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Abstract

This paper introduces the overall situation of
the Natural Language Processing Laboratory of
Tianjin University participating in the WMT23
machine translation evaluation task from Chi-
nese to English. For this evaluation, the base
model used is a Transformer based on a Mix-
ture of Experts (MOE) model. During the
model’s construction and training, a basic dense
model based on Transformer is first trained
on the training set. Then, this model is used
to initialize the MOE-based translation model,
which is further trained on the training cor-
pus. Since the training dataset provided for
this translation task is relatively small, to bet-
ter utilize sparse models to enhance translation,
we employed a data augmentation technique for
alignment. Experimental results show that this
method can effectively improve neural machine
translation performance.

1 Introduction

Machine translation, as a core branch of natural
language processing, has experienced significant
development and received widespread attention in
the past few years. Propelled by deep learning
and neural networks, architectures like the Trans-
former(Vaswani et al., 2017) and its derivative mod-
els, such as BERT (Devlin et al., 2019) and GPT
(Brown et al., 2020), have become mainstream
methods for achieving efficient machine translation.
These models, by learning underlying representa-
tions of language, are able to capture complex re-
lationships and rich semantic information between
texts.

Although neural machine translation with dense
models has a promising future, it still faces many
challenges. One of the main issues with the stan-
dard Transformer-based dense multilingual neural
machine translation model is the model’s capacity
bottleneck(Zhu et al., 2021; Fedus et al., 2022b;
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Cheng et al., 2021). While increasing the model’s
depth and breadth can effectively enhance its ca-
pacity, it severely reduces the model’s execution
efficiency and increases the hardware requirements
for training the model. This often results in the
need for large GPU devices, limiting the model’s
applications. Therefore, in recent years, multilin-
gual neural machine translation based on Mixture-
of-Experts (MOE) (Fedus et al., 2022a) has been
proposed. Compared to dense models, MOE-based
multilingual machine translation activates only a
portion of the network parameters during model
training and inference (Lepikhin et al., 2021), giv-
ing it excellent computational efficiency. Under the
same hardware conditions, it can achieve greater
model capacity (compared to dense models, ca-
pacity can be increased by several tens of times)
(Shazeer et al., 2017) and shorter computation time.
Therefore, in this translation task evaluation, our
basic model framework is based on the MOE Trans-
former. Furthermore, when there is limited avail-
able data, overfitting can easily occur (Wang et al.,
2022; Pan et al., 2021). Combining the knowl-
edge of multiple experts can often provide more
accurate predictions than a single model. During
model training, by allocating experts to focus on
different input subsets, MOE can help alleviate the
overfitting issue (Szymanski and Lemmon, 1993).

In this paper, we primarily focus on the WMT23
Chinese to English machine translation task. To
enhance the model’s capacity while maintaining a
high computational efficiency, we employ a neu-
ral machine translation model based on the MOE
Transformer framework. This model can effec-
tively expand the model parameters. Moreover,
since it’s a domain-specific translation task with
limited translation data corpus, we employed a
strategy to initialize MOE using dense models ef-
fectively. The rest of this paper is organized as
follows. In Section 2, we will present the mod-
els and methods we designed. Section 3 primarily
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showcases the experimental results and discusses
and analyzes the outcomes. Section 4 concludes
the paper and provides an outlook.

2 Method Description

To evaluate machine translation from Chinese to
English, we need to construct a machine translation
model. Therefore, in section 2.1, we first introduce
the model’s design and initialization strategy. In
section 2.2, we primarily discuss the data alignment
augmentation method, aiming to further utilize the
data to enhance the model’s performance. Finally,
we introduce the model’s training strategy.

2.1 Model Design

Compared to the MOE model, dense models per-
form better in bilingual settings (Costa-jussà et al.,
2022). Given that the WMT23 machine translation
evaluation task has relatively limited corpora, in
order to enhance the model’s performance, we first
pretrain a dense model. Then, we use this dense
model to initialize the MOE model. The framework
of the model is illustrated in the Figure 1.

We first employ a 6x6 Transformer-based
encoder-decoder framework to train the dense
model. We can then use the parameters of this
pretrained model to initialize the MOE-based trans-
lation model. The difference between the dense
model and the MoE model lies in the fact that some
FFN layers are replaced with MoE layers (Lin et al.,
2020), while the rest of the structure remains identi-
cal. Therefore, we can directly initialize the embed-
ding, Self-Attention, and Cross-Attention using the
dense model. As for the MoE layer, it has a routing
module and multiple FFN layers of the same size.
We take the FFN layer parameters from the corre-
sponding layer in the dense model (Komatsuzaki
et al., 2023), add noise to increase the diversity of
the initializing parameters, and then use these noisy
FFN layer parameters to initialize each FFN in the
MoE layer one by one. For the routing module, we
initialize it randomly.

Specifically, our model in this paper adopts three
stages. First, we train a basic multilingual neural
machine translation model using the Transformer
model. Upon successfully training the multilingual
machine translation model, we select all of its pa-
rameters to initialize the MoE model. We need
to create multiple expert sub-networks, and each
expert sub-network will replicate the parameters of
the corresponding FFN layer.

Next, we use the MoE model for self-supervised
learning. Self-supervised learning is an unsuper-
vised learning method that generates its own labels.
For the machine translation task, one method of
self-supervised learning is to use the original lan-
guage text as input and then predict its translation.
We mask 35% of the input text at random on a
per-line basis. Ultimately, we compare the pre-
dicted text with the original text, compute the loss,
and then update the model parameters. Finally,
we use the MoE model, which has undergone self-
supervised learning, to initialize a new MoE ma-
chine translation model. The expert sub-networks
of the new model will replicate the parameters of
the self-supervised learning model (Koishekenov
et al., 2023). We then continue to train the new
model until it meets our performance criteria.

2.2 Training Strategy

We preprocess all the data, removing special char-
acters and standardizing punctuation marks. We
uniformly apply SentencePiece (spm) (Kudo and
Richardson, 2018) tokenization and construct a uni-
fied vocabulary with a size of 32,000. Additionally,
we use the fairseq tool (Ott et al., 2019) for binariza-
tion. During training and decoding, the vocabulary
is shared. We chose the Transformer as the founda-
tional architecture and made improvements upon it
to train bilingual models, multilingual dense mod-
els, and multilingual MOE models. We uniformly
divided the data into training and validation sets.
Since there is no test set, the final results are eval-
uated on the validation set. The model employs
Adam (Kingma and Ba, 2015) as the optimizer to
update model parameters. Every 30k steps, the
model’s performance is evaluated using the valida-
tion set. We use Polynomial Decay to dynamically
adjust the learning rate, with the basic idea being to
gradually decrease the learning rate as training pro-
gresses. For the dense model, it is trained for 100k
steps. For the self-supervised model, we initialize
the MOE model parameters using the dense model.
We set the number of experts to 32, frequency to 4,
expert capacity size to 1.0, and train for 50k steps.
For the MOE model, we initialize the MOE model
parameters using the self-supervised model. We set
the number of experts to 32, frequency to 4, expert
capacity size to 1.0, and train for 70k steps. During
decoding, we adopt the beam search strategy, and
the evaluation metric used is sacrebleu (Post, 2018)
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Figure 1: Taking the encoder as an example, the initialization process from the pretrained dense model to MOE is
described. The process for the decoder is the same.

3 Experimental Results and Analysis

We first introduce the parameter settings of our
trained models, and then analyze the experimental
results.

3.1 Setting
The model is improved upon fairseq (MoE ver-
sion) 1. The training precision is uniformly set to
fp16. Both the encoder and decoder are set to 6
layers with 8 attention heads each. The word em-
bedding size is 512, and the hidden layer size is
1024. The loss function used is the cross-entropy
function, and the optimizer is Adam, with beta1 set
to 0.9 and beta2 set to 0.98. During the pretraining
phase, the learning rate is set to 2e-4. A polynomial
learning rate scheduling strategy is employed to op-
timize the learning rate, with warmup set to 4000.
Dropout is set to 0.1. Each batch has a maximum
of 4096 tokens, and gradients are updated every 4
accumulated batches.

3.2 Experimental Results
For this evaluation task, we did not compare our
system with the current state-of-the-art NMT sys-
tems. The reason is that the organizers fixed the

1https://github.com/facebookresearch/fairseq/tree/moe

Model Dense-MOE Dense
Test1 21.59 19.08
Test2 17.89 15.48

Table 1: Evaluation Results for Dense-MOE and Dense.

training data and system configurations to ensure
a fair comparison among all participants.We use
the Test1 and Test2 provided by the organizers as
evaluation targets.

In the experiments, we used sacrebleu as the eval-
uation metric. From Table 1, we can first observe
that the method we employed in this paper achieved
better performance compared to the dense model.
After training, the dense model has already learned
the basic patterns of the dataset. Using these param-
eters to initialize the MOE model allows the MOE
model to start from a more optimal initial state,
thereby converging quickly. Using the parameters
of the dense model as initial values ensures that the
MOE model has already grasped the basic features
of the data at the onset of training. This provides a
stable starting point for the MOE model, reducing
the risks of instability and overfitting during train-
ing. Each expert in the MOE model can specifically
handle certain distinct patterns or features in the
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data. By utilizing the pretrained dense model pa-
rameters, each expert in the MOE model can more
rapidly identify its area of expertise, leading to a
more efficient decomposition of model tasks. Even
on the same dataset, due to its structural character-
istics, the MOE model can capture more complex
patterns in the data. With the initialization from
the dense model’s parameters, the MOE model can
further optimize on this foundation, enhancing the
model’s expressive capability.

4 Conclusion

This paper introduces the main techniques and
methods used for the WMT23 Chinese to English
neural machine translation evaluation task. We
employ a multilingual neural machine translation
model based on the MOE Transformer framework.
This model effectively achieves a vast and effi-
cient parameterization. Moreover, given that it’s a
domain-specific translation task with limited trans-
lation data corpus, we utilized an effective strat-
egy of initializing the MOE model using a dense
model. This ensures that the MOE model has al-
ready grasped the fundamental features of the data
at the start of training, providing a stable founda-
tion for the MOE model and reducing the risks
of instability and overfitting during training. Ex-
perimental results demonstrate that these methods
can significantly improve the translation quality of
neural machine translation.
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