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Abstract
We describe TTIC’s submission to the WMT
2023 Sign Language Translation shared task
on the Swiss-German Sign Language (DSGS)
to German track. Our approach explores the
advantages of using large-scale self-supervised
pre-training in the task of sign language trans-
lation, over more traditional approaches that
rely heavily on supervision, along with costly
labels such as gloss annotations. The proposed
model consists of a VideoSwin transformer for
image encoding, and a T5 model adapted to
receive VideoSwin features as input instead
of text. On WMT-SLT 22’s development set,
this system achieves 2.03 BLEU score, a 59%
increase over the previous best reported per-
formance. On the official test set, our primary
submission achieves 1.1 BLEU score and 17.0
chrF score. It also achieves the highest human
evaluation score among all the participants.

1 Introduction

Sign language translation (SLT) is the task of trans-
lating a signed language to a written language, typ-
ically the lingua franca of the region the signed lan-
guage is utilized. In recent years, SLT has received
increased attention from the natural language pro-
cessing (NLP) and computer vision (CV) commu-
nities.

The best-performing SLT models primarily rely
on glosses (Zhou et al., 2021; Chen et al., 2022),
a combination of morpheme translations into the
target language along with differentiating phono-
logical features like handshape and location. How-
ever, annotating glosses is expensive (Müller et al.,
2023b), and recent research has begun to move
away from gloss-based translation (Shi et al.,
2022a; Uthus et al., 2023; Lin et al., 2023), particu-
larly in regimes where larger datasets are available.

In this paper, we study large-scale self-
supervision and noisy supervision for Swiss-
German Sign Language (DSGS from the Ger-
man Deutschschweizer Gebärdensprache) to Ger-

man SLT, as part of the WMT-SLT 23 shared
task (Müller et al., 2023a). Given recent find-
ings on self-supervised transformers’ perfomance
on isolated sign recognition and feature extrac-
tion (Sandoval-Castañeda et al., 2023), we utilize
a VideoSwin (Liu et al., 2022) visual feature ex-
tractor with BEVT pre-training (Wang et al., 2022).
Additionally, we use T5 (Raffel et al., 2020) as a
sequence-to-sequence translation model into Ger-
man because of its state-of-the-art performance on
American Sign Language (ASL) to English SLT
with pose input (Uthus et al., 2023). Depending
on the generation algorithm, our model achieves
either the highest BLEU score (Papineni et al.,
2002) or the highest chrF (Popović, 2015) in the
task’s leaderboard. With top-k beam sampling, it
achieves 0.8 BLEU and 17.3 chrF, and with diverse
beam search (Vijayakumar et al., 2016), it achieves
1.1 BLEU and 17.0 chrF.

2 Method

Our model follows the most common gloss-free
translation architecture, composed of a visual en-
coding backbone and a transformer-based model
for sequence modeling. Our visual backbone
is a Video Swin Transformer (VideoSwin) and
our sequence-to-sequence model is a Text-to-Text
Transfer Transformer (T5).

2.1 VideoSwin

VideoSwin is an architecture proposed as an exten-
sion of the shifted-window transformer (Liu et al.,
2021), a hierarchical vision transformer that relies
on windowed self-attention for computational effi-
ciency. We pre-train a VideoSwin using video-only
BEVT pre-training (Wang et al., 2022) on Ope-
nASL (Shi et al., 2022a), using the codebook from
a discrete variational autoencoder (dVAE) (Ramesh
et al., 2021) to produce the labels in the self-
supervision objective. Though OpenASL is orig-
inally a sign language translation dataset, we ig-
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nore the English translations and train exclusively
on the dataset’s videos. Then, we fine-tune on the
gloss-based version (Dafnis et al., 2022; Neidle and
Ballard, 2022) of WLASL2000 (Li et al., 2020) for
supervised isolated sign language recognition.

Given a video with dimensions 16× 224× 224,
that is, 16 frames of height 224 pixels and width
224 pixels, VideoSwin first divides the input into
patches of shape 2 × 4 × 4 and produces a 128-
dimensional vector representation for each patch,
producing a tensor of shape 8×56×56×128. After
the first two windowed self-attention blocks, patch
representations are divided into non-overlapping
groups of four spatially contiguous patches, which
are then projected into a single 256-dimensional
vector each. This is done again after two windowed
self-attention blocks, and once more after eighteen
windowed self-attention blocks. The resulting ten-
sor after these patch merging steps has dimensions
8× 7× 7× 1024.

For translation, we pad the video at the end such
that the number of frames is a multiple of 16, divide
it into non-overlapping segments of 16 contigu-
ous frames, and run each segment independently
through the model. The visual features extracted
from the model are the output of the last windowed
self-attention block from VideoSwin for each video
segment. Then, we concatenate them across the
time dimension, and remove the model’s outputs
that correspond to the padding frames. This is done
both during training and during inference. More
formally:

f1:⌈T/2⌉ = Mv(I1:T ) (1)

where I1:T is a sequence of T image frames, Mv

is our VideoSwin model, and f1:⌈T/2⌉ is the result-
ing sequence of visual features, with dimensions
⌈T/2⌉ × 7× 7× 1024.

2.2 T5
T5 is a standard encoder–decoder text trans-
former (Raffel et al., 2020). Recent research has
found that T5 pre-trained on English and fine-tuned
for ASL to English translation produces state-of-
the-art results using pose input (Uthus et al., 2023).
We use a T5 model pre-trained on the German
Colossal Cleaned Common Crawl (GC4) corpus,
which is a cleaned and pre-processed German-
only corpus based on Common Crawl. We take
pre-trained checkpoints1 from HuggingFace (Wolf
et al., 2020).

1https://huggingface.co/GermanT5

Since our sequence of visual features f1:⌈T/2⌉
has dimensions ⌈T/2⌉ × 7× 7× 1024, we project
these into a single vector per timestep, ⌈T/2⌉ ×
1024. To this end, we use a simple convolutional
layer with kernel size 1 × 7 × 7. We replace the
word embeddings layer from the T5 model with
this convolutional layer. This is the only compo-
nent trained from scratch in our DSGS to German
translation model.

2.3 Training Loss

We use cross-entropy loss for BEVT pre-training,
isolated sign language recognition (ISLR) fine-
tuning, text-to-text pre-training, and features-to-
text translation.

2.4 Inference

We expand on the effect of generation algorithms
in Section 4.5. For our primary submission, our
generation algorithm of choice is diverse beam
search (Vijayakumar et al., 2016), with 5 beams, 5
beam groups, and a diversity penalty of 1.

3 Experimental Setup

3.1 Data

We use both last year’s and this year’s WMT-SLT
datasets. Last year’s training dataset is composed
of data from FocusNews and SRF, both news TV
programs, consisting of 17,207 manually aligned
DSGS–German pairs, for a total of 35 hours. Ger-
man text is obtained from the subtitles that corre-
spond to the original spoken German content, and
DSGS video is obtained from live translators. Man-
ual alignment is necessary to ensure that each trans-
lated sentence in the video is assigned the correct
German sentence. In contrast, this year’s dataset
consists of 231,834 DSGS–German pairs without
any manual alignment, for a total of 437 hours, of
only SRF data. Last year’s SRF data is a subset
of this year’s dataset, with the key difference that
the superset does not contain manually aligned and
verified German translations.

Additionally, we use OpenASL (Shi et al.,
2022a), a dataset consisting of 288 hours of ASL-
English pairs, for the self-supervised pre-training
of our visual encoder. In this pre-training we also
employ the labels produced by the codebook of a
dVAE, which was separately trained on Concep-
tual Captions (Sharma et al., 2018). For the sec-
ond stage of pre-training of our visual encoder,

https://huggingface.co/GermanT5
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we fine-tune the pre-trained model on the gloss-
based version of WLASL2000 (Li et al., 2020), a
14-hour dataset consisting of 19,673 isolated sign
ASL videos and 1535 gloss labels (Neidle and Bal-
lard, 2022).

Lastly, the checkpoint we use for T5 is pre-
trained on the GC4 corpus. GC4 is a German-only
corpus that contains 40.8 billion tokens in total.
This is a subset of Common Crawl where the pri-
mary language is German extracted between 2015
and 2021.

3.2 Training

Our visual backbone is VideoSwin’s base version.
It consists of 88.1 million parameters, and is com-
posed of 2 windowed self-attention blocks with
128 hidden dimensions at stage 1, 2 with 256 hid-
den dimensions at stage 2, 18 with 512 hidden
dimensions at stage 3, and 2 with 1024 dimen-
sions at stage 4. We pre-train it in two stages.
First, we train it for 150 epochs on OpenASL via
video-only BEVT where the labels are produced
by the codebook of a dVAE, with a learning rate
of 0.0005 on a cosine schedule with 10 warmup
epochs and batch size of 128 across 8 GPUs. We
use AdamW (Loshchilov and Hutter, 2019) as the
optimizer, with β1 = 0.9 and β2 = 0.999 and
0.05 weight decay. In the second stage, we train it
on gloss-based WLASL20002 for classification for
120 epochs, this time with a learning rate of 0.0003
on a cosine schedule with 2.5 warmup epochs and
a batch size of 256 across 8 GPUs. Again, we
use AdamW as our optimizer, with β1 = 0.9
and β2 = 0.999 and 0.001 weight decay. Our
VideoSwin backbone is then frozen for the rest of
our model’s training.

For translation, we adapt T5’s efficient-
large (Tay et al., 2022) version using a convolu-
tional layer to project our representations. This
model is composed of 1.09 billion parameters, with
36 self-attention blocks in the encoder and 36 self-
attention blocks in the decoder. To tokenize the
target translations, we use a SentencePiece tok-
enizer trained on the same data as the German-only
T5, with a vocabulary size of 32,128. We train it
in two stages, using both WMT-SLT 22 and WMT-
SLT 23 data. WMT-SLT 23 translations are weakly
supervised labels, since there is no guarantee of

2The original data can be downloaded here: https://
dxli94.github.io/WLASL/ And the gloss-based labels can
be downloaded here: https://dai.cs.rutgers.edu/dai/
s/aboutwlasl

alignment between the video and the correspond-
ing text translations. Therefore, our pipeline uses
it as a large, noisy dataset to train the model which
will be eventually further fine-tuned with WMT-
SLT 22, which has manually verified labels. First,
we train it for 8500 steps on WMT-SLT 23’s dataset,
with a learning rate of 0.001 on a linearly decreas-
ing schedule and a batch size of 64 across 8 GPUs.
We use Adafactor (Shazeer and Stern, 2018) as the
optimizer. For the second stage, we train the model
for 1500 steps on WMT-SLT 22’s dataset, with a
learning rate of 0.0002 on a linearly decreasing
schedule with a batch size of 64 across 8 GPUs.
We also use Adafactor at this stage.

3.3 Evaluation

We evaluate our systems and compare them with
last year’s submissions, since we use the same vali-
dation set, using BLEU-1, BLEU-2, BLEU-3 and
BLEU-4.

4 Experimental Results

Table 1 shows the performance of our model on
WMT-SLT 22’s development set, compared to the
highest reported BLEU-4 scores reported on the
test set by human evaluation (Müller et al., 2022).
We also include MSMUNICH’s model based on
AV-HuBERT (Shi et al., 2022c), since it achieved
the highest BLEU-4 score on the development set.
Our model performs at least 81% better than the
others in all metrics, and 99% better in BLEU-4,
which is the metric used in the challenge’s leader-
board.

We additionally perform several ablations to
quantify the impact of our model’s several mov-
ing parts. Our ablations are performed using T5’s
efficient-base configuration with 619 million pa-
rameters for time efficiency, unless otherwise spec-
ified.

4.1 Visual Backbone

We first evaluate the effect of our choice of vi-
sual backbone and pre-training tasks. We com-
pare our VideoSwin backbone with two other mod-
els. First, we take a standard I3D model (Carreira
and Zisserman, 2017) trained on the ISLR com-
ponent of the BBC-Oxford British Sign Language
dataset (Albanie et al., 2020), called BSL5K (Varol
et al., 2021), since I3D is the most commonly used
backbone for SL translation. Previous literature
suggests that diversity of isolated signs leads to

https://dxli94.github.io/WLASL/
https://dxli94.github.io/WLASL/
https://dai.cs.rutgers.edu/dai/s/aboutwlasl
https://dai.cs.rutgers.edu/dai/s/aboutwlasl
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Model Backbone Translation Data B1 B2 B3 B4
MSMUNICH (Dey et al., 2022) AV-HuBERT WMT-SLT 22 – – – 1.28
MSMUNICH (Dey et al., 2022) I3D WMT-SLT 22 – – – 0.77
UZH (Müller et al., 2022) OpenPose WMT-SLT 22 – – – 0.59
TTIC (Shi et al., 2022b) I3D WMT-SLT 22 8.36 2.92 1.55 1.02
Ours VideoSwin WMT-SLT 22 + 23 15.19 5.62 3.06 2.03

Table 1: Performance of our model on WMT-SLT 22’s development set compared to WMT-SLT 22’s highest
reported scores. B1, B2, B3, and B4 stand for BLEU-1, BLEU-2, BLEU-3, and BLEU-4, respectively.

better representations for downstream tasks like
translation, and BSL5K is the largest and most
diverse ISLR dataset to our knowledge. We also
include an I3D model trained on WLASL2000 for
comparison. Second, we also include a version of
our pipeline where we replace OpenASL with the
WMT-SLT 23 training data without translations for
self-supervised pre-training. However, we do not
include WLASL2000 fine-tuning for this model,
given the language differences between DSGS and
ASL.

As Table 2 shows, There is significant deteri-
oration from shifting our self-supervised BEVT
VideoSwin backbone to any of the fully supervised
I3Ds. Similarly, despite being pre-trained in a dif-
ferent language, OpenASL pre-training performs
much better than WMT-SLT 23 pre-training, de-
spite being the smaller training set (288 vs. 437
hours). This is likely a product of OpenASL’s
far superior diversity in backgrounds, which are
masked in WMT-SLT 23, topics (social media con-
tent vs. news), and signers (220 vs. 4).

Backbone Data B1 B2 B3 B4
I3D ASL 12.15 2.96 1.31 0.79
I3D BSL 12.79 2.80 1.12 0.59
BEVT DSGS 12.43 3.34 1.72 1.16
BEVT ASL 15.16 5.20 2.75 1.82

Table 2: Impact of visual backbone and training data
on our model’s performance. I3D refers to Inception3D
models and BEVT refers to BEVT VideoSwin models.
We group our pre-training data by language: BSL refers
to BSL5K, DSGS refers to WMT-SLT 23, and ASL
refers to OpenASL (if BEVT) and WLASL2000.

4.2 Translation Pre-Training
We also consider different combinations of our two
DSGS to German translation datasets. In our train-
ing set-up, the model is first trained on WMT-SLT
23’s weakly supervised labels, and then fine-tuned
on WMT-SLT 22’s manually aligned labels. We

compare this to settings where we use either only
WMT-SLT 23 data or only WMT-SLT 22 data. Us-
ing only WMT-SLT 22 data is equivalent to WMT-
SLT 22’s challenge.

From Table 3, we can see that despite the possi-
ble misalignments in WMT-SLT 23, training on a
larger set of translation pairs is superior to using
only WMT-SLT 22 data. However, the best perfor-
mance we obtain comes from first training on the
potentially noisy but large WMT-SLT 23, and then
fine-tuning on WMT-SLT 22 for fewer steps.

W22 W23 B1 B2 B3 B4
✗ ✓ 14.28 4.33 2.27 1.58
✓ ✗ 13.47 4.30 2.19 1.42
✓ ✓ 15.16 5.20 2.75 1.82

Table 3: Impact of weak supervision translation labels
on our model’s performance. W22 refers to training
on WMT-SLT 22 data and W23 refers to training on
WMT-SLT 23 data. Where both are used, the model is
trained on WMT-SLT 23 first and then on WMT-SLT
22.

4.3 Sequence-to-Sequence Model

In addition to T5, we also adapt Whisper (Radford
et al., 2023) for DSGS to German translation and
test it. The intuition behind it is that audio and
video both have a time dimension that corresponds
to seconds, whereas text does not. We adapt it
in a similar fashion to T5, with the addition of
a 4× bicubic interpolation step right before the
convolutional layer. We do so because Whisper
receives input with 50 tokens per second, whereas
our VideoSwin features produce one representation
every two frames, for 12.5 every second, since the
video is at 25 frames per second.

Results in Table 4 suggest that using a text-
to-text model performs significantly better than a
speech-to-text one.
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Model B1 B2 B3 B4
Whisper 15.08 4.26 2.04 1.29
T5 15.16 5.20 2.75 1.82

Table 4: Impact of sequence-to-sequence component of
our model on translation performance.

4.4 Model Size

Next, we consider model size in Table 5. Due to
computational and time constraints, we only eval-
uate T5-efficient-small, T5-efficient-base, and T5-
efficient-large, with 142 million, 619 million, and
1.09 billion parameters respectively. As expected,
larger models correspond to better performance.

Size Params B1 B2 B3 B4
Small 142m 15.43 5.13 2.47 1.52
Base 619m 15.16 5.20 2.75 1.82
Large 1.09b 15.19 5.62 3.06 2.03

Table 5: Impact of model size on our model’s perfor-
mance.

4.5 Decoding Algorithm

Last, we evaluate the effect of different choices of
decoding algorithm on test set performance, using
our best performing model, T5-efficient-large. We
compare the results generated from the following
algorithms: greedy decoding, top-k sampling (Fan
et al., 2018), beam search, top-k beam sampling,
and diverse beam search (Vijayakumar et al., 2016),
with k = 50 and beam width set to 5. Table 6
shows our results from this experiment, revealing
that diverse beam search and top-k beam sampling
represent the most significant improvements from
the greedy decoding baseline. We choose diverse
beam search for our primary submission to the
challenge, as it is the only one that improves both
BLEU and chrF scores from our baseline.

Generation Algorithm B4 chrF
Greedy Decoding 0.9 16.0
Top-k Sampling 0.8 16.3
Beam Search 0.9 17.2
Top-k Beam Sampling 0.8 17.3
Diverse Beam Search 1.1 17.0

Table 6: Impact of generation algorithm for our best
model in WMT-SLT 23’s test set.

5 Conclusion

Our experiments evaluate a hierarchical vision
transformer on the task of sign language translation
for the first time, and demonstrate superior per-
formance over I3D-based translation models. We
also show the benefits of using large datasets and
self-supervised models for sign language transla-
tion, outperforming all previous fully supervised
approaches to this task. Our final model achieves
highest BLEU-4 score, highest chrF score, and
highest human evaluation score among all partic-
ipants of the task. However, translation quality
remains extremely low.
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