score
has proven problematic even for human annotators:
asking raters to solely provide a single score can
lead to rushed and noisy judgments (Freitag et al.,
2021a) and the current gold standard for transla-
tion quality evaluation involving human annotators
is instead based on methodologies like the MQM
framework (see §2) , which provide richer feedback
by identifying error spans, categorizing them, and
evaluating their severity.

Interestingly, another emergent phenomenon in
LLMs is the success of chain-of-thought prompt-
ing (Wei et al., 2022): when defining a prompt
for a particular task, if we instruct the model to
produce a series of intermediate reasoning steps
(“let’s think step-by-step”), it tends to generate
a free-text rationale before generating an output,
and this often improves the performance on the
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Based on the given source and reference, identify the major and minor errors in this
translation. Note that Major errors refer to actual translation or grammatical errors,
and Minor errors refer to smaller imperfections, and purely subjective opinions about
the translation.

{src_lang} source: "{source}"
{tgt_lang} human reference: "{reference}"
{tgt_lang} translation: "{candidate}"
Errors: {error1:span} - {error1:severity}/{error1:category}; {error2:span} - ...

Figure 2: The AUTOMQM prompt used in this paper. Parts in purple are only included for reference-based
evaluation, while parts in orange represent slots for outputs, and are only included for in-context examples.

task at hand (Liu et al., 2023b). Furthermore, this
chain-of-thought prompting can be used to obtain
structured rationales from LLMs, and this can lead
to better performance than with free-text rationales
(Lu et al., 2023).

Motivated by these findings, we propose
AUTOMQM, a prompting technique for transla-
tion quality assessment that instructs LLMs to iden-
tify errors in a translation, and categorize the type of
error according to the MQM framework (Lommel
et al., 2014). Furthermore, we don’t ask the model
to produce a score, as the MQM framework pro-
vides an algorithmic procedure to obtain one from
identified errors: the total score is the sum of penal-
ties for all errors identified, where (roughly) major
errors get penalized with −5 and minors with −1
(see Appendix A for a more detailed description of
the scoring algorithm).3 Figure 2 shows the main
AUTOMQM prompt used in this paper.

Importantly, obtaining meaningful AUTOMQM
results in a zero-shot setting is a substantially more
challenging task compared to score prediction: we
found that, without any in-context examples, LLMs
tend to produce outputs that are either uninforma-
tive or difficult to parse. Thus we only consider the
AUTOMQM task in the few-shot scenario. Based
on the findings from §6.2, we explore the impact
of in-context learning by sampling from the exam-
ple pool using stratified sampling extended with a
set of rejection criteria (Appendix D), which en-
sures that the example set has a balance between
major and minor errors as well as diversity in the
categories of errors.

6 Experiments

6.1 Experimental Setup

Data The metrics in this work are evaluated on
both high-resource and low-resource language

3This is similar to methods that leverage external executors
to improve the performance of LLMs (Gao et al., 2022)

pairs. The three high-resource language pairs come
from the WMT’22 Metrics Shared Task (Freitag
et al., 2022): en→de, zh→en, and en→ru. The
ground-truth translation quality scores are derived
from MQM ratings in which expert annotators
marked error spans in the translations with different
severity levels which are automatically converted
to a numeric score (see §2). The four low-resource
language pairs come from the WMT’19 Metrics
Shared Task (Ma et al., 2019): en↔gu and en↔kk.
Since MQM ratings are not available for the low-
resource pairs, the ground truth quality scores are
direct assessment (DA) scores. DA scores are qual-
ity assessments assigned by non-expert raters on a
scale from 0-100, normalized per rater. See Table 9
(Appendix B) for statistics about the number of
MT systems and segments for every language pair.

Additionally, in our experiments, AUTOMQM
required in-context examples with MQM anno-
tations to work, so we restrict our evaluation of
AUTOMQM to en→de and zh→en because there
are available MQM ratings from the WMT’21 Met-
rics Shared Task (Freitag et al., 2021b) that we can
use as in-context learning example pools.

Models We base most of our experiments on the
following LLMs:

• PaLM: A 540 billion parameter autoregres-
sive Transformer model trained on 780 billion
tokens of high-quality text (Chowdhery et al.,
2022). It showed remarkable performance on
a wide-range of NLP tasks, including Machine
Translation (Vilar et al., 2022).

• PaLM-2: The successor to PaLM, the
PaLM-2 family of LLMs (Anil et al., 2023)
builds upon recent research insights, such as
compute-optimal scaling, a more multilingual
and diverse pre-training mixture, and architec-
tural/optimization improvements. We mainly
use two model sizes in the family: PaLM-2 BI-
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SON and (the larger) PaLM-2-UNICORN.4 In
addition we explore the impact of instruction-
tuning by using a UNICORN model finetuned
on the FLAN dataset (Wei et al., 2021).

For score prediction, we compare PaLM and
PaLM-2 against the GPT family of LLMs (Brown
et al., 2020; OpenAI, 2023) by leveraging the
results and outputs from the GEMBA evaluator
(Kocmi and Federmann, 2023). We then evaluate
the performance of AUTOMQM with only PaLM-2
models (which performed best in score prediction).

Additionally, for the high-resource languages,
we compare to a set of strong baseline eval-
uation metrics, MetricX-XXL and COMET-22,
which were the two top-performing metrics in the
WMT’22 Metrics Shared Task. MetricX-XXL and
COMET-22 are both finetuned regression models
trained on DA data from WMT that are initialized
with mT5 (Xue et al., 2021) and XLM-R (Conneau
et al., 2020), respectively.

For the AUTOMQM experiments, we also com-
pare against MATESE, a comparable submission
to the WMT’22 Metrics Shared task that finetuned
a XLM-R model to identify major and minor errors,
and computed a score automatically. Since we were
unable to obtain the span-level predictions for the
MATESE submission, we also compare against the
top submission to the WMT’22 Word-Level Qual-
ity Estimation Shared Task (Zerva et al., 2021):
word-level COMETKIWI (COMET-WL) (Rei et al.,
2022b), also based on an XLM-R model trained on
a combination of sentence- and word-level data. To
do so, we re-run this model on the WMT’22 Met-
rics Shared Task data, and convert the predicted
word-level OK/BAD tags into spans.5

Finetuning For regression finetuning, we use a
real-valued logit, extracted from a fixed index in the
first target token’s logit vector, as the quality signal.
(In particular, we leverage a special, unused, vocab-
ulary token.) This was the technique used to train
MetricX-XXL in the WMT 2022 Shared Task sub-
mission (Freitag et al., 2022). The regression-based
model was trained on WMT direct assessment (DA)
data from the years 2015 through 2020.

For generative classification, we bucket the
scores in the training data into five classes, where

4Information about exact number of parameters of PaLM-2
models is not publicly available.

5We consider a span as any maximal consecutive sequence
of words marked as BAD, assigning every span the major
severity.

class boundaries are assigned so that each class
contains an equal number of training examples. We
then map labels to verbal ratings from the follow-
ing set, based on their bucket: ["very bad", "bad",
"ok", "good", "very good"]. To evaluate the model,
predictions are mapped back to integer labels from
1 to 5. Any predictions not containing a substring in
the label set are considered invalid and are mapped
to 0. We experimented with finetuning on both DA
and MQM 2020 (Freitag et al., 2021a) data, and
found that the latter performed slightly better.

To assess the impact of model size, we also
finetune two additional (smaller) PaLM-2 models,
which we call S and M , comparing their finetuned
and zero-shot performance.6

Metric Meta-Evaluation The quality of an au-
tomatic evaluation metric is estimated by compar-
ing the agreement between the metric scores and
ground-truth quality scores on a large number of
translations from different MT systems, a process
known as metric meta-evaluation. This work re-
ports three different agreement scores, as follows.

The first is system-level accuracy, which calcu-
lates the percent of system pairs that are ranked the
same by the metric and ground-truth scores, micro-
averaged over a set of language pairs (Kocmi et al.,
2021). System-level scores are defined as the aver-
age score across all segments.

At the segment-level, the standard correlation
that is reported by WMT is Kendall’s τ . However,
recent work pointed out problems with Kendall’s τ
with respect to ties (Deutsch et al., 2023). In short,
different variants of τ are inconsistent with respect
to ties and even biased against metrics that predict
ties, as our metrics do in this work. Deutsch et al.
(2023) recommend reporting a pairwise accuracy
score, which rewards metrics for correctly ranking
translations as well as correctly predicting ties, in
combination with a tie calibration procedure that
automatically introduces ties into metric scores so
that the meta-evaluation is fairer. This accuracy
score, denoted acc∗, ranges between 0 and 1, and
a random metric would achieve 33% accuracy. We
report the “group-by-item” variant of the pairwise
accuracy score from Deutsch et al. (2023) in ad-
dition to Pearson’s ρ, a complementary signal to
rank-based correlations that measure the strength of
the linear relationship between two variables (and
one of the standard correlations reported in WMT).

6We use a small variation of the zero-shot prompt, asking
models for scores from the same 5 buckets used in finetuning.
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System-Level Segment-Level
All (3 LPs) EN-DE ZH-EN EN-RU

Model Ref? Accuracy ρ acc? ρ acc? ρ acc?

Baselines
MetricX-XXL 3 85.0% 0.549 61.1% 0.581 54.6% 0.495 60.6%
COMET-22 3 83.9% 0.512 60.2% 0.585 54.1% 0.469 57.7%
COMET-QE 7 78.1% 0.419 56.3% 0.505 48.8% 0.439 53.4%
Prompting
PaLM 540B 3 90.1% 0.247 55.4% 0.255 48.5% 0.180 48.6%
PaLM-2 BISON 3 88.7% 0.394 56.8% 0.322 49.3% 0.322 52.8%
PaLM-2 UNICORN 3 90.1% 0.401 56.3% 0.349 51.1% 0.352 55.3%
FLAN-PaLM-2 UNICORN 3 75.9% 0.197 55.6% 0.139 46.1% 0.198 52.0%
PaLM 540B 7 84.3% 0.239 56.1% 0.270 43.1% 0.300 51.8%
PaLM-2 BISON 7 85.0% 0.355 57.0% 0.299 48.6% 0.303 53.1%
PaLM-2 UNICORN 7 84.3% 0.275 56.1% 0.252 48.3% 0.209 49.8%
FLAN-PaLM-2 UNICORN 7 69.7% 0.116 54.6% 0.112 43.8% 0.156 47.8%
Finetune
PaLM-2 BISON (R) 3 88.0% 0.511 61.0% 0.459 51.5% 0.458 59.5%
PaLM-2 BISON (GC) 3 86.1% 0.400 59.2% 0.444 49.3% 0.365 56.0%
PaLM-2 UNICORN (R) 3 87.6% 0.508 61.1% 0.412 52.6% 0.460 60.4%
PaLM 2 BISON (R) 7 87.6% 0.490 59.9% 0.439 53.4% 0.437 59.2%
PaLM 2 BISON (GC) 7 86.1% 0.368 57.5% 0.420 47.3% 0.390 54.9%
PaLM 2 UNICORN (GC) 7 86.1% 0.407 57.9% 0.402 45.6% 0.411 55.3%

Table 1: Meta-evaluation results at system and segment-level for the high-resource language pairs. Finetuned (R)
and (GC) represent the regression and generative classification objectives (§4.2). 3and 7 represent reference-based
and reference-less metrics, respectively.

Span Meta-Evaluation Since AUTOMQM pro-
vides not only scores but also the identified error
spans, we can compare the predicted spans with the
errors marked by annotators in the MQM annota-
tions. We evaluate quality of predicted spans using:
(1) Span Precision (SP), which measures the over-
lap of predicted spans and gold (annotated) spans;
and (2) Major recall (MR), which captures the per-
centage of gold major errors that were predicted as
errors (either minor or major).

More formally, consider the set of ground truth
spans S?, where each span consists of a sequence of
words, i.e., si = (w(a), w(a+1), · · · ). Let S?

maj ⊆
S? be the subset containing only the major errors.
Given a span set S, we define its positional set
P (S) as the set containing the positions of all the
words in every span in S. For example, assuming a
span si = (w(n), w(n+1), · · · ) in S starts at the nth
position in the text, its corresponding positional set
will include the positions {n, n+1, ..., n+len(si)−
1}. Then for a set of predicted spans Ŝ, SP and
MR are defined as:

SP(Ŝ) =
|P (Ŝ) ∩ P (S?)|
|P (Ŝ)|

(1)

MR(Ŝ) =
|P (Ŝ) ∩ P (S?

maj)|
|P (S?

maj)|
(2)

Intuitively, we care for overall precision (regard-
less of severity) since we want to make sure pre-
dicted errors tend to be marked by annotators as
well, but for recall we care mostly for major errors,

as these have a larger impact on translation qual-
ity and are more critical to identify. Additionally,
we also report the (3) Matthews Correlation Coeffi-
cient (MCC), one of the official metrics in the word-
level quality estimation tasks (Zerva et al., 2022).

6.2 Results
6.2.1 Score Prediction
Table 1 summarizes the meta-evaluation results, at
the system and segment level, for both the zero-shot
prompting and finetuning settings.

Prompting A first observation is almost all zero-
shot LLM evaluators have higher system-level per-
formance than learned metrics (with and without
references), with PaLM 540B and PaLM-2 UNI-
CORN achieving the best performance. At the seg-
ment level, the story is more complicated: similarly
to Kocmi et al. (2022), we find that none of the
LLMs we explored was able to consistently out-
perform the baseline learned metrics. We see that
PaLM-540B is a particularly poor reference-based
evaluator, which is surprising given its system-level
performance. Unexpectedly, instruction-tuning
with FLAN seems to degrade performance, with
FLAN-PaLM-2 UNICORN achieving poor perfor-
mance at both the system and segment levels.7

Nevertheless, PaLM-2 models achieve high cor-
relations with human judgments, and the reference-

7Note that this might be a problem with the FLAN dataset
and not instruction-tuning in general, as the GPT models are
also instruction-tuned and perform well.
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System Segment acc?

Model Ref? All EN-DE ZH-EN EN-RU
GEMBA
GPT-3.5 3 85.4% 54.9% 49.5% 47.5%
GPT-4 3 88.7% 57.8% 52.6% 55.0%
GPT-3.5 7 82.5% 56.1% 49.7% 49.3%
GPT-4 7 89.1% 56.4% 53.4% 54.8%

BISON 3 88.7% 56.8% 49.3% 52.8%
UNICORN 3 90.1% 56.3% 51.1% 55.3%
BISON 7 85.0% 57.0% 48.6% 53.1%
UNICORN 7 84.3% 56.1% 48.3% 49.8%

Table 2: Comparison between PaLM-2 and GPT-based
GEMBA (Kocmi et al., 2022) at the system and segment levels
for the high-resource language pairs.

less PaLM-2 BISON is competitive with the learned
baselines, particularly at assessing alternative trans-
lations of the same sentence (acc∗). When com-
paring PaLM-2 models with Kocmi et al. (2022)’s
GPT-based GEMBA evaluator (Table 2), we see
that both families of LLMs perform similarly,
with PaLM-2 models exhibiting higher system-
level performance than GPT-based GEMBA, while
GEMBA achieves better segment-level accuracy,
particularly in the reference-less setting.

Figure 3: Distribution of scores for various LLM reference-
based evaluators, on the EN-DE test set. Note that the y axis
is in log-scale.

Figure 3 shows the distribution of scores pro-
duced by PaLM- and PaLM-2-based evaluators.
We find that, despite being prompted to give a score
in the 0-100 range, these models almost always out-
put one of a very limited set of scores (e.g. 0, 50,
90, 95). Given Kocmi and Federmann (2023)’s
similar findings with GPT models, it seems that
this is a consequence of the pretraining objective.

Finetuning Despite their already-great perfor-
mance in the zero-shot setting, we find that fine-
tuning LLMs can further improve LLM evaluators’
segment-level scores. This is particularly obvious
for the reference-less evaluators, where a finetuned
PaLM-2 BISON achieves state-of-the-art perfor-
mance in segment-level correlations and compa-
rable system-level accuracy across all language

pairs. Moreover, when we look at how perfor-
mance scales with parameter count (Figure 4), we
observe an interesting trend: while smaller models
are not capable of being effective zero-shot evalu-
ators, finetuning them leads to competitive perfor-
mance, and only a slight decrease when compared
to their larger finetuned counterparts.

S M Bison
Model
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0.3
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Zero-Shot
Finetune

Figure 4: Behavior of Pearson as we scale the LLM’s param-
eter count. Note that the x axis is not to-scale with regard to
parameter count.

In-context Learning Figure 5 shows the mean
and interquartile range (IQR) of the performance
as we increase the number of in-context examples
k (with 100 example sets per k) sampled with strat-
ified sampling (see Appendix E for uniform). Sur-
prisingly, despite evidence of the benefits of in-
context learning for many tasks, we found that
including in-context examples during evaluation
(almost) never led to better performance, either
with uniform or stratified sampling.

0 1 2 3 4
# of in-context examples

0.10
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Figure 5: Mean Pearson and its interquartile range (IQR) in
the WMT22 EN-DE test set, as we increase the number of
in-context examples with stratified sampling

To investigate the cause of this disappointing per-
formance, we looked at how particular in-context
example sets affect the distribution of scores pro-
duced by LLM-based evaluators. Figure 6 shows
the distribution of scores over the whole test set
for the 1-shot and 2-shot settings, with different
in-context examples sets. We can see that output
distribution is heavily biased by the scores in the
in-context examples: despite never predicting 79
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Figure 6: Distribution of scores for PaLM-2 (BISON) models
for 1-shot (top) and 2-shot (bottom) setups, with various in-
context learning sets for each (and their scores in the legend)

in the zero-shot setting, when a single example
with that score is included, it starts to dominate
the model predictions. This seems to hint that
LLMs “overfit” to the specific scores provided as
examples, rather than generalizing to the broader
evaluation task, which could explain the lackluster
performance of in-context learning.

6.3 Low Resource Languages

Table 3 shows the performance of PaLM-2 mod-
els at score prediction for low-resource transla-
tion. Overall, we find that similar to high-resource
LPs, these models are good zero-shot evaluators,
with system-level accuracies around 90%. How-
ever, zero-shot LLMs underperform learned met-
rics, even when these metrics also weren’t exposed
to data in these low-resource languages.

System Segment ρ
Model Ref? All EN-KK EN-GU KK-EN GU-EN

Baseline

MetricX-XXL? 3 94.0% 0.666 0.701 0.539 0.409
Prompting

BISON 3 92.2% 0.605 0.540 0.462 0.339
UNICORN 3 87.4% 0.609 0.621 0.495 0.384
BISON 7 89.8% 0.567 0.478 0.381 0.313
UNICORN 7 84.4% 0.536 0.523 0.433 0.334

Table 3: Meta-evaluation results for system-level accuracy
and segment-level Pearson on the low-resource languages,
using PaLM-2 for score prediction. ?Note that the baseline is
slightly different from the high-resource case, being trained on
the same data but without these low-resource language pairs.

6.3.1 AUTOMQM
Figure 14 shows the mean and interquartile range
(IQR) of the performance of PaLM-2 BISON with
AUTOMQM, as we increase the number of in-
context examples (again, with 100 example sets per
k). Contrary to the performance with score predic-
tion, we find that performance with AUTOMQM
seems to (mostly) scale with the number of in-
context examples: performance increases monoton-
ically with up to 4 in-context examples and plateaus
thereafter. Additionally, the variance across the in-
context learning sets seems to be lower, with most
example sets exhibiting less than 0.05 Pearson dif-
ference from the best-performing sets. All this sug-
gests that LLM evaluators are much more robust to
the choice of in-context examples when prompted
for AUTOMQM rather than for score prediction.
We also find that the behavior of in-context learn-
ing is quite similar for both reference-based and
reference-less evaluation tasks. Finally, we observe
that the example sets that perform well for one task
generally work well for the other, with performance
on both settings given a fixed in-context set being
highly correlated, as shown in Figure 7.
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Figure 7: Scatter plot of the Pearson of PaLM-2 (BISON)
models, with/without including the reference in the prompt,
for each in-context learning setting tried.

Table 4 shows the meta-evaluation results for
PaLM-2 BISON and UNICORN prompted with
AUTOMQM (using the best-performing in-context
learning sets in Figure 14). For ease of comparison,
we also report their performance when prompted
for score prediction, as well as the performance
of the baselines. Overall, prompting LLMs with
AUTOMQM seems to lead to significant improve-
ments in evaluating machine translation quality,
particularly for larger models: UNICORN achieves
better performance (across all meta evaluations)
with it than when prompted for score prediction,
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System-Level Segment-Level
All (2 LPs) EN-DE ZH-EN

Model Ref? Accuracy ρ acc? ρ acc?

Baselines
MetricX-XXL 3 81.1% 0.549 61.1% 0.581 54.6%
MATESE 3 79.9% 0.391 58.8% 0.528 51.5%
COMET-QE 7 76.9% 0.419 56.3% 0.505 48.8%
MATESE-QE 7 73.4% 0.298 57.9% 0.468 50.1%
COMET-WL 7 71.6% 0.418 57.1% 0.406 51.5%
Score Prediction
PaLM-2 BISON 3 86.4% 0.394 56.8% 0.322 49.3%
PaLM-2 UNICORN 3 86.4% 0.401 56.3% 0.349 51.1%
PaLM-2 BISON 7 84.0% 0.355 57.0% 0.299 48.6%
PaLM-2 UNICORN 7 80.5% 0.275 56.1% 0.252 48.3%
AutoMQM
PaLM-2 BISON 3 84.0% 0.369 59.2% 0.355 48.4%
PaLM-2 UNICORN 3 87.6% 0.432 59.1% 0.442 51.8%
PaLM 2 BISON 7 87.6% 0.297 55.2% 0.331 48.0%
PaLM 2 UNICORN 7 83.4% 0.368 56.4% 0.429 50.2%

Table 4: Meta-evaluation results for PaLM-2 models using AutoMQM and score prediction, at the system and
segment levels for multiple language pairs.

and its reference-less version is competitive with
the best learned metric even at the segment level.
However, for the smaller BISON, the benefits of
AUTOMQM are less clear, with both techniques
performing comparably. This hints that scale is
necessary for zero- and few- shot fine-grained evalu-
ation (like with AUTOMQM). We also find that the
distribution of scores produced by LLMs prompted
with AUTOMQM is much closer to the gold MQM
distribution, with models outputting a much larger
set of scores, and in the same ranges as annotators
do (see Figure 8).

Figure 8: Distribution of scores for PaLM-2 models using
AUTOMQM, on WMT22 EN-DE

Finally, when evaluating the error spans pro-
duced by LLMs prompted with AUTOMQM (Ta-
ble 5), we find that PaLM-2 models are able to
identify most of the major errors. However, it does
seem to over-predict errors (with errors predicted
by UNICORN having on average∼5 words per span
vs ∼2 words in the ground truth) and have overall

EN-DE ZH-EN

Model R? SP MR MCC SP MR MCC
Baselines
COMET-WL 7 0.267 0.250 0.161 0.364 0.178 0.152
AutoMQM
BISON 3 0.095 0.749 0.060 0.252 0.255 0.109
UNICORN 3 0.175 0.628 0.193 0.238 0.476 0.143
BISON 7 0.119 0.520 0.092 0.224 0.311 0.091
UNICORN 7 0.150 0.580 0.150 0.229 0.488 0.133

Table 5: Span-level meta-evaluation on WMT22 for PaLM-2
models using AutoMQM. SR and MR represent span precision
and major recall, respectively.

low span precision. Similarly to overall score cor-
relations, scale also seems to be important for the
quality of spans produced by AUTOMQM, with
UNICORN outperforming BISON at most metrics.
Additionally, UNICORN prompted with AutoMQM
predicts spans of comparable quality to the ones
produced by current state-of-the-art learned word-
level evaluators (trained on a considerable number
of fine-grained annotations derived from MQM):
while word-level models are more precise, their
overall span correlation (MCC) is comparable, and
they miss considerably more major errors than
LLMs (despite only leveraging a handful of an-
notations).

7 Conclusion

In this study, we have systematically investi-
gated the capabilities of large language models
for machine translation evaluation through score
prediction, and proposed AUTOMQM, a novel
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prompting technique that leverages the Multidi-
mensional Quality Metrics (MQM) framework for
interpretable MT evaluation using LLMs.

We demonstrated that just prompting LLMs for
score prediction leads to state-of-the-art system-
level evaluators, but still falls short of the best
learned metrics at the segment-level (with fine-
tuning being necessary to close this gap). Then
we showed that AUTOMQM can further improve
the performance of LLMs without finetuning while
providing interpretability through error spans that
align with human annotations.

Our findings surrounding finetuning LLMs for
score prediction hint that LLMs’ performance in
machine translation evaluation could be further im-
proved by finetuning these models on fine-grained
human judgment data (like MQM) and is a direc-
tion we are actively pursuing. Additionally, the
general-purpose nature of LLMs may enable the
application of similar prompting techniques (lever-
aging some fine-grained evaluation schemes) to
other evaluation problems (Wu et al., 2023).
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You will be assessing translations at the segment level, where a segment may contain one or more
sentences. Each segment is aligned with a corresponding source segment, and both segments are
displayed within their respective documents. Annotate segments in natural order, as if you were reading
the document. You may return to revise previous segments.

Please identify all errors within each translated segment, up to a maximum of five. If there are more than
five errors, identify only the five most severe. If it is not possible to reliably identify distinct errors because
the translation is too badly garbled or is unrelated to the source, then mark a single Non-translation error
that spans the entire segment.

To identify an error, highlight the relevant span of text, and select a category/sub-category and severity
level from the available options. (The span of text may be in the source segment if the error is a source
error or an omission.) When identifying errors, please be as fine-grained as possible. For example, if a
sentence contains two words that are each mistranslated, two separate mistranslation errors should be
recorded. If a single stretch of text contains multiple errors, you only need to indicate the one that is most
severe. If all have the same severity, choose the first matching category listed in the error typology (eg,
Accuracy, then Fluency, then Terminology, etc).

Please pay particular attention to document context when annotating. If a translation might be questionable
on its own but is fine in the context of the document, it should not be considered erroneous; conversely,
if a translation might be acceptable in some context, but not within the current document, it should be
marked as wrong.

There are two special error categories: Source error and Non-translation. Source errors should be
annotated separately, highlighting the relevant span in the source segment. They do not count against the
five-error limit for target errors, which should be handled in the usual way, whether or not they resulted
from a source error. There can be at most one Non-translation error per segment, and it should span the
entire segment. No other errors should be identified if Non-Translation is selected.

Table 6: MQM annotator guidelines

Since MQM doesn’t ask annotators for quality
scores, those scores are derived automatically from
the identified error spans and their classifications,
based on a weighting of each error severity and cat-
egory. Table 8 summarizes this weighting scheme,
in which segment-level scores can range from 0
(perfect) to 25 (worst). The final segment-level
score is an average over scores from all annotators.
In some settings (e.g. calculating correlation for
learned metrics), the scores are negated.

We use the same weighting to obtain scores from
errors identified by AUTOMQM.

B Datasets’ Statistics

See Table 9 for a summary of the number of sys-
tems and annotated segments per system in the
evaluation datasets used in this work.

C Score Prediction Prompt

Figure 9 contains the GEMBA-SQM prompt that
we used for our 0-shot experiments.

D Sampling in-context learning
examples for AutoMQM

Figure 10 shows the rejection criteria used when
sampling example sets as discussed in §4.

E Additional Results

Figures 11, 12, 13 and 8 present additional experi-
mental results.
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Error Category Description

Accuracy Addition Translation includes information not present in the source.
Omission Translation is missing content from the source.
Mistranslation Translation does not accurately represent the source.
Untranslated text Source text has been left untranslated.

Fluency Punctuation Incorrect punctuation (for locale or style).
Spelling Incorrect spelling or capitalization.
Grammar Problems with grammar, other than orthography.
Register Wrong grammatical register (eg, inappropriately informal pronouns).
Inconsistency Internal inconsistency (not related to terminology).
Character encoding Characters are garbled due to incorrect encoding.

Terminology Inappropriate for context Terminology is non-standard or does not fit context.
Inconsistent use Terminology is used inconsistently.

Style Awkward Translation has stylistic problems.

Locale Address format Wrong format for addresses.
convention Currency format Wrong format for currency.

Date format Wrong format for dates.
Name format Wrong format for names.
Telephone format Wrong format for telephone numbers.
Time format Wrong format for time expressions.

Other Any other issues.

Source error An error in the source.

Non-translation Impossible to reliably characterize distinct errors.

Table 7: MQM hierarchy.

Score the following translation from {src_lang} to {tgt_lang} with respect to the
human reference on a continuous scale from 0 to 100 that starts with "No meaning
preserved", goes through "Some meaning preserved", then "Most meaning preserved
and few grammar mistakes", up to "Perfect meaning and grammar".

{src_lang} source: "{source}"
{tgt_lang} human reference: "{reference}"
{tgt_lang} translation: "{candidate}"
Score (0-100): {score}

Figure 9: The score prediction prompt used in this paper. Equivalent to the GEMBA-SQM prompt in Kocmi and
Federmann (2023). Parts in purple are only included for reference-based evaluation, while parts in orange represent
slots for outputs and are only included for in-context examples.

Severity Category Weight

Major Non-translation 25
all others 5

Minor Fluency/Punctuation 0.1
all others 1

Neutral all 0

Table 8: MQM error weighting.

LP #Sys #Seg

en→de 13 1315
zh→en 14 1875
en→ru 15 1315

LP #Sys #Seg

en→kk 11 998
kk→en 11 1000
en→gu 11 998
gu→en 11 1016

Table 9: The number of systems and segments that
have MQM scores (left) and DA scores (right) used as
ground-truth in this work.
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1 def check_icl_set(
2 examples: pd.DataFrame,
3 min_errors=3,
4 majmin_threshold=2,
5 cat_diversity=2,
6 min_clen=20,
7 max_clen=400,
8 ):
9 # Check if they have the same number of spans as severity/category

10 if not examples.apply(
11 lambda r:
12 len(r[’span’]) == len(r[’severity’]) and len(r[’span’]) == len(r[’category’]),
13 axis=1
14 ).all():
15 return False
16
17 # Check if there are at least min_errors
18 if examples[’severity’].apply(lambda svs: len(svs)).sum() < min_errors:
19 return False
20
21 # Check that there’s a balance of major and minor errors.
22 major_count = examples[’severity’].apply(lambda svs: sum([s==’major’ for s in svs])).sum()
23 minor_count = examples[’severity’].apply(lambda svs: sum([s==’minor’ for s in svs])).sum()
24 if abs(major_count - minor_count) > majmin_threshold:
25 return False
26
27 # Check that at least cat_diversity error types are represented.
28 categories = examples[’category’].apply(lambda cs: [c.split("/")[0] for c in cs])
29 represented_error_types = set().union(*categories.tolist())
30 if len(represented_error_types) < cat_diversity:
31 return False
32
33 top_clen = examples.apply(
34 lambda row: max(len(row[s]) for s in (’source’, ’reference’, ’candidate’)
35 ), axis=1).max()
36 bot_clen = examples.apply(
37 lambda row: min(len(row[s]) for s in (’source’, ’reference’, ’candidate’)),
38 axis=1).min()
39
40 if top_clen > max_clen or bot_clen < min_clen:
41 return False
42
43 # All checks passed.
44 return True

Figure 10: Rejection criteria used when sampling in-context learning examples for AUTOMQM.
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Figure 11: Mean Pearson and its interquartile range (IQR), as we increase the number of in-context examples in the
score prediction prompt, sampled with uniform (left) and stratified (right) sampling, for WMT22 EN-DE.
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Figure 12: Mean Pearson and its interquartile range (IQR), as we increase the number of in-context examples in the
score prediction prompt, sampled with uniform (left) and stratified (right) sampling, for WMT22 ZH-EN.

Figure 13: Distribution of scores for various LLM reference-
based evaluators, on the ZH-EN test set. Note that the y axis
is in log-scale.
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Figure 14: Mean Pearson and its interquartile range (IQR), as we increase the number of in-context examples in the
AUTOMQM prompt, for EN-DE (left) and ZH-EN (right).


