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Abstract

We report the results of the WMT 2023 shared
task on Quality Estimation, in which the chal-
lenge is to predict the quality of the output
of neural machine translation systems at the
word and sentence levels, without access to
reference translations. This edition introduces
a few novel aspects and extensions that aim
to enable more fine-grained, and explainable
quality estimation approaches. We introduce
an updated quality annotation scheme using
Multidimensional Quality Metrics to obtain
sentence- and word-level quality scores for
three language pairs. We also extend the pro-
vided data to new language pairs: we specif-
ically target low-resource languages and pro-
vide training, development and test data for
English-Hindi, English-Tamil, English-Telegu
and English-Gujarati as well as a zero-shot test-
set for English-Farsi. Further, we introduce a
novel fine-grained error prediction task aspir-
ing to motivate research towards more detailed
quality predictions.

1 Introduction

This edition of the shared task on Quality Estima-
tion (QE) aims to build on previous editions and
findings to further benchmark methods for estimat-
ing the quality of neural machine translation (MT)
output at run-time, without the use of reference
translations. It includes (sub)tasks that consider
the quality of machine translations at word- and
sentence-level.

Over the past years, the QE field has been mov-
ing towards explainable, large, multilingual models
that have been shown to achieve high performance,
especially at sentence-level (Specia et al., 2021;
Zerva et al., 2022). The recent proliferation of
Large Language Model (LLM) technology and the
consequential performance improvements in MT el-
evate the significance of advancing methodologies
for quality estimation. In light of this, emphasis
should be placed on multilingual quality estima-

tion, in particular for low- and medium-resource
languages, necessitating the development of more
precise and interpretable quality assessment tech-
niques. Additionally, it is important to address
the challenge of robustness to hallucinations, pri-
oritise sustainability, and optimise computational
efficiency. These considerations collectively con-
tribute to progress toward trustworthy and depend-
able QE systems that could facilitate real-time, re-
liable assessments of translation quality.

In this edition of the shared task, we further
expand the provided resources, introducing new
low-resource language pairs for Indian languages,
namely Marathi, Tamil, Telugu, Gujarati and Hindi,
as well as Farsi and Hebrew. Following the pre-
vious editions, we provide both annotations for
direct assessments (DA), post-edits (PE) and Mul-
tidimensional Quality Metrics (MQM) (Lommel
et al., 2014). We describe in detail the annotation
process and provide statistics for the different lan-
guage pairs in Section 2.

Overall, in addition to advancing the state-of-the-
art at all prediction levels, our main goals are:

• to extend the languages covered in our
datasets with low- and medium-resource lan-
guages;

• to investigate the potential of fine-grained
quality estimation;

• to investigate new multilingual and language
independent approaches esp. with regards to
zero-shot approaches;

• to study the robustness of QE approaches to
hallucinations; and

• to continue monitoring the computational ef-
ficiency of proposed approaches for sustain-
ability purposes.

We thus designed two tasks this year:
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Task 1 The core QE task, which consists of separate
sentence-level and word-level sub-tasks. For
the sentence-level sub-tasks, the goal is to
predict a quality score for each segment in
a given test set, which can be a variant of DA
(§2.1) or MQM (§2.2). For the word-level sub-
task, participants had to predict translation
errors in the form of binary quality tags (see
§3.1.3).

Task 2 The fine-grained error prediction task, where
participants were asked to detect error spans
alongside error severities (§3.2).

The tasks make use of large datasets annotated
by professional translators with either 0-100 DA
scoring, post-editing or MQM annotations. We up-
date the training and development datasets of pre-
vious editions and provide new test sets for Tasks 1
and 2. The datasets and models released are pub-
licly available1.

Apart from the data made available through the
QE shared task, participants were also allowed to
explore any additional data and resources deemed
relevant, across tasks. In addition, LLMs could
also be used both to extend resources and to com-
plement predictions.

The shared task uses CodaLab as a submission
platform, where each sub-task corresponds to a sep-
arate competition instance. Participants (Section 5)
could submit up to a total of 10 submissions per
sub-task. Results for all tasks evaluated according
to standard metrics are given in Section 6. Base-
line systems were trained by the task organisers
and entered into the platform to provide a basis for
comparison (Section 4). A discussion on the main
goals and findings from this year’s task is presented
in Section 7.

2 Datasets

2.1 DA & Post-edit data:
For all language pairs, the data provided is selected
from publicly available resources. Specifically
for training, we used the language pairs from the
MLQE-PE dataset (Fomicheva et al., 2022), as well
as newly annotated data for languages spoken in
India (Hindi, Tamil, Telugu and Gujarati). Overall,
we provided training data for 15 language pairs
with DA annotations, 12 with post edits, and 3 with
MQM annotations, accounting for a mix of high,

1https://github.com/WMT-QE-Task/
wmt-qe-2023-data

medium and low-resource languages. The statistics
for the provided data are detailed in Table 1.

For the English-Marathi language pair included
in the last edition, we provided a novel test set this
year. To expand on language resources for the QE
shared task, we chose Hindi (Hi) and Gujarati (Gu)
as target languages from the Indo-Aryan language
family, Tamil (Ta) and Telugu (Te) were chosen
from the Dravidian language family. For En-Hi,
En-Ta, En-Te, and En-Gu, dataset curation and
annotation were performed with the help of profes-
sional translators who were native speakers of the
target language. The annotators were provided with
guidelines which discussed DA score ranges with
various error types. Additionally, parallel segments
were curated from the following parallel corpora:
i) Anuvaad parallel corpus2 (General, Healthcare
and Legal domain; ii) IITB English-Hindi paral-
lel corpus3 (Kunchukuttan et al., 2018) (Culture/-
Tourism domain), and parallel segments scraped
from NPTEL4; and iii) SpokenTutorials5 (Educa-
tion domain). The curated segments were selected
from the above-mentioned domains to ensure cross-
domain impact and performance.

From the Anuvaad parallel corpus, we fil-
tered source and parallel segments based on
LaBSE (Feng et al., 2022) at high threshold val-
ues in the range [0.85, 0.99]. This helps us ensure
the presence of good-quality reference translations
from a noisy parallel corpus. We then selected
source sentences for the dataset by varying token
length in buckets of 0− 10, 10− 20, and 20− 30
tokens. This allows us to get annotations on vari-
ous sentence lengths and helps manage the annota-
tion cost to a certain extent. Moreover, translation
models tend to generate erroneously over longer
sequences (Varis and Bojar, 2021), and ensuring
short and longer source sentences are a part of the
data helps us presume a balanced DA distribution in
the human annotation. We obtained the translation
with the 1.3B parameter NLLB model (Costa-jussà
et al., 2022) from HuggingFace6. The inference
was performed with 5 beams, limiting the n-gram
repetition to 2 and maximum length to 80 tokens,
with early stopping enabled. The curation of source

2https://github.com/project-anuvaad/
anuvaad-parallel-corpus

3Unreleased parallel segments, to be released here in v3.2:
https://www.cfilt.iitb.ac.in/iitb_parallel/

4https://nptel.ac.in/
5https://spoken-tutorial.org/
6https://huggingface.co/facebook/

nllb-200-distilled-1.3B

https://github.com/WMT-QE-Task/wmt-qe-2023-data
https://github.com/WMT-QE-Task/wmt-qe-2023-data
https://github.com/project-anuvaad/anuvaad-parallel-corpus
https://github.com/project-anuvaad/anuvaad-parallel-corpus
https://www.cfilt.iitb.ac.in/iitb_parallel/
https://nptel.ac.in/
https://spoken-tutorial.org/
https://huggingface.co/facebook/nllb-200-distilled-1.3B
https://huggingface.co/facebook/nllb-200-distilled-1.3B


631

segments from parallel corpora allowed us to com-
pare the performance with IndicTrans (Ramesh
et al., 2022) and 600M parameter NLLB model,
in terms of TER and BLEU, helping us select the
model and parameters above.

During the annotation, weekly validation of ran-
domly selected instances was performed by an un-
biased native speaker who provided feedback to
further improve annotations during the data cura-
tion. After all three annotators performed the DA
annotations, we separated the data into training,
development, and test sets while filtering for a bal-
anced distribution of DA scores across all sets.

For the En-Fa dataset, we used the post-edited
data provided in Azadi et al. (2022) to get the word-
level quality annotations. It contains 1K sentences
derived from some English scientific articles in the
domains of technology, computer science, and hu-
manities. These sentences were firstly translated to
Farsi, using an RNN-based commercial MT system
named Faraazin7. Then, each sentence was given
to a professional human translator to be post-edited
and provide the correct translation with minimum
edits. These post-edits were finally validated by
another annotator to ensure their quality.

2.2 MQM Data
As training data, we used the annotations re-
leased for the Metrics and QE shared tasks in
the previous years (Freitag et al., 2021a,b). To-
gether, these annotations, cover 3 high-resource
language pairs, namely: Chinese-English (Zh-En),
English-German (En-De) and English-Russian (En-
Ru), and span across two domains (News and Ted
Talks).

As test data, we annotated new evaluation sets
for three language directions. A low-resource
language pair, Hebrew-English (He-En), and two
high-resource language pairs, English-German and
Chinese-English. The evaluation sets were anno-
tated by professional translators following a MQM
typology (Burchardt, 2013) and specific guide-
lines8.

The documents used for the evaluation sets are
shared with the General MT task in WMT and
follow the same distribution of domains in that
data. These documents were translated using the
NLLB (Team et al., 2022) model of 1.3B parame-
ters9, the same model used in Section 2.1. We note

7https://www.faraazin.ir/
8http://bit.ly/mqm-guidelines
9Model identifier FACEBOOK/NLLB-200-1.3B

that the En-De sources were originally organised
in document-level, and we opted for converting
them to smaller segments, so that we do not di-
vert from the processing applied for the other LPs.
Hence we first applied sentence splitting and then
followed the same translation and annotation pro-
cess described in this section.

All evaluation sets were annotated by profes-
sional translators and, for En-De and Zh-En the
annotations were reviewed by a separate group
of professional translators that amended any in-
coherences or disagreements from the first round
of annotation. Regarding the domains of the data,
for He-En, two different evaluation sets were an-
notated, one with newswire articles and another
from product user reviews. For En-De, documents
from four domains were annotated: transcriptions
of meetings, newswire articles, social media posts,
and product user reviews. For Zh-En, documents
from three domains were used: manuals from infor-
mation technology software or devices, newswire
articles and product user reviews.

3 Quality Estimation tasks

In what follows, we briefly describe each sub-task,
including the datasets provided for them.

3.1 Task 1: Predicting translation quality

The ability to accurately estimate the quality of
translations on sentence- or word-level on-the-fly,
i.e., without access to human-references is at the
core of the QE shared task. Sentence and word-
level estimates can provide complementary views
of the quality of a sentence capturing different as-
pects (e.g. overall fluency versus specific mistrans-
lations).

Following last edition, the data was produced in
the following ways:

1. DA sentence level scores: The quality of each
source-translation pair is annotated by at least
3 independent expert annotators, using DA on
a scale 0-100.

2. MQM approach: Each source-translation pair
is evaluated by at least 1 expert annotator, and
errors identified in texts are highlighted and
classified in terms of severity (minor, major,
critical) and type (grammar correctness, omis-
sion, style, mistranslation, among others). We
use this information for both word and sen-
tence level quality scores.

https://www.faraazin.ir/
http://bit.ly/mqm-guidelines
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3. Post-editing approach: The translation is post-
edited to obtain the closest possible, fully cor-
rect translation of the source. By considering
the alignment between the source, translation
and post-edited sentence, we can propagate
the errors from the source to the translated
sentence and annotate the segments that were
potentially mistranslated and/or not translated
at all. We use this information to infer word-
level quality scores.

The DA and MQM sentence level annotations
were further processed to obtain normalised quality
scores that have the same direction between high
and low quality. We provide more details on the
required pre-processing in §3.1.1 and §3.1.3.

3.1.1 Sentence-level quality prediction
This year we used a single competition instance
both for DA and MQM-derived annotations aim-
ing to motivate the submission of models that are
robust to both annotation formats. To that end, we
also aligned the scores by processing and normalis-
ing them as follows:

• For the DA scores we standardize the scores
with respect to each annotator and then com-
pute the mean average of standardized scores
for each sentence.

• For the MQM scores we need to first compute
the overall score from the individual errors.
Hence for each annotator, we first compute
the sentence-level score as

MQM sent(hyp) =

100−
∑

e∈hyp
severity(e)

|hyp|
,

(1)
where hyp is a hypothesis sentence repre-
sented as a sequence of tokens, e is an error
annotated in that sentence and the severity is
computed but adding:

+ 1 point for minor errors
+ 5 points for major errors
+ 10 points for critical errors

To align with DA annotations we subtract the
summed penalties from 100 (perfect score)
and we then divide by the sentence length
(computed as number of words). We then
normalise per annotator as in the DA case
and compute the mean average in the case of
multiple annotators.

Regarding evaluation, systems in this task (both
for DA and MQM) are evaluated against the true
z-normalised sentence scores using Spearman’s
rank correlation coefficient ρ as the primary
metric. This is what was used for ranking system
submissions. Pearson’s correlation coefficient, r,
and Kendall τ were also computed as secondary
metrics but not used for the final ranking of sys-
tems.

3.1.2 Hallucinations
Hallucinations are highly pathological translations
that contain content that is detached from the
source (Raunak et al., 2021). As such, they can
have devastating impact when models are deployed
in the wild for real-world applications. Quality esti-
mation systems are an appealing and attractive strat-
egy to identify and flag these translations before
they reach end-users. However, recent research has
found that QE models may not appropriately pe-
nalize hallucinations and other critical errors (Rau-
nak et al., 2022; Guerreiro et al., 2023c). This
concern is further amplified for low-resource lan-
guages, where this undesirable behavior may arise
even more frequently (Dale et al., 2023b). As such,
in this edition of the shared task, we created data
to assess the capability of submitted QE models in
detecting hallucinations.

The data was created through a three-step pro-
cess: (i) we started by generating translations for
all language pairs of this year’s shared task with
NMT models10, using the FLORES devtest and
test splits (Goyal et al., 2022), as well as Wiki-
Matrix data available through OPUS (Schwenk
et al., 2019); then (ii) we automatically detected
hallucinations generated by the models; and finally
(iii) manually verified the flagged translations in or-
der to guarantee that they are hallucinations. To au-
tomatically detect the hallucinations, we followed
the procedure from Guerreiro et al. (2023a), which
directly draws from several relevant contributions
from research works in the literature of hallucina-
tion detection (Ferrando et al., 2022; Dale et al.,
2023a; Guerreiro et al., 2023c).

To evaluate the performance of the submissions,
we created, for each language pair, an evaluation
set that consists of: all the hallucinations for the
language pair, and the samples whose gold score
is above the 25th percentile. This is to ensure that
the non-hallucinations in the evaluation set are not

10We used the massively multilingual models (175M and
615M parameters) released in Goyal et al. (2022).
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Language Sentences Tokens DA PE MQM Data Source Release
Pairs Train / Dev / Test23 Train / Dev / Test23

D
A

&
po

st
ed

its

En-De 10,000 / – / – 148,044 / – / – ✓ ✓ Wikipedia 2021/22
En-Zh 10,000 / – / – 148,529 / – / – ✓ ✓ Wikipedia 2021/22
Ru-En 10,000 / – / – 105,871 / – / – ✓ ✓ Reddit 2021/22
Ro-En 10,000 / – / – 154,825 / – / – ✓ ✓ Wikipedia 2021/22
Et-En 10,000 / – / – 126,547 / – / – ✓ ✓ Wikipedia 2021/22
Ne-En 10,000 / – / – 135,095 / – / – ✓ ✓ Wikipedia 2021/22
Si-En 10,000 / – / – 140,932 / – / – ✓ ✓ Wikipedia 2021/22
Ps-En 2,000 / – / – 54,459 / – / – ✓ ✓ Wikipedia 2021/22
Km-En 2,000 / – / – 44,029 / – / – ✓ ✓ Wikipedia 2021/22
En-Ja 2,000 / – / – 41,272 / – / – ✓ ✓ Wikipedia 2021/22
En-Cs 2,000 / – / – 40,638 / – / – ✓ ✓ Wikipedia 2021/22
En-Yo 1,010 / – / – 21,238 / – / – ✓ ✓ 2021/22
En-Mr 27,000 / 1,000 / 1,086 717,581 / 26,253 / 27,951 ✓ ✓ multi-domain/multi-corpus 2022/23
En-Hi 7,000 / 1,000 / 1,074 181,336 / 25,943 / 28,032 ✓ multi-domain/multi-corpus 2023
En-Gu 7,000 / 1,000 / 1,075 153,685/ 21,238 / 23,084 ✓ multi-domain/multi-corpus 2023
En-Ta 7,000 / 1,000 / 1,067 150,670 / 21,655/ 20,342 ✓ multi-domain/multi-corpus 2023
En-Te 7,000 / 1,028 / 1,000 147,492 / 20,686 / 22,640 ✓ multi-domain/multi-corpus 2023
En-Fa – / – / 1,000 –/ – / 26,807 ✓ news (multi-domain) 2023

M
Q

M

En-De 30,425 / – / 1,897 877,066 / – / 37,996 ✓ multi-domain 2021/23
En-Ru 17,144 / – / – 395,045 / – / – ✓ multi-domain 2021/22
Zh-En 36,851 / – / 1,675 1,654,454 / – / 39,770 ✓ multi-domain 2021/23
He-En – / – / 1,182 – / – / 35,592 ✓ multi-domain 2023

Table 1: Statistics of the data used for Task 1 and Task 2. The number of tokens is computed based on the source
sentences. Hallucinated data included in the calculations for the 2023 testsets.

highly pathological translations (they may however
be incorrect translations). We report the Area Un-
der the Receiver Operating Characteristic curve
(AUROC) and Recall at k (R@k), where k is de-
fined as the number of hallucinations in the evalu-
ation set. A perfect QE detector would have 100
AUROC and 100% Recall at k. We report the statis-
tics of the evaluation sets in Table 8.

3.1.3 Word-level quality prediction
This sub-task focuses on detecting word-level er-
rors in the MT output. The goal is to automatically
predict the quality of each token using a binary de-
cision, i.e., using OK as a label for tokens translated
correctly and BAD otherwise.

We follow the annotation conventions of the pre-
vious edition, i.e., we do not consider source-side
annotations, and incorporate omission errors to the
target token annotations. Specifically, to account
for omission errors, we consider the following con-
vention: the token on the right side of the omitted
text in the translation is annotated as “BAD”. An
additional <EOS> token is appended at the end of
every translation segment to account for omissions
at the end of each sentence. This allows the provi-
sion of a unified framework for both the post-edit
originated annotations and the MQM annotations.

We thus use the same source-translation pairs
used for the sentence-level tasks and obtain the

binary tags as follows:

• For post-edited data, we use the methodol-
ogy to obtain translation error distance (TER)
scores (Snover et al., 2006) to obtain align-
ments between translation and post-edit and
annotate the misaligned tokens as BAD.

• For MQM data, the tokens that fall within the
text-spans annotated as errors (or any sever-
ity or category) are annotated as BAD. If the
whitespace between two words is annotated as
an error, then this is considered an omission,
and the next token is annotated as BAD.

For the word-level task, submissions are
ranked using the Matthews Correlation Coef-
ficient (MCC, Matthews, 1975) as the primary
metric, while F1-scores are provided as comple-
mentary information.

3.2 Task 2: Fine-grained error detection

For this task we attempt to focus on finer-grained
quality predictions, taking advantage of the de-
tailed information provided in the MQM annota-
tion schema. Specifically, the MQM schema allows
the annotation of additional information for each
identified error. Specifically, each error span is an-
notated with error severity (minor, major, critical)
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as well as error type (see also Figure 1). Such in-
formation allows for a more detailed analysis of
the errors of MT systems, an understanding of their
failure points and can provide the basis towards
more explainable quality estimation.

Ideally, a fine-grained QE system is expected to
be able to predict both the error type and its cor-
responding severity. However, the cardinality of
error categories, the complexity of disentangling
between them and the scarcity of MQM annota-
tions render such a classification task particularly
challenging. Hence, in this first attempt, we chose
to focus only on error severity and merged to-
gether the major and the critical labelled errors due
to the scarcity of the latter (see Table 2). As a result,
we aimed to classify error spans as either minor or
major.

LP minor major critical
En-De 652 595 81
Zh-En 633 1063 242
He-En 792 1837 3

Table 2: Error severities (original: before merging criti-
cal and major severities) for the 2023 MQM test set.

As such, the information used for this task con-
sists of: i) start and end index positions for each
error span; and ii) the simplified error severity. The
error spans are identified as sequences of continu-
ous characters within a target hypothesis, allowing
for annotations of single white spaces and punctu-
ation marks in order to account for omission and
punctuation errors respectively. Aiming to mimic
the human annotations and simplify the task, over-
lapping error spans were allowed. Figure 1 shows
an example of annotations.

For the evaluation, the primary metric was
F1-score, computed on the character level and
weighted to allow for half points for correctly iden-
tified span but misclassified severity. Precision and
recall were also provided as complementary met-
rics. The evaluation approach is inspired by (Fon-
seca et al., 2019) but does not consider document-
level annotations. With respect to overlapping an-
notations, we allow for multiple character level
annotations 11 and will consider the best matching
annotation per character position. As such for each
segment we compute recall for the characters in

11The gold data was processed to remove identical segments
that correspond to the same span but have different error cat-
egories, but it preserved any partially overlapping segments
that correspond to different error categories and/or severities.

Figure 1: Example of gold annotations (MQM) for Task
2 (top) and respective prediction examples (bottom).
Example taken from He-En test set.

gold annotation text spans, by computing the ratio
between the overlap with system error spans and
the gold error span length and weighting severity
mismatches by 0.5. Respectively, we compute pre-
cision with respect to the system error span length
and apply the same weighting convention (down-
weighting by 0.5 for mismatched error severities).
Figure 1 and Table 3 shows an example of the afore-
mentioned process 12.

4 Baseline systems

4.1 Task 1: quality estimation

For the sentence-level sub-task, we opted for
COMET-QE models (Rei et al., 2021) respectively
pretrained on the DA and MQM QE data from
WMT’21. Models are publicly available to down-
load13.

For the word-level sub-task, we trained a sim-
plified architecture inspired by COMETKIWI (Rei
et al., 2022a). More specifically, we used the multi-
task architecture combining the sentence-level tar-
get and the binary word-level targets. However,
we did not pretrain on HTER scores or Metrics
data, and we skipped the few-shot language adap-
tation and language-specific tuning of task weights.
The architecture of the baseline model is shown
in Figure 2. The list of hyperparameters and their
corresponding values can be found in appendix A.

12The link to evaluation scripts can be found at:
https://github.com/WMT-QE-Task/qe-eval-scripts/
blob/main/wmt23/

13https://wmt-qe-task.github.io/subtasks/
task1/

https://github.com/WMT-QE-Task/qe-eval-scripts/blob/main/wmt23/
https://github.com/WMT-QE-Task/qe-eval-scripts/blob/main/wmt23/
https://wmt-qe-task.github.io/subtasks/task1/
https://wmt-qe-task.github.io/subtasks/task1/
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Systems Precision Recall F1-score

System A 1∗7+1∗28+0.5∗6
7+28+13 = 0.79 1∗7+1∗28+0.5∗6

12+28+6 = 0.83 0.81

System B 0.5∗12+1∗28+0.5∗6
12+28+6 = 0.80 1∗12+1∗28+0.5∗6

12+28+6 = 0.80 0.80

Table 3: Example of Precision and Recall computations for each annotation in the example of Figure 1.

Figure 2: Baseline model for Task1 word level. Figure
adapted from (Rei et al., 2022a)

4.2 Task 2: fine-grained error detection
For Task 2 we constructed a simple baseline by
using the same model used for Task 1 word-level,
and post-process the predictions as follows:

• Detokenize the sentence

• Annotate continuous BAD tokens as a single
text span

• Assume all errors are major

For all models, a large XLM-RoBERTa pre-
trained encoder was used, without additional lan-
guage tuning. The specific hyperparameters used
are presented in Table 11.

5 Participants

Table 4 lists teams who officially took part to the
QE shared task this year. In the remaining of this
section, we report a brief system description gath-
ered from each participant. For each team, we
indicate the task(s) and sub-task(s) (i.e. language-
pair(s)) they participated into.

Bering Lab (T1-SL; En-De, Zh-En): For each lan-
guage pair, the team used an ensemble of the
best three models from a pool of 10 mod-
els jointly trained for the word and sentence
level tasks using a novel relative ranking loss
function and Adversarial Weight Perturbation
(AWP) to improve the robustness of the model.
Using no additional pseudo-generated data,
they pre-train the models using publicly avail-
able data from the previous WMT conferences
that were augmented using the TER tool to
generate binary word tags. They then fine-
tuned 10 separate models on the labelled data
from the WMT 2022 QE task randomly split
into 10 folds. The models are fine-tuned in
two steps. In the first step, the models are fine-
tuned without AWP using the same objective
as the pre-training step. Then, the best check-
point from the first step is selected and tuned
on the same objective, but with AWP. For the
final submission they ensemble (average) the
z-normalized scores from the top three models
to get the final predictions.

(T1-WL; En-De, Zh-En): For each language
pair, they use an ensemble of five models
jointly trained for the word and sentence level
tasks using a novel relative ranking loss func-
tion. Using no additional pseudo-generated
data, they pre-train the models using publicly
available data from the previous WMT confer-
ences that were augmented using the TER tool
to include word tags. They then split the la-
belled data from the WMT 2022 QE task into
20 folds and chose the best combination of
five folds based on the minimum mean of the
Kolmogorov-Smirnov goodness-of-fit scores
between each validation set. Using these 5
folds, they fine-tune 5 final models using the
same objective as the pre-training step. For
the final prediction, the team chose the max
score from each model for each token to get
the final predictions.

NJUNLP (T1 & T2; En-De): Inspired by Direc-
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tQE (Cui et al., 2021) and CLQE (Geng et al.,
2023b), NJUNLP submission continues ex-
ploring pseudo data methods for QE. They
generate pseudo MQM data using parallel
data from the WMT translation task. Specifi-
cally, they replace the reference tokens with
these tokens sampled from translation mod-
els. To simulate translation errors with dif-
ferent severities, they sample tokens with
lower generation probabilities for worse er-
rors. They pre-train the XLMR large model
on pseudo MQM data, then fine-tune it on
real QE data (including PE data). At both
stages, they jointly learn sentence-level scores
(MSE loss and margin ranking loss) and word-
level tags (cross-entropy loss). For Task 1, the
QE model outputs the sentence scores and the
‘OK’ probability of each token.

For Task 2, they set different thresholds for the
‘OK’ probability to predict fine-grained sever-
ity. They regard consecutive ‘BAD’ tokens
as a whole span and take the worse severity
of each token as the result. They train dif-
ferent models with different parallel data and
ensemble their results as the final submission.

HW-TSC (T1-SL; En-De, Zh-En, En-Mr, En-Hi, En-
Ta, En-Te, En-Gu): HW-TSC uses CrossQE,
the same model as the one reported in (Tao
et al., 2022), which consists of a multilin-
gual base model and a task-specific down-
stream layer. The input is the concatena-
tion of the source and the translated sen-
tences. To enhance the performance, they
finetuned and ensembled multiple base mod-
els using multilingual encoders such as XLM-
RoBERTa, InfoXLM and RemBERT as well
as a COMETKIWI model. Moreover, they
introduce a new corruption-based data aug-
mentation method, which generates deletion,
substitution and insertion errors in the origi-
nal translation and uses a reference-based QE
model to obtain pseudo scores.

(T2; all): For Task 2 they they convert the
original word-level binary classification to a
3-way classification to adapt to Task 2 sever-
ities (no-error, minor, major). They then
use a multitasking COMET model based on
COMETKIWI (Rei et al., 2023) which com-
bines sentence scores and word-level tags
using a weighted loss function. They set

the weight of the sentence score sub-module
to 0. They use InfoXLM-large and XLM-
RoBERTa-large as the pre-trained encoders
used during training and train on different
data subsets for each LP. They finally use
COMETKIWI-DA and continue to train a
model based on COMETKIWI-DA. They fi-
nally combine the results over five check-
points using the union of the predicted spans,
which out-performed token-level majority vot-
ing.

KUNMT (T2; En-De, Zh-En): KUNMT proposes
the use of different models to decompose
tasks and post-editing with a large language
model. In the process of error determina-
tion, span extraction, and severity assessment
for each error span, distinct models were em-
ployed sequentially. The error determination
model determines if an error exists in the sen-
tence, and then the span assessment model
explores the parts of the sentence where the
error exists. For the spans where the error
exists, the severity evaluation model evalu-
ates whether the severity of the error is mi-
nor or major. All models were built upon
XLM-RoBERTa-large, with some incorporat-
ing prompt-based learning. Results were sub-
sequently calibrated using a large language
model and tailored prompt engineering for the
specific task.

Unbabel-IST (T1 & T2; all): the submission for
Task 1 (word-level and sentence-level) follows
their work from last year (Rei et al., 2022b).
The major difference is the inclusion of the
data from this year (e.g. sentence-level DA’s
for En-Te, En-Hi, En-Gu, En-Ta) and scal-
ing the size of the pretrained encoder from
InfoXLM to XLM-R XL and XXL (XXL was
only used for sentence-level). They ensemble
multiple checkpoints for the sentence-level
subtask, using a weighted averaging of the
predicted scores, optimised by LP.

For Task 2 they experimented with word-level
models from Task 1 with GPT-4 prompts
and with XCOMET (Guerreiro et al., 2023b).
Their primary submission uses XCOMET
which stands for eXplainable COMET. This
model is trained with references to perform re-
gression and error span identification. During
inference the model can be used without refer-
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ences, yet, for this task they found that using
pseudo-references yields better performance
if used with a simple heuristic where they first
use a sentence-level QE system trained for
Task 1 to evaluate the pseudo-reference. If the
pseudo-reference is of high-quality, they give
more weight to it otherwise, they give more
weight to the source.

IOL Research (T1-SL; all): The IOL team ex-
perimented with several pretrained language
models with extra modules to predict sentence
level score and word tags including mBERT,
XLM-RoBERTa-large, mDeberta, RemBert
and InfoXLM. They first finetuned these mod-
els on DA and MQM scores data of QE and
Metrics tasks in the previous years. Then,
source text and its translation are fed into
finetuned models added with extra modules
for both sentence and word-level tasks. For
sentence level, they separate embeddings of
source text and translation of each layer in
transformer models, and make a weighted sum
among different layers for source and transla-
tion. Then the weighted embeddings of source
and translation are concatenated and fed into
a two-layer deep neural network to get score
prediction with mean squared error (MSE)
loss.

(T1-WL; all): For the word-level subtask,
they use BiLSTM layer or one-layer DNN
to do tag prediction on each token of transla-
tion with cross-entropy loss. The best check-
point of each model is chosen by determining
which checkpoint is best with respect to ei-
ther Spearman correlation coefficient or MCC
score, after training for three (3) epochs. The
model of each language pair is tuned individu-
ally. The final result for each language pair is
predicted by a weighted ensemble of different
model checkpoints with LP-specific weights
computed through weight searching using Op-
tuna.

MMT (T1-SL; En-De, En-Mr, En-Hi, En-Ta, En-
Te, En-Gu): For the studied language pairs,
the MMT team enriched the training dataset
through the application of eleven distinct data
augmentation techniques, such as synonym
substitution and back-translation, individu-
ally on the source sentence of each training
instance. The results were generated using

the best-performing model chosen from those
trained on the corresponding augmented train-
ing datasets (in the case of English-German,
the chosen model was trained on the aug-
mented dataset created by applying the top
four effective data augmentation techniques
to each source sentence). The training method-
ology adheres to the COMET framework,
with the foundational pre-trained model be-
ing XLM-RoBERTa-large.

SurreyAI (T1-SL; En-Mr, En-Hi, En-Ta, En-Te, En-
Gu): The team proposes ensembleTQ as the
main model, for which they train multiple
multilingual QE models by fine-tuning pre-
trained language models (PTLMs) with au-
toencoder architecture. To that end they use
the MonoTransQuest (Ranasinghe et al., 2020)
architecture and report mean z-scores. The
PTLMs that they combine in the ensemble
are InfoXLM-large, XLMV-base and XLM-
RoBERTa-large.

6 Results

In this section, we present and discuss the results
of our shared task. Please note that for all the three
sub-tasks we used statistical significance testing
with p = 0.05.

6.1 Task 1

As we have seen in Task 1 description sentence-
level submissions are evaluated against the true
z-normalised sentence scores using Spearman’s
rank correlation coefficient ρ along with the fol-
lowing secondary metrics: Pearson’s correlation
coefficient, r, and Kendall’s τ . Nonetheless, the
final ranking between systems is calculated using
the primary metric only (Spearman’s ρ). Statistical
significance was computed using William’s test.

For the word-level task, the submissions are
ranked using the Matthews correlation coefficient
(MCC). F1-scores are provided as complementary
information only and statistical significance was
computed using randomisation tests (Yeh, 2000)
with Bonferroni correction (Abdi, 2007) for each
language pair.

The results for Task 1 are described in Tables
5 and 6. Looking at the obtained scores, we can
observe an overall improved performance for the
sentence-level scores, compared to previous years.
While it is hard to make direct comparisons since



638

ID Affiliations

BeringLab BeringLab –
HW-TSC Huawei Translation Services Center, China (Li et al., 2023)
IOL Research Transn IOL Research, China (Yan, 2023)
KUNMT Korea University, South Korea –
MMT University of Manchester, UK & ASUS Intelligent

Could Services, Singapore & University of Melbourne,
Australia

(Wu et al., 2023)

NJUNLP Nanjing University & Huawei Translation Services Cen-
ter, China

(Geng et al., 2023a)

Surrey AI University of Surrey & Aston University, UK (Sindhujan et al., 2023)
Unbabel-IST Unbabel & INESC-ID & Instituto de Telecomunicações

& Instituto Superior Técnico, Portugal
(Rei et al., 2023)

Table 4: Participants to the WMT23 Quality Estimation shared task.

the test-sets are new (and many language pairs are
introduced for the first time), we can see that top
performers obtain higher scores for En-Mr and Zh-
En compared to the previous edition, and only for
En-De we observe a relative drop (potentially justi-
fiable by the introduction of more domains in the
test set this year). Interestingly, for the word-level
scores we observe higher correlations for the zero-
shot tasks, as opposed to the ones where more train-
ing and development resources were made avail-
able.

We observe that especially for the sentence-level
task all participants this year submitted ensembled
predictions, with the ensemble size ranging from
3 to 12 models. We note that several teams com-
bined models using different pre-trained encoders
(HW-TSC, IOL Research, Surrey) and some par-
ticipants focused their efforts on optimising the
ensembled scores. Most notably, Bering Lab use a
multi-step training where they select the best mod-
els on the first step, retrain with their proposed
Adversarial Weight Perturbation method and then
ensemble the top-3 models for the final submission.
IOL research and Unbabel-IST also optimise the
ensemble weights using optuna search.

We finally observe that following the trend of
previous editions several participants experiment
with training data augmentation techniques. No-
tably, most approaches this year focus on data aug-
mentation that relates to the word-level or fine-
grained annotations, either by computing TER-
based word tags (Bering Lab), or by corrupting the
target translations to generate pseudo-data with arti-
ficially generated error spans (NJUNLP, HW-TSC).
For the latter, NJUNLP replace tokens and make
use of the token distribution to approximate major
versus minor errors (i.e, lower versus higher gen-
eration probabilities) and generate MQM-style an-

notations. Instead, HW-TSC propose to randomly
corrupt the target (where corruption corresponds
to insertion, deletion or replacement of a token)
and use a heuristic score of the corrupted target to
approximate a DA annotation style.

Best performers A total of seven teams partic-
ipated in the sentence-level sub-task, yet only
Unbabel-IST and IOL Research participated for all
language pairs (including the zero-shot language
pair, He-En), with Unbabel winning in the multi-
lingual setting. However, for the individual lan-
guage pairs, we observe different teams ranking at
the top for different language pairs. Specifically,
HW-TSC ranks at the top for all Indic language
pairs, sharing the win with Unbabel-IST for En-
Mr, En-Hi and En-Gu. On the MQM annotations,
Unbabel-IST won the Zh-En and He-En language
pairs, while IOL-Research and NJUNLP ranked
top for En-De.

A total of four teams participated in the word-
level sub-task, and similarly to the sentence-level
only Unbabel-IST and IOL Research participated
for all language pairs (including both zero-shot
language pairs: He-En and En-Fa). NJUNLP won
the task for the En-De language pair while Unbabel-
IST ranked at the top for Zh-En, He-En, En-Mr and
the multilingual task. IOL Research tied at the top
for En-Fa.

We observe that while submissions consist of a
mix of monolingual and multilingual submissions,
and participants adopted a set of different strate-
gies to design their architectures and tuning pro-
cess, the top-ranking participants do share some
common methodological choices. Specifically, all
aforementioned participants tune their models in
a multitasking setup, taking advantage of not only
the sentence-level scores but also the word-level
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Multidimensional Quality Metric (MQM) Direct Assessment (DA)

Model Multi En-De En-Zh He-En En-Mr En-Hi En-Ta En-Te En-Gu
Unbabel-IST 0.594 0.456 0.493 0.668 0.704 0.598 0.739 0.388 0.714
IOL Research 0.556 0.483 0.482 0.575 0.505 0.600 0.740 0.376 0.695
BASELINE 0.372 0.340 0.447 0.475 0.392 0.281 0.507 0.193 0.337
HW-TSC – 0.437 0.460 – 0.692 0.644 0.775 0.394 0.691
MMT – 0.316 – – 0.650 0.494 0.547 0.337 0.540
SurreyAI – – – – 0.596 0.551 0.674 0.349 0.649
BeringLab – 0.380 0.384 – – – – – –
NJUNLP – 0.479 – – – – – – –

Table 5: Spearman correlation for the official submissions to WMT23 Quality Estimation Task 1 Sentence-level.
For each language pair, results marked in bold correspond to the winning submissions, as they are not significantly
outperformed by any other system according to the Williams Significance Test (Williams, 1959). Baseline systems
are highlighted in grey

.

Multidimensional Quality Metric (MQM) Post-Editing (PE)

Model Multi En-De Zh-En He-En En-Mr En-Fa
Unbabel-IST 0.329 0.246 0.302 0.402 0.347 0.345
IOL Research 0.298 0.256 0.250 0.359 0.334 0.351
BASELINE 0.252 0.179 0.225 0.275 0.287 0.293
BeringLab – 0.233 0.241 – – –
NJUNLP – 0.297 – – – –

Table 6: Matthews Correlation Coefficient (MCC) for the official submissions to WMT23 Quality Estimation Task
1 Word-level. For each language pair, results marked in bold correspond to the winning submissions, as they are
not significantly outperformed by any other system according to the Williams Significance Test (Williams, 1959).
Baseline systems are highlighted in grey

.

Multidimensional Quality Metric (MQM)

Model Multi En-De En-Zh He-En
Unbabel-IST 0.220 0.273 0.288 0.279
HW-TSC 0.165 0.166 0.235 0.266
BASELINE 0.156 0.167 0.219 0.227
KUNMT – 0.214 0.210 –
NJUNLP – 0.284 – –

Table 7: F1-score for the official submissions to
WMT23 Quality Estimation Task 2 Error Span De-
tection. For each language pair, results marked in bold
correspond to the winning submissions, as they are not
significantly outperformed by any other system accord-
ing to the Williams Significance Test (Williams, 1959).
Baseline systems are highlighted in grey

.

quality tags. This inferred alignment between fine-
grained quality annotations and overall quality at
the segment level seems to be a promising direction
for further improvements in quality estimation.

6.2 Task 2

For Task 2, the submissions are ranked using the
F1-score, computed at character level for the anno-
tated error spans, as described in Section 3.2. Pre-
cision and Recall scores are also provided as com-
plementary information to help contextualise the
performance observed. Statistical significance was
computed using randomisation tests (Yeh, 2000)

with Bonferroni correction (Abdi, 2007) for each
language pair. The results for Task 2 are described
in Table 7.

For this subtask we also had participants using
pretrained large language models to enhance their
submissions. Both KUNMT and Unbabel-IST (for
the complementary submission of the latter) used
GPT-4 with prompts tailored to fine-grained error
span detection. KUNMT use an approach where
they combine two prompts in a chain-of-thought
manner, asking the model to act as an expert that
either:

• Acts as an expert annotator that evaluates
the translation and annotates error spans and
severities (following the task instructions); or

• Acts as annotation validator and edits previous
annotations or marks them as good.

We provide the full prompts in the Appendix E. In
turn, Unbabel considers GPT4 both for the word
level part of Task 1 and for Task 2, using prompts
inspired by (Fernandes et al., 2023).

Aside from the use of LLMs, there are two main
approaches in participating submissions: i) Partici-
pants who extended the word-level approach to ob-
tain fine-grained error spans (HW-TSC, NJUNLP);
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Figure 3: Balance between major and minor errors for
each team and the original annotation (first bar).

and ii) participants who designed a methodology
directly targeting error-spans (KUNMT, Unbabel-
IST). To expand the word-level approach, NJUNLP
maintain the binary OK/BAD labels and tune dif-
ferent thresholds to decide the severity of the BAD
tags. They resolve severity inconsistencies over
spans by taking the worst severity. Instead, HW-
TSC convert the binary task to a 3-way classifi-
cation ([OK, MINOR, MAJOR]) and tune on the
Task 2 data. On the other hand, in their main ap-
proach, Unbabel-IST depart from the word-level
approach and tune XCOMET directly on error span
annotations, in a multitask setting (predicting both
overall sentence score, and severities over spans).

Analysing the results, we can observe that with
the exception of KUNMT, most submissions obtain
higher Recall scores compared to Precision. More-
over, if we look at the distribution of identified error
severities for e.g. En-De (see Figure 3) we can also
observe a difference in the severity proportions as
NJUNLP and Unbabel-IST identify mostly “major”
errors and obtain better performance compared to
KUNMT and HW-TSC that predict less skewed
severities, with proportions closer to the gold data.

Best performers. Four teams participated in
Task 2, IST-Unbabel, HW-TSC, KUNMT and
NJUNLP, with only Unbabel-IST and HW-TSC
participating in all tasks. NJUNLP ranked first for
the En-De language pair while Unbabel-IST ranked
first for the rest, including the multilingual track.
We note that both top-ranking participants are us-
ing ensemble approaches as well as enhancing their
approaches with pseudo-data (pseudo-references in
the case of Unbabel-IST and pseudo-MQM scores
in the case of NJUNLP).

7 Discussion

In what follows, we discuss the main findings of
this year’s shared task based on the goals we had
previously identified for it.

Granularity of quality annotations We note
that while performance for the sentence-level qual-
ity scores is better, the finer-grained annotations
are also contributing towards these improvements.
Indeed, while in comparison participants achieve
lower performance for the fine-grained and word-
level tasks, most of the top-ranking submissions
across tasks constitute multi-task approaches,
that combined information from the finer-grained
annotations and the sentence level scores.

Moreover, comparing the F1-scores between the
word-level Task 1 and Task 2, while F1-scores for
Task 2 are somewhat lower, considering the addi-
tional complexity of considering error severities
and multiple spans, the performance seems promis-
ing. To further encourage future participation and
improved performance we aim to focus on extend-
ing MQM annotations for the next iterations, but
also revising the error severity definition to poten-
tially include ‘critical’ errors.

Zero shot predictions We observe that perfor-
mance for the zero-shot language pairs, He-En and
En-Fa was not hampered by the lack of training and
development resources. While fewer participants
submitted predictions for these languages, their
performance was on par with other language pairs.
For for the word-level task, scores were actually
higher than those observed for other language pairs.
Looking closer at the approach adopted by the par-
ticipants in these tasks, we can see that besides re-
lying on multi-lingual encoders no additional data
was used to train for these languages, across tasks.
These findings are encouraging towards annotating
a wider range of language pairs (maintaining the
emphasis on low and medium source languages)
to test on for the upcoming editions, even when
training resources are scarce.

Hallucinations We report the hallucination de-
tection results in Table 9. Overall, the results indi-
cate that good-quality QE models are capable of de-
tecting hallucinations very satisfactorily. Some sub-
missions, in fact, obtain perfect or near-perfect re-
sults for some language pairs, which indicates that
they are able to appropriately penalise the severity
of hallucination errors. Not only that, but they can
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also distinguish the hallucinations from other trans-
lations whose quality may not necessarily be high.
This is a property that was not observed in previous
iterations of QE models (Amrhein and Sennrich,
2022; Raunak et al., 2022), in particular those that
were based on dual encoding of the source and the
translation (e.g., COMET-QE (Rei et al., 2020)).

Nevertheless, even the top-performing QE sys-
tems, including the winning submissions, may
struggle with localised critical errors such as os-
cillations. We show two such examples in Ta-
ble 10. In fact, although most pathological hal-
lucinations are detected, some egregious examples
have not been detected by both the IOL Research
and Unbabel-IST systems (e.g., a he-en transla-
tion that contains 70 hallucinated <unk> tokens,
and a zh-en translation that contains the oscilla-
tion "Tropical and Sub-Tropical Plains and
Plains, Tropical and Sub-Tropical Plains
and Plains, Tropical and Sub-Tropical
High Plains, Sub-Tropical Plains and
Sub-Tropical Plains, Sub-Tropical Plains
and Sub-Tropical Plains").

One hypothesis for this undesirable behavior is
that such samples are out-of-distribution for the
QE systems. As such, augmenting the training sets
with examples of such hallucinations (e.g., as done
in xCOMET (Guerreiro et al., 2023b)) may be a
straightforward yet effective approach for correct-
ing this behavior.

8 Conclusions

This year’s edition of the QE Shared Task in-
troduced a number of new elements: new low-
resource language pairs (including two zero-shot
ones), new test sets, and new fine-grained error
detection task that we aspire to continue in future
editions. It also introduced a mix of hallucinated
data together with the original translations, allow-
ing us to assess the robustness of submissions and
detect failure patterns that will hopefully help de-
velop more robust QE systems in the future.

The tasks attracted a steady number of partici-
pating teams and we believe the overall results are
a great reflection of the evolution of the QE field.
We note that the gold labels and best submissions
to all tasks are made available for those interested
in further analysing the results. We aspire for the
future editions to continue the efforts set in this
and previous years and expand the resources and
coverage of QE, while further exploring recent and

more challenging subtasks such as fine-grained QE
and explainable QE.

9 Ethical Considerations

MQM and DA annotations in this paper are done
by professional translators. They are all paid at
professional rates.

Organisers from Unbabel and University of Sur-
rey have submitted to this task without using prior
access to test sets nor using any insider informa-
tion.
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A Hyper-parameters of pre-trained baseline models for Task 1 Quality Estimation

T1 Sentence-level T1 Word-level
Hyper-parameter COMET-QE COMETKIWI

Encoder Model XLM-RoBERTa (large) XLM-RoBERTa (large)
Optimizer Adam (default parameters) Adam (default parameters)
n frozen epochs 0.3 0.3
Keep embeddings frozen True True
Learning rate 3e-05 and 1e-05 1e-06 and 1e-05
Batch size 4 4
Loss function MSE MSE and CE (ϵ = 1.0)
Dropout 0.15 0.1
FP precision 32 32
Feed-Forward hidden units [2048, 1024] [2048, 1024]
Word weights – [0.3, 0.7]
Feed-Forward activation Tanh –

Table 11: Hyper-parameters of both the COMET-QE and the CometKiwi models used as baselines for Task 1
Quality Estimation.
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B Official Results of the WMT23 Quality Estimation Task 1 Sentence-level

Tables 12, 13, 14, 15, 16, 17, 18, 19 and 20 show the results for all language pairs and the multilingual
variants, ranking participating systems best to worst using Spearman correlation as primary key for each
of these cases.

Model Spearman Pearson Kendall
Unbabel-IST • 0.594 0.580 0.438
IOL Research 0.556 0.513 0.407
BASELINE 0.372 0.308 0.265

Table 12: Official results of the WMT23 Quality Estimation Task 1 Sentence-level Multilingual (average over all
language pairs). Teams marked with "•" are the winners, as they are not significantly outperformed by any other
system according to the Williams Significance Test (Williams, 1959). Baseline systems are highlighted in grey.

Model Spearman Pearson Kendall Disk footprint (B) # Model params Ensemble
IOL Research • 0.483 0.429 0.364 2,357,242,105 589,270,071 5
NJUNLP • 0.479 0.423 0.360 3,264,730,349 560,145,557 12
Unbabel-IST 0.456 0.457 0.346 42,868,104,221 10,716,932,147 6
HW-TSC 0.437 0.433 0.331 27,730,527,504 6,932,631,876 12
BeringLab 0.380 0.281 0.283 2,243,955,309 560,945,155 3
BASELINE 0.340 0.253 0.257 2,277,430,715 569,330,715 1
MMT 0.316 0.221 0.237 2,448,132,038 569,330,715 6

Table 13: Official results of the WMT23 Quality Estimation Task 1 Sentence-level for Engligh-German (MQM).
Teams marked with "•" are the winners, as they are not significantly outperformed by any other system according to
the Williams Significance Test (Williams, 1959). Baseline systems are highlighted in grey.

Model Spearman Pearson Kendall Disk footprint (B) # Model params Ensemble
Unbabel-IST • 0.493 0.423 0.378 42,868,104,221 10,716,932,147 4
IOL Research • 0.482 0.392 0.369 2,357,242,105 589,270,071 5
HW-TSC 0.460 0.369 0.352 27,730,527,504 6,932,631,876 12
BASELINE 0.447 0.318 0.342 2,277,430,715 569,330,715 1
BeringLab 0.384 0.230 0.288 2,243,955,309 560,945,155 3

Table 14: Official results of the WMT23 Quality Estimation Task 1 Sentence-level for Chinese-English (MQM).
Teams marked with "•" are the winners, as they are not significantly outperformed by any other system according to
the Williams Significance Test (Williams, 1959). Baseline systems are highlighted in grey.

Model Spearman Pearson Kendall Disk footprint (B) # Model params Ensemble
Unbabel-IST • 0.668 0.518 0.499 42,868,104,221 10,716,932,147 4
IOL Research 0.575 0.424 0.416 2,357,242,105 589,270,071 5
BASELINE 0.475 0.363 0.337 2,277,430,715 569,330,715 1

Table 15: Official results of the WMT23 Quality Estimation Task 1 Sentence-level for Hebrew-English (MQM).
Teams marked with "•" are the winners, as they are not significantly outperformed by any other system according to
the Williams Significance Test (Williams, 1959). Baseline systems are highlighted in grey.
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Model Spearman Pearson Kendall Disk footprint (B) # Model params Ensemble
Unbabel-IST • 0.704 0.735 0.513 42,868,104,221 10,716,932,147 6
HW-TSC • 0.692 0.718 0.504 27,730,527,504 6,932,631,876 12
MMT 0.650 0.663 0.466 2,448,132,038 569,330,715 7
SurreyAI 0.596 0.668 0.423 2,362,232,012 633,305,686 3
IOL Research 0.505 0.372 0.353 2,357,242,105 589,270,071 5
BASELINE 0.392 0.427 0.274 2,277,430,715 569,330,715 1

Table 16: Official results of the WMT23 Quality Estimation Task 1 Sentence-level English-Marathi (DA). Teams
marked with "•" are the winners, as they are not significantly outperformed by any other system according to the
Williams Significance Test (Williams, 1959). Baseline systems are highlighted in grey.

Model Spearman Pearson Kendall Disk footprint (B) # Model params Ensemble
HW-TSC • 0.644 0.720 0.477 27,730,527,504 6,932,631,876 12
IOL Research 0.600 0.667 0.433 2,357,242,105 589,270,071 5
Unbabel-IST 0.598 0.667 0.431 42,868,104,221 10,716,932,147 4
SurreyAI 0.551 0.668 0.395 2,362,232,012 633,305,686 3
MMT 0.494 0.570 0.345 2,448,132,038 569,330,715 7
BASELINE 0.281 0.245 0.190 2,277,430,715 569,330,715 1

Table 17: Official results of the WMT23 Quality Estimation Task 1 Sentence-level English-Hindi (DA). Teams
marked with "•" are the winners, as they are not significantly outperformed by any other system according to the
Williams Significance Test (Williams, 1959). Baseline systems are highlighted in grey.

Model Spearman Pearson Kendall Disk footprint (B) # Model params Ensemble
HW-TSC • 0.775 0.778 0.597 27,730,527,504 6,932,631,876 12
IOL Research 0.740 0.742 0.557 2,357,242,105 589,270,071 5
Unbabel-IST 0.739 0.733 0.550 42,868,104,221 10,716,932,147 4
SurreyAI 0.674 0.710 0.495 2,362,232,012 633,305,686 3
MMT 0.547 0.531 0.384 2,448,132,038 569,330,715 7
BASELINE 0.507 0.402 0.354 2,277,430,715 569,330,715 1

Table 18: Official results of the WMT23 Quality Estimation Task 1 Sentence-level English-Tamil (DA). Teams
marked with "•" are the winners, as they are not significantly outperformed by any other system according to the
Williams Significance Test (Williams, 1959). Baseline systems are highlighted in grey.

Model Spearman Pearson Kendall Disk footprint (B) # Model params Ensemble
HW-TSC • 0.394 0.350 0.269 27,730,527,504 6,932,631,876 12
Unbabel-IST • 0.388 0.362 0.264 42,868,104,221 10,716,932,147 4
IOL Research 0.376 0.344 0.257 2,357,242,105 589,270,071 5
SurreyAI 0.349 0.376 0.241 2,362,232,012 633,305,686 3
MMT 0.337 0.281 0.228 2,448,132,038 569,330,715 7
BASELINE 0.193 0.153 0.134 2,277,430,715 569,330,715 1

Table 19: Official results of the WMT23 Quality Estimation Task 1 Sentence-level English-Telegu (DA). Teams
marked with "•" are the winners, as they are not significantly outperformed by any other system according to the
Williams Significance Test (Williams, 1959). Baseline systems are highlighted in grey.
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Model Spearman Pearson Kendall Disk footprint (B) # Model params Ensemble
Unbabel-IST • 0.714 0.745 0.529 42,868,104,221 10,716,932,147 4
IOL Research 0.695 0.742 0.513 2,357,242,105 589,270,071 5
HW-TSC 0.691 0.714 0.511 27,730,527,504 6,932,631,876 12
SurreyAI 0.649 0.700 0.474 2,362,232,012 633,305,686 3
MMT 0.540 0.581 0.386 2,448,132,038 569,330,715 7
BASELINE 0.337 0.307 0.230 2,277,430,715 569,330,715 1

Table 20: Official results of the WMT23 Quality Estimation Task 1 Sentence-level English-Gujarati (DA). Teams
marked with "•" are the winners, as they are not significantly outperformed by any other system according to the
Williams Significance Test (Williams, 1959). Baseline systems are highlighted in grey.
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C Official Results of the WMT23 Quality Estimation Task 1 Word-level

Tables 21, 22, 23, 24, 25 and 26 show the results for all language pairs and the multilingual variant,
ranking participating systems best to worst using Matthews Correlation Coefficient (MCC) as primary key
for each of these cases.

Model MCC F1-score
Unbabel-IST • 0.329 0.355
IOL Research 0.298 0.322
BASELINE 0.252 0.243

Table 21: Official results of the WMT23 Quality Estimation Task 1 Word-level Multilingual (average over all
language pairs). The winning submission is indicated by a •. Baseline systems are highlighted in grey.

Model MCC F1-score Disk footprint (B) # Model params Ensemble
NJUNLP • 0.297 0.329 3,264,730,349 560,145,557 12
IOL Research 0.256 0.281 2,357,242,105 589,270,071 5
Unbabel-IST 0.246 0.279 2,252,351,787 563,041,309 1
BeringLab 0.233 0.269 2,243,955,309 560,945,155 5
BASELINE 0.179 0.207 2,252,351,659 563,041,309 1

Table 22: Official results of the WMT23 Quality Estimation Task 1 Word-level English-German (MQM). The
winning submission is indicated by a •. Baseline systems are highlighted in grey.

Model MCC F1-score Disk footprint (B) # Model params Ensemble
Unbabel-IST • 0.302 0.331 2,252,351,787 563,041,309 1
IOL Research 0.250 0.268 2,357,242,105 589,270,071 5
BeringLab 0.241 0.262 2,243,955,309 560,945,155 5
BASELINE 0.225 0.255 2,252,351,659 563,041,309 1

Table 23: Official results of the WMT23 Quality Estimation Task 1 Word-level Chinese-English (MQM). The
winning submission is indicated by a •. Baseline systems are highlighted in grey.

Model MCC F1-score Disk footprint (B) # Model params Ensemble
Unbabel-IST • 0.402 0.439 2,252,351,787 563,041,309 1
IOL Research 0.359 0.361 2,357,242,105 589,270,071 5
BASELINE 0.275 0.275 2,252,351,659 563,041,309 1

Table 24: Official results of the WMT23 Quality Estimation Task 1 Word-level Hebrew-English (MQM). The
winning submission is indicated by a •. Baseline systems are highlighted in grey.

Model MCC F1-score Disk footprint (B) # Model params Ensemble
Unbabel-IST • 0.347 0.359 2,252,351,787 563,041,309 1
IOL Research 0.334 0.373 2,357,242,105 589,270,071 5
BASELINE 0.287 0.224 2,252,351,659 563,041,309 1

Table 25: Official results of the WMT23 Quality Estimation Task 1 Word-level English-Marathi (Post-Editing).
The winning submission is indicated by a •. Baseline systems are highlighted in grey.
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Model MCC F1-score Disk footprint (B) # Model params Ensemble
IOL Research • 0.351 0.389 2,357,242,105 589,270,071 5
Unbabel-IST 0.345 0.365 2,252,351,787 563,041,309 1
BASELINE 0.293 0.254 2,252,351,659 563,041,309 1

Table 26: Official results of the WMT23 Quality Estimation Task 1 Word-level English-Farsi (Post-Editing). The
winning submission is indicated by a •. Baseline systems are highlighted in grey.
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D Official Results of the WMT23 Quality Estimation Task 2 Error Span Detection

Tables 27, 28, 29 and 30 show the results for all language pairs and the multilingual variant, ranking
participating systems best to worst using F1-score as primary key for each of these cases.

Model F1-score Precision Recall
Unbabel-IST • 0.220 0.164 0.360
HW-TSC 0.165 0.177 0.161
BASELINE 0.156 0.203 0.128

Table 27: Official results of the WMT23 Quality Estimation Task 1 Word-level Multilingual (average over all
language pairs). The winning submission is indicated by a •. Baseline systems are highlighted in grey.

Model F1-score Precision Recall Disk footprint (B) # Model params Ensemble
NJUNLP • 0.284 0.238 0.352 560,145,557 3,264,730,349 12
Unbabel-IST 0.273 0.209 0.394 -1 -1 -1
KUNMT 0.214 0.224 0.206 818,245,780 2,235,540,305 3
BASELINE 0.167 0.229 0.131 563,041,309 2,252,351,659 1
HW-TSC 0.166 0.220 0.133 285,019,112 1,148,646,407 5

Table 28: Official results of the WMT23 Quality Estimation Task 1 Word-level English-German (MQM). The
winning submission is indicated by a •. Baseline systems are highlighted in grey.

Model F1-score Precision Recall Disk footprint (B) # Model params Ensemble
Unbabel-IST • 0.288 0.246 0.349 3,485,770,281 13,943,358,015 5
HW-TSC 0.235 0.221 0.250 285,019,112 1,148,646,407 4
BASELINE 0.219 0.259 0.190 563,041,309 2,252,351,659 1
KUNMT 0.210 0.216 0.204 818,245,780 2,235,540,305 3

Table 29: Official results of the WMT23 Quality Estimation Task 1 Word-level Chinese-English (MQM). The
winning submission is indicated by a •. Baseline systems are highlighted in grey.

Model F1-score Precision Recall Disk footprint (B) # Model params Ensemble
Unbabel-IST • 0.279 0.241 0.332 3,485,770,281 13,943,358,015 5
HW-TSC 0.266 0.254 0.279 285,019,112 1,148,646,407 10
BASELINE 0.227 0.474 0.150 563,041,309 2,252,351,659 1

Table 30: Official results of the WMT23 Quality Estimation Task 1 Word-level Hebrew-English (MQM). The
winning submission is indicated by a •. Baseline systems are highlighted in grey.

E GPT-4 prompts for Task 2

We add below the prompts used by KUNMT team with GPT4 for Task 2.
Expert annotator prompt:

You are an expert in the Fine-grained error span detection task. The goal of this task is to predict the
word-level translation error spans. you will be asked to predict both the error span (start and end indices)
as well as the error severity (major or minor) for each segment. There can be multiple error spans, and
you must indicate the severity of the error for the spans that exist. If no errors exist in the translation, the
error span is (-1,-1) and the error severity is no-error.

Expert validator prompt:
Review this result by checking the work done by the other workers. If the work was done correctly,
mark it as "GOOD"; if there were any errors, re-annotate the Error Span and Error Severity. To avoid
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inconsistencies, we expect the indices of the errors spans to correspond to characters in the target string
before tokenisation, i.e., the target string that will be provided as test data.’


