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Abstract

This report details the MetricX-23 submission
to the WMT23 Metrics Shared Task and pro-
vides an overview of the experiments that in-
formed which metrics were submitted. Our 3
submissions—each with a quality estimation
(or reference-free) version—are all learned
regression-based metrics that vary in the data
used for training and which pretrained lan-
guage model was used for initialization. We re-
port results related to understanding (1) which
supervised training data to use, (2) the im-
pact of how the training labels are normalized,
(3) the amount of synthetic training data to
use, (4) how metric performance is related to
model size, and (5) the effect of initializing
the metrics with different pretrained language
models. The most successful training recipe
for MetricX employs two-stage fine-tuning on
DA and MQM ratings, and includes synthetic
training data. Finally, one important takeaway
from our extensive experiments is that optimiz-
ing for both segment- and system-level perfor-
mance at the same time is a challenging task.1

1 Introduction

Automatic evaluation metrics are critical to the de-
velopment of machine translation (MT) systems.
They are the most frequently used method for com-
paring two MT systems and deciding which gen-
erates higher quality translations. Each year, the
Conference on Machine Translation (WMT) runs a
Metrics Shared Task to benchmark the quality of
state-of-the-art evaluation metrics (Freitag et al.,
2022). Meta-evaluating metrics by measuring how
well they correlate to human ratings of translation
quality is critical for understanding the extent to
which automatic evaluations of MT systems are
trustworthy.

This report details the MetricX-23 submission
to the Metrics Shared Task. MetricX is a learned

1Our code and mT5-based models can be found at https:
//github.com/google-research/metricx.
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Figure 1: A high-level summary of the 3 different
submissions to the WMT’23 Metrics Shared Task.
MetricX-23-b and MetricX-23-c differ from the pri-
mary submission in that the “b” version is finetuned
on MQM 2022 data in addition to 2020 and 2021, and
the “c” version uses PaLM 2 as its pretrained language
model (differences in bold). Each of the submission
also includes a QE variant that follows the same train-
ing procedure.

regression-based metric that is trained to predict a
floating point score that represents the quality of a
candidate translation. This year, we made 3 differ-
ent submissions to the shared task that vary in the
training data that is used for finetuning and which
pretrained language model is used for initialization.
Our primary submission, denoted MetricX-23, is
based on the mT5 encoder-decoder language model
(Xue et al., 2021), which is further finetuned on
direct assessment (DA) ratings, MQM data (Lom-
mel et al., 2014; Freitag et al., 2021), and synthetic
data. Our contrasting submission, MetricX-23-b,
includes additional MQM data, and MetricX-23-c
finetunes the PaLM 2 language model (Anil et al.,
2023) instead of mT5. Each of the 3 submissions
has a reference-based and quality estimation (QE,
or reference-free) version.

Figure 1 contains a high-level overview of the
training recipe that we used for our submissions. In

https://github.com/google-research/metricx
https://github.com/google-research/metricx
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order to arrive at the metrics that were ultimately
submitted to the shared task, we ran various ex-
periments that are detailed in this report. The key
takeaways from those experiments include:

1. Training on z-normalized DA scores instead
of the raw scores tends to be a trade-off
between segment- and system-level perfor-
mance;

2. Training on raw MQM ratings is better than
z-normalized ratings;

3. Training on DA data followed by MQM data
yields a better metric than on either type of
data individually;

4. Synthetic data is necessary for the metric
to learn to score the reference against itself
higher than a machine translation against the
reference;

5. Metric performance improves significantly as
the size of the pretrained language model in-
creases.

2 Metric Descriptions

The MetricX-23 metrics that were submitted to
the Metrics Shared Task are all learned regression-
based metrics that are trained to predict a floating
point number that represents the quality of a given
translation.

The input to the reference-based metrics is
the candidate translation (hypothesis) and refer-
ence segments—each with a corresponding pre-
fix (“candidate:” and “reference:”, respectively)—
concatenated together. The combined input is en-
coded by the model, and then the metric uses the
encoding to predict a score. This stands in contrast
to COMET-style metrics in which the hypothesis
and reference are encoded separately, then com-
bined in order to predict a score (Rei et al., 2020).
The QE variants use the source segment instead of
the reference, with the prefix changed to “source:”.

We use two different network architectures for
different versions of the metric. The choice of
architecture depends on which pretrained language
model is used to initialize the model.

The first architecture is based on the encoder-
decoder mT5 language model (Xue et al., 2021).
The input is encoded by the encoder, then the out-
put logit from an arbitrary token in the vocabulary
distribution from the first step of decoding is se-
lected to represent the score for the hypothesis and

trained accordingly.2 In practice, we found that
this method for using the pretrained weights for
both the encoder and decoder worked better than
using a regression head on top of the encoder and
discarding the decoder.

The second architecture is the prefix language
model based on Transformer (Vaswani et al., 2017)
used by the PaLM 2 model (Anil et al., 2023). We
augment the architecture by adding a feedforward
regression layer on top of the input encoding. The
output from the feedforward layer is trained to pre-
dict the translation quality score.

Both types of model are trained with a mean
squared error (MSE) loss function. Further imple-
mentation details related to checkpoint selection,
optimization, etc., can be found in §3.3. Informa-
tion related to training data, label normalization,
etc., can be found in §4.

3 Experimental Setup

3.1 Training and Evaluation Data

The two data sources that are primarily used to
train and meta-evaluate MT metrics are the direct
assessment (DA) data and Multi-dimensional Qual-
ity Metrics (MQM; Lommel et al., 2014; Freitag
et al., 2021) that have been collected by WMT over
the years, and both of which are publicly available.
We use the DA data for training and the MQM data
for both training and evaluation.

The DA judgments come from non-expert an-
notators that score the quality of a translation on
a scale from 0 to 100. Often, the scores are z-
normalized per rater in order to better compare
across raters, since each rater may have a different
rating strategy despite using the same scale. We
experiment with using different subsets of the DA
data from 2015 to 2021, as well as using the raw
rating or z-normalized rating as the ground-truth
quality score.

In contrast, the MQM ratings are done by pro-
fessional raters. Each rater marks specific spans
of text within a translation that contain an error,
and label that error with a severity level and cat-
egory. Each error receives a weight based on its
severity and category. A segment’s MQM score is
the sum of the error weights in the segment. Our
experiments use the MQM data collected by WMT

2The specific token to use can be chosen arbitrarily from
the vocabulary, but the same token is then used throughout the
training and inference. In our case, we opted for one of the
<extra_id_**> tokens reserved in mT5’s vocabulary.
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from 2020 to 2022. The 2022 ratings are our pri-
mary evaluation dataset, and all correlations that
we report are calculated on this dataset.

Our experiments additionally leverage a metrics
challenge set, DEMETR (Karpinska et al., 2022),
for metric meta-evaluation. DEMETR is a collec-
tion of paired translations that probe a metric’s abil-
ity to correctly model different phenomena. The
pairs of translations differ by some linguistic phe-
nomena, with one translation assumed to be higher-
quality than the other, and the metric is evaluated
on how often it correctly ranks the two translations.
We use DEMETR to evaluate how frequently the
reference translations evaluated against itself re-
ceives a higher score than a machine translation
evaluated against the same reference.

3.2 Meta-Evaluation

In our experiments, we calculate the metrics’ agree-
ments with human judgments of translation quality
using four different correlations. At the system-
level, we use both Pearson’s r and pairwise accu-
racy (Kocmi et al., 2021). System-level Pearson’s r
captures how strong the linear relationship is be-
tween the metric and human scores for MT systems.
Pairwise accuracy evaluates a metric’s ranking of
MT systems by calculating the proportion of all
possible pairs of MT systems that are ranked the
same by the metric and human scores.

At the segment-level, we use the no-grouping
Pearson’s r and the group-by-item pairwise accu-
racy with tie calibration as described by Deutsch
et al. (2023).3 The no-grouping Pearson’s r quanti-
fies the linear relationship between the metric and
human scores across all possible translations from
every system and document. The group-by-item
pairwise accuracy calculates the proportion of all
possible pairs of translations for the same input
segment that are ranked the same or predicted to
be a tie by the metric and human, then averages the
accuracies over all possible input segments. Since
regression-based metrics rarely predict ties and the
segment-level pairwise accuracy rewards correct tie
predictions, Deutsch et al. (2023) uses a procedure
called tie calibration that automatically introduces
ties into metric scores by introducing an ε such
that any two translations with a difference in metric
score less than ε are considered to be tied.

3We chose this pairwise accuracy over Kendall’s τ , which
has typically been used in WMT Metrics evaluation, for its
superior handling of ties in metric scores.

3.3 Implementation Details

Our metrics are implemented with TensorFlow
(Abadi et al., 2015) and the T5X library (Roberts
et al., 2022). Each training run uses 64 TPUs and
trains for a maximum of 10K steps with a batch size
of 512 on the DA data, or 3K steps with a batch
size of 256 on the much smaller MQM dataset.
Adafactor is used for optimization (Shazeer and
Stern, 2018). Checkpoint selection is done by se-
lecting the model that has the highest segment-level
pairwise accuracy after tie calibration on the en-de
and zh-en language pairs.

We are publicly releasing our mT5-based sub-
missions, converted from TensorFlow to PyTorch
(Paszke et al., 2019) checkpoints, along with cor-
responding code to use them to predict translation
quality scores.

4 Experimental Results

We made three different submissions to the shared
task, each with a reference-based and QE variant:

1. MetricX-23(-QE): An mT5-XXL model that
was finetuned on a combination of DA data
from 2015–2020, MQM data from 2020–
2021, and synthetic data.

2. MetricX-23(-QE)-b: The same as MetricX-
23(-QE) except we additionally included
MQM data from 2022.

3. MetricX-23(-QE)-c: The same as MetricX-
23(-QE) except it is a finetuned PaLM-2 Bison
model.

An overview of these submissions is shown in Fig-
ure 1. In the rest of this section, we describe the
experimental results that led us to these submis-
sions.

The experiments in the process of determining
the best training recipe were performed with mT5-
XL (3.7B parameters), but our final submissions
then use the XXL variant with 13B parameters. All
results are reported as the mean of 3 independent
runs, along with the standard deviation across the
runs, unless stated otherwise.

4.1 Training Data

We start by determining which of the data available
from previous WMT Metrics Shared Tasks is useful
for training our metric, and whether it is beneficial
to perform any transformations of the ratings before
using them for training.
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4.1.1 DA Ratings

DA ratings have been used for scoring candidate
translations in the shared task since 2015. To ob-
tain DA ratings, human annotators were asked to
provide an integer score on a scale of 0 to 100 for
a translation produced by an MT system, given a
reference translation produced by an expert transla-
tor.4 There are over 2M raw DA ratings available
from the years between 2015 and 2021, spanning
40 different language pairs. The total number of rat-
ings drops to ca. 1M when ratings for the same seg-
ment (from different raters) are aggregated, which
we do in order to avoid providing the model with
different signals for the same translation.

Since the DA ratings come from hundreds of dif-
ferent raters, the WMT Metrics Shared Task orga-
nizers typically z-normalize them per rater before
using them as the ground truth for metric evalua-
tion. This is to make the ratings more comparable
across different raters, considering some of them
can be very strict, others lenient, and some can use
the whole rating scale, while others just a narrow
range of it. Hence a DA rating of, say, 50 can end
up being used for translations of widely varying
quality. The normalization ensures that the mean of
each rater’s ratings is 0 and the standard deviation
is 1. These official normalized DA ratings, which
we refer to as z-scores, are available along with the
raw DA ratings in the data from the shared tasks.

Score Normalization. In our first experiment,
we compare the performance of our metric fine-
tuned on the raw DA ratings and on the z-scores on
different subsets of the DA data. As the first two
rows of Table 1 show, using z-scores results in an
overall weaker performance, but a drastic improve-
ment on segment-level Pearson’s r (42.93 vs. 38.83
for zh-en). Thus, picking between using raw rat-
ings or z-scores for training the metric comes down
to the preference between high system-level or high
segment-level performance. Given the models’ per-
formance on the system-level metrics is already
relatively high (between 80 and 99), we choose to
use z-normalized DA ratings over their raw coun-
terparts for our submissions. Nevertheless, as we
show in Section 4.2, adding synthetic data during
finetuning can restore some of the system-level

4Technically, some of the translation data is “target-
original”, meaning that the reference (target) is the text origi-
nally to be translated, and the source is the translation. This is
the case for some language pairs in the DA data from earlier
years.

(a) Raw DA ratings.

(b) DA z-scores.

(c) Clipped DA z-scores.

Figure 2: WMT15-20 DA rating distributions after z-
normalization and after clipping to [−1.0, 1.0], com-
pared to the raw rating distribution.

performance. Moreover, our later experiments in
Section 4.3 demonstrate that further finetuning on
MQM ratings is more effective using a model first
finetuned on DA z-scores than raw DA ratings.

Score Clipping. Normalized and raw ratings fol-
low very different distributions, as depicted in Fig-
ure 2. The raw rating distribution is relatively
flat across the whole range with a large spike at
the maximum value, i.e., 100. In contrast, the z-
score distribution ranges roughly from −17 to 5,
with the majority of the mass between −1 and 1,
a sharp peak around 0.65, and a long tail on the
negative side. In order to prevent the model from
putting too much weight on the outliers during
training, and not learning to differentiate well be-
tween translations scored around zero, we propose
clipping the scores to be in the [−1.0, 1.0] range.5

This creates a spike on the right end, similar to
that observed on the raw rating distribution, but
also a spike on the left end, similar in magnitude
to the other spike (see Figure 2c). Finetuning a
model on the clipped z-scores results in segment-
level performance gains compared to the unmodi-

5MSE loss magnifies errors in predictions greater than 1
and shrinks errors smaller than 1 relative to the absolute dif-
ference.
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SEG pairwise acc. SEG Pearson SYS pairwise acc. SYS Pearson
en-de zh-en en-de zh-en en-de zh-en en-de zh-en

15-20 raw 59.98 51.63 43.51 38.83 83.33 89.38 90.79 98.51
±0.03 ±0.15 ±0.77 ±0.44 ±1.28 ±1.68 ±1.39 ±0.35

15-20 z 59.57 51.26 47.08 42.93 81.62 85.35 85.60 98.02
±0.20 ±0.40 ±0.23 ±0.13 ±1.48 ±1.68 ±1.00 ±0.20

15-20 z clipped 59.77 51.45 46.89 45.05 79.49 86.08 83.24 97.28
±0.21 ±0.15 ±0.32 ±0.24 ±0.00 ±1.68 ±0.97 ±0.11

15-21 z clipped 59.70 50.76 47.76 43.26 80.34 85.35 85.21 97.31
±0.10 ±0.30 ±1.02 ±0.70 ±1.96 ±1.68 ±1.67 ±0.82

Table 1: Performance of MetricX that is initialized with mT5-XL, finetuned on DA ratings in different ways. “15-
20” indicates that ratings from the years 2015 through 2020 were used, “z” indicates z-normalized scores, and
“clipped” denotes experiments with the scores clipped to the [−1.0, 1.0] range. Note that the data from 2015 is a
small set of 2,500 z-normalized ratings only, so there is technically no data from 2015 in the “15-20 raw” setting.

fied z-scores, though further sacrifices some of the
system-level performance (compare rows 2 and 3
in Table 1). Compared to finetuning on raw ratings
(row 1 vs. row 3), there is up to 16% increase on
the segment level (Pearson on zh-en), at the cost
of an up to 9% drop in system-level performance
(Pearson on en-de).

Data Selection. The DA ratings we used in our
experiments thus far were from 2015 to 2020. Sav-
ing the WMT22 data for the validation set, we
have the option of adding the WMT21 DA ratings
to the training set. Doing this leads to moderate
gains in system-level en-de performance, yet an
equal, if not bigger, performance drop in zh-en
across all metrics (compare the last two rows in Ta-
ble 1). We also tried excluding earlier years of DA
ratings, such as 2015–2017 or 2015–2018, since
up until 2018 a half of the translations in the data
were target-original (Barrault et al., 2019), and all
DA annotations were reference-based (Ma et al.,
2019), as opposed to source-based, such as is the
case with a good part of the DA annotations from
2019 onward, and all of the MQM ratings. We
hypothesized that the older data might thus be pro-
viding some low-quality signals to the model dur-
ing training, negatively affecting the performance.
Nevertheless, the model seems to prefer additional
training data, even if of a mixed quality, as we
consistently observed a slight drop in performance
after excluding the earlier years, especially on sys-
tem level. Therefore, the rest of the experiments
uses DA data from 2015 to 2020.

4.1.2 MQM Ratings
MQM ratings have been collected in the context
of the WMT Metrics Shared Task only since 2020.

Due to the MQM annotation being significantly
more labor-intensive, there is significantly less data
collected per year than using the DA methodol-
ogy. In fact, MQM ratings are only available for
three language pairs, namely en-de, zh-en and en-
ru. Since we reserve the ratings from 2022 for
validation, we are left with only two years worth of
MQM data to use for training, which amounts to
approximately 114K ratings. For both training and
evaluation we negate the MQM scores, changing
thus the range to [−25, 0], so that the score corre-
sponding to no errors in the translation would be
the highest value, as opposed to the lowest value, in
the range. In the following paragraphs, we discuss
our experiments with finetuning a model on MQM
ratings only, in order to see if the model learns
anything different than what it learns from the DA
ratings.

Data Selection. We start this set of experiments
with finetuning our model on the combination of
’20 and ’21 MQM ratings, and confirming that there
is an added benefit to it over finetuning on just one
of the years. As demonstrated by the first two rows
in Table 2, finetuning on the ’20 and ’21 data indi-
vidually leads to very different performance across
the set of metrics. Using just the ’20 MQM data by
itself, our model achieves better segment-level per-
formance than using all of the DA data, however, it
is the opposite case on system level. As for training
on ’21 data only, the performance is significantly
worse overall despite a slightly better segment-wise
pairwise accuracy on en-de. Although this may sug-
gest that the ’21 MQM data is of a lower quality,
it may also simply be the consequence of the ’21
data having only a little over a third of the number
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SEG pairwise acc. SEG Pearson SYS pairwise acc. SYS Pearson
en-de zh-en en-de zh-en en-de zh-en en-de zh-en

20 raw 59.91 52.52 48.03 54.43 77.35 84.98 75.30 85.46
±0.24 ±0.13 ±1.56 ±0.58 ±2.67 ±0.63 ±0.71 ±1.76

21 raw 60.43 51.92 42.21 54.07 69.66 82.42 56.62 85.92
±0.12 ±0.04 ±1.69 ±1.00 ±1.96 ±1.10 ±4.67 ±0.40

20-21 raw 60.77 52.72 47.59 55.41 73.93 83.52 72.70 85.68
±0.17 ±0.24 ±1.82 ±0.43 ±0.74 ±1.10 ±0.15 ±0.70

20-21 z 59.74 51.98 45.84 54.34 74.79 82.78 70.79 86.14
±0.33 ±0.82 ±0.99 ±0.75 ±0.74 ±2.29 ±2.79 ±1.06

Table 2: Performance of MetricX initialized with mT5-XL on the WMT22 MQM dataset, finetuned on different
subsets of MQM ratings. “z” indicates z-normalized scores.

of ratings in the ’20 data.6 Finetuning on both the
’20 and the ’21 data combined, however, outper-
forms both of the individual years on segment-level
metrics, while it lands somewhere in between ac-
cording to system-level metrics (see row 3 in the
table). Hence, we use the MQM ratings from both
years in all of our subsequent experiments.

Score Normalization. We observed on the DA
data that z-normalization has certain benefits, so
we experiment with it even on the MQM data. We
perform the z-normalization ourselves in the same
way the shared task organizers normally do for
the DA ratings, and compare a model finetuned on
these z-scores to one finetuned on the raw MQM
ratings. It is clear from the comparison of rows 3
and 4 in Table 2 that z-normalization drags the per-
formance down, especially on the segment level.7

One possible explanation could be that the normal-
ization has a negative effect here because of the
raters having annotated different sets of documents
each, and the set of raters being very small at the
same time. It could also be that z-normalization is
actually not a very practical transformation of train-
ing labels for this task, yet it helps in case of DA
ratings, which are of a much lower quality.8 The
metrics are evaluated against raw MQM ratings, so
z-normalization during training could negatively
impact its Pearson correlation at test time. At any
rate, based on this result, we opt for the raw MQM
ratings when finetuning our models henceforth.

6In the ’20 MQM data, candidate translations have multiple
ratings, so we also experimented with averaging them, but
that, somewhat surprisingly, resulted in a consistently lower
performance across the board.

7We verified that this is the case both with and without
aggregating the ratings of the same translations by multiple
raters in the ’20 data.

8For instance, z-normalization discounts the ratings of
raters who gave the same score, e.g., 100, to most of the
translations they rated.

4.2 Adding Synthetic Data

Using the DEMETR challenge set, we discovered
that training MetricX on either the DA or the MQM
dataset does not teach it to reliably score a transla-
tion that exactly matches the reference higher than
or equal to a machine translation, which should be
a basic sanity check for an evaluation metric. In
order to fix this behavior, we create simple syn-
thetic examples where the reference is copied as
the candidate translation and the label is set to the
maximum score. Depending on the training set
these synthetic examples are used along with, the
labels may need to be rescaled to ensure they corre-
spond to the maximum score, e.g., 100 when used
with raw DA ratings or 0 with MQM ratings. Since
z-scores do not have a maximum value, per se,
there is no straightforward way of incorporating
this synthetic data into such a training set. Clipped
z-scores make this trivial though, which is another
argument for training MetricX on clipped DA z-
scores instead of the full range of z-scores. We use
all of the references across all language pairs in the
DA data between 2015 and 2022 to construct this
synthetic dataset, which amounts to a little over
180K unique examples.

We also prepare a second synthetic dataset with
the opposite type of examples, that is, ones that
have no candidate translation and therefore a label
corresponding to the minimum score (i.e., 0 for DA,
and −25 for MQM). It is created using the same
data as the other synthetic dataset, only instead of
copying the reference, we set all of the translations
to an empty string, resulting in the same number of
synthetic examples.

Next, we perform experiments to determine what
the minimum ratio of synthetic examples to regular
training examples is with which a high accuracy on
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Figure 3: Effects of adding different proportions of syn-
thetic data to the DA 15-20 training set (using clipped z-
scores). The gray bars indicate the DEMETR-reference
score (with the scale on the left y-axis), while the lines
show the relative increase or decrease of the correlation
metrics w.r.t. using no synthetic data (with the scale on
the right y-axis). “Acc.” stands for pairwise accuracy,
and “r” denotes Pearson’s r. Segment-level Pearson’s r
followed similar trends to segment-level accuracy, and
was therefore omitted for better readability.

the DEMETR-reference metric can be achieved.9

Figure 3 illustrates the effects of adding the syn-
thetic data to the “DA 15-20 z clipped” training set
in the following proportions: 0.4%, 1%, and 2%
of the DA examples.10 As we can see by looking
at the gray bars, the synthetic data has the desired
effect of bringing the accuracy of correctly scor-
ing a reference higher than a machine translation
from a mere 31% to almost 100%. However, this
comes at a cost. With the increasing amount of syn-
thetic data, the segment-level performance slowly
degrades for both language pairs (see the blue and
red lines in the plot). On the system level side, we
see mixed results: a big improvement for en-de
(see the yellow and brown lines) and a comparable
drop in performance for zh-en, though only accord-
ing to pairwise accuracy (see the orange and green
lines). As such, we find adding 1% of synthetic
examples to the DA data a good compromise be-
tween achieving relatively high DEMETR scores
and maintaining good performance on the segment-
and system-level correlation metrics. For the actual
scores, we refer the reader to row 1 in Table 3.

We carried out a similar study with the MQM
20-21 training data, landing on 2% of synthetic
examples as the best proportion.11 Note that, with

9When included in the training data, both of the synthetic
datasets are added in the same proportion.

101% corresponds to ca. 10K synthetic examples.
11Since the MQM dataset is much smaller, 2% here corre-

sponds to only ca. 2K synthetic examples.

a model finetuned on raw MQM ratings, the ac-
curacy on DEMETR was relatively high to begin
with, typically between 80% and 90%. The 2% of
synthetic data brought it up to nearly 99% though.
Interestingly, training on the combination of MQM
and synthetic data did not have a negative impact
on the correlation metrics, as was the case with DA
data. On the contrary, the performance received
a consistent boost across all metrics, with an up
to 1% increase in system-level scores and 5% in
segment-level scores (see row 2 in Table 3).

4.3 Two-Stage Finetuning
In the previous two sections, we identified the best
subset and format of the DA/MQM ratings, and
we found the right balance between the DA/MQM
examples and the synthetic examples for training
a MetricX model. Here, we take it one step fur-
ther and perform two-stage finetuning experiments,
wherein we first finetune the model on the DA 15-
20 training set, and then further finetune it on MQM
20-21 data with a smaller learning rate. The reason
for finetuning on the two datasets in this order is
3-fold: (1) MQM is substantially smaller and has a
limited language coverage, (2) MQM is a higher-
quality dataset, and (3) the metric’s performance is
ultimately evaluated on MQM ratings (whether it
be our validation set, or the shared task’s test set).

Of all the four combinations of raw and z-
normalized DA and MQM ratings, we found, some-
what surprisingly, that using DA z-scores (aggre-
gated) in the first stage followed by raw MQM
ratings in the second stage leads to the best results.
Intuitively, using raw ratings in both stages, or z-
scores in both stages, should provide a smoother
learning process for the model, as it does not need
to relearn the label scales.12 Nevertheless, it ap-
pears that the neural model is not negatively af-
fected by the shift, and instead it prefers learning
from the DA and MQM data in their respective
most effective format.

Before diving into the two-stage experiment re-
sults, let us recap that, so far, MetricX achieved the
best segment-level performance when finetuned on
the MQM 20-21 dataset, and the best system-level
performance on the DA 15-20 dataset (in fact, sub-
stantially better than on the MQM dataset). The
top two rows in Table 3 show the performance of
models finetuned on these datasets individually,

12In the experiments with raw ratings in both stages, we
rescaled the DA ratings to the [−25, 0] range, so as to match
the MQM scale used then in the second stage.
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SEG pairwise acc. SEG Pearson SYS pairwise acc. SYS Pearson DEMETRen-de zh-en en-de zh-en en-de zh-en en-de zh-en

DAsyn 59.56 50.61 46.75 43.44 82.05 82.42 86.50 97.12 91.03
MQMsyn 60.96 52.93 49.98 56.12 73.08 83.88 73.49 85.72 98.57

DA→MQM 61.50 54.09 51.59 58.53 73.93 86.45 75.46 88.93 46.20
DA→MQMsyn 61.61 54.05 51.55 58.81 75.21 85.71 76.65 89.89 91.93
DAsyn →MQM 61.46 53.70 52.20 57.97 73.93 85.71 75.63 88.39 82.03

DAsyn →MQMsyn 61.35 53.61 52.30 57.57 75.64 86.08 77.18 89.35 97.53

DA21
syn →MQM 61.49 53.67 51.36 58.07 74.79 84.62 76.30 89.26 92.30

DA21
syn →MQMsyn 61.45 53.93 53.62 58.88 75.21 85.71 78.15 89.85 98.17

Table 3: Performance of MetricX initialized with mT5-XL, finetuned first on DA 15-20 clipped z-scores, and
subsequently on MQM 20-21 raw ratings, with synthetic data added at different stages. DAsyn denotes the DA
dataset with 1% of synthetic examples, and MQMsyn is the MQM dataset with 2% of synthetic examples. For
comparison, the first two rows show the performance of models finetuned on DAsyn and MQMsyn individually. The
last two rows correspond to models finetuned in the first stage on the DA dataset with the ’21 ratings added but
with all into-English language pairs excluded. Standard deviations are omitted in this table for better readability.

with synthetic data included, serving thus as base-
lines for the following experiments. Now, the third
row shows the scores for a model finetuned in the
two-stage fashion without any synthetic data. Com-
paring these results with those of a model finetuned
on the MQM dataset only (see row 3 in Table 2),
we see a dramatic improvement in performance
across the board. For example, the segment-wise
accuracy for zh-en increases from 52.72 to 54.09,
and Pearson’s r for en-de from 47.59 to 52.30. In
system-level metrics we see similar gains, such as
the accuracy going up from 83.52 to 86.45, and
Pearson’s r from 72.70 to 75.46 for zh-en. Simi-
larly, rows 2 and 4 in Table 3 can be compared to
see a similar difference, only this time for models
trained with synthetic data too. This demonstrates
a clear benefit of training our MetricX model on
both the DA and the MQM data over training it on
either of them individually. That being said, the
system-level performance still lags significantly be-
hind models finetuned on DA data only, so there
appears to be a trade-off between segment- and
system-level performance.

Next, we examine whether there is a difference
between including synthetic data in the first stage
or the second stage of finetuning. Rows 4 and 5 in
Table 3 correspond to these two experiments. The
scores show that using synthetic examples in the
second stage not only ensures a higher DEMETR
accuracy (91.93 vs. 82.03), but also higher correla-
tions with the human scores according to virtually
all of the other metrics. Moreover, compared to
not using synthetic data at all (see row 3 in the
table), combining it with the MQM data in the sec-
ond stage does not generally sacrifice the overall

performance, not to mention it almost doubles the
DEMETR accuracy.

Finally, we also tried including synthetic data in
both finetuning stages, but not until after the shared
task’s submission window has passed, hence, we
did not use this method in our final MetricX ver-
sion. The gains over using the synthetic data in the
second stage only are rather inconsistent, neverthe-
less the DEMETR score further increases to 97.53
(see row 6).

4.4 Additional Experiments

Although in Section 4.1 we concluded that adding
DA ratings from WMT21 to the training set
dragged the performance down, we noted that that
was the case for the zh-en language pair only. Re-
visiting this experiment after the submission, we
found that excluding the into-English DA data from
WMT21 and including the synthetic data as de-
scribed in Section 4.2 is, in fact, a potentially better
training set than the same with the WMT21 ratings
omitted altogether. As we can see in Table 3, the
model performs consistently better across most of
the metrics when finetuned with the WMT21 out-
of-English language pairs included (compare rows
7–8 with rows 5–6). So, while this seems to be the
best training recipe, it is not the one we followed
for the shared task submissions. Instead, we used
DA 15-20 (without synthetic data) in the first stage,
corresponding to row 4 in the table.

4.5 Scaling Analysis

Having arrived at our final MetricX training recipe
using mT5-XL (3.7B parameters) as the pretrained
model, we now briefly compare its performance
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SEG pairwise acc. SEG Pearson SYS pairwise acc. SYS Pearson
en-de zh-en en-de zh-en en-de zh-en en-de zh-en

mT5-L 59.63 53.98 50.82 55.91 76.07 87.55 79.92 93.63
±0.34 ±0.06 ±2.16 ±0.53 ±0.74 ±0.63 ±1.20 ±2.48

mT5-XL 61.61 54.05 51.55 58.81 75.21 85.71 76.65 89.89
±0.12 ±0.29 ±1.06 ±0.12 ±0.74 ±1.10 ±1.44 ±0.23

mT5-XXL 61.92 54.76 54.57 60.06 82.48 86.81 84.49 90.85
±0.19 ±0.13 ±0.36 ±0.50 ±0.74 ±1.10 ±0.30 ±0.31

Table 4: Performance of MetricX with different variants of mT5 as the initialization model, trained using our final
recipe, which involves first finetuning on DA 15-20 ratings and then on MQM 20-21 ratings with synthetic data.

with two other variants of mT5: one smaller (mT5-
Large with 1.2B parameters) and one larger (mT5-
XXL with 13B parameters). From Table 4 it is clear
that MetricX can benefit from a bigger pretrained
model for initialization, as mT5-XXL has a good
margin on mT5-XL across all metrics. The XXL
variant thus becomes our choice for all of our mT5-
based submissions to the shared task.

Interestingly, mT5-Large outperforms the two
bigger variants in system-level metrics on the zh-en
language pair, and that not by a negligible margin.
Combined with the results in the earlier sections
and our observation that the system-level perfor-
mance of MetricX is typically highest right at the
beginning of training, and quickly declines as the
model gradually improves on segment-level met-
rics, it appears it may be challenging to come up
with a single MT evaluation metric that excels
at both the segment and the system level. This
phenomenon can also be observed among several
of the top metrics in the WMT22 Metrics Shared
Task (Freitag et al., 2022), as well as in recent large
language model-based approaches to automatic MT
evaluation (Kocmi and Federmann, 2023).

4.6 Submission Summary

Throughout the whole of Section 4 thus far, we
were reporting results averaged across three inde-
pendent runs, so as to more reliably develop the
best training recipe for the reference-based version
of MetricX. Here, we present the performance of
our individual final submissions to the WMT23
Metrics Shared Task, described at the beginning of
this section, including our QE (or reference-free)
metric submissions. All of our submissions fol-
low the same recipe—i.e., are first finetuned on the
DA 15-20 aggregated and clipped z-scores, and
then further finetuned on MQM 20-21 ratings com-
bined with synthetic examples—but differ in (1) the

pretrained model used for initialization, (2) whether
they use reference or source segments in the input
(the latter being used for the QE submissions), and
(3) whether the second-stage training set includes
the ’22 MQM ratings or not. For the QE vari-
ants, we followed the same training recipe as the
reference-based version; we did not do a signifi-
cant amount of analysis into whether the design
choices we made for the reference-based metric
were also the correct decisions for the QE version.
For the models that do use the ’22 data for finetun-
ing (which we otherwise use as the validation set),
we do not report any scores. For these two submis-
sions, we picked the model checkpoint based on
the equivalent training runs without the ’22 ratings.

Our remaining four submissions have their
scores summarized in Table 5. Between the two
reference-based variants (rows 1–2), the mT5-
based MetricX is dominant in segment-level scores,
whereas the PaLM-2-based one has a strong lead
on the system level. The story is similar for the
two QE variants (rows 3–4), only the segment-level
score differences are less pronounced. Overall, on
the WMT22 MQM validation set, the QE variants
are not very far behind their reference-based coun-
terparts in performance.

5 Related Work

For many years, lexical-based metrics like BLEU
(Papineni et al., 2002) and ChrF (Popović, 2015)
were the standard method for automatically evalu-
ating MT output. However, as it was demonstrated
that learned evaluation metrics correlate to human
ratings significantly higher than lexical-based met-
rics (Freitag et al., 2022), the vast majority of re-
cent research on MT evaluation has used learned
metrics.

Learned MT metrics, such as BLEURT (Sel-
lam et al., 2020; Pu et al., 2021) and COMET
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MetricX Pretrained SEG p. acc. SEG Pearson SYS p. acc. SYS Pearson
variant model en-de zh-en en-de zh-en en-de zh-en en-de zh-en

23 mT5-XXL 62.09 54.84 54.21 60.06 82.05 86.81 84.19 91.20
23-c PaLM-2-Bison 61.56 54.17 51.62 52.24 76.92 92.31 91.41 98.61

23-QE mT5-XXL 60.64 54.04 49.78 56.41 78.21 87.91 81.29 91.32
23-QE-c PaLM-2-Bison 60.23 53.96 49.28 52.48 82.05 91.21 93.64 96.90

Table 5: Meta-evaluation scores of our four MetricX submissions that did not include the ’22 MQM data in the
training set. Note that these scores correspond to single runs, as opposed to all the previous results that were
averaged across 3 runs.

(Rei et al., 2020, 2022a), differ largely in their
network architecture and the specific tasks they
are trained to do. Our metric is most closely re-
lated to BLEURT. Like BLEURT, the MetricX
network architecture creates a joint encoding of
both the hypothesis and reference translations to-
gether, in contrast to COMET-style metrics that
encode them independently. Our network is trained
only to do either reference-based or reference-free
(QE) judgments of sentence-level translation qual-
ity, whereas some metrics like UniTE (Wan et al.,
2022) are trained to both tasks at the same time
or CometKiwi (Rei et al., 2022b), which learns to
predict both word-level quality scores in addition
to an overall sentence-level score. Other learned
metrics, such as MaTESe (Perrella et al., 2022),
take an alternative approach to regression-based
metrics and derive a sentence-level quality score by
identifying error spans in translations, like is done
in the human evaluations of MQM.

More recent approaches to MT evaluation lever-
age large language models (LLMs) to do zero-shot
scoring by either directly predicting scalar quality
scores or phrase-level error tagging (Kocmi and Fe-
dermann, 2023; Fernandes et al., 2023). These ap-
proaches typically leverage models that are orders
of magnitude larger than metrics that are trained
specifically for MT evaluation.

In comparison to the MetricX submission to the
WMT22 Metrics Shared Task, this year’s submis-
sion shares the same architecture, but we performed
a significantly larger number of experiments to ar-
rive at the final models, which are detailed in this
report. We also explore how metric performance
changes as a function of the number of parame-
ters, experiment with initializing with different pre-
trained language models, and include a QE submis-
sion.

6 Conclusion

In this report, we presented in detail our approach
to training MetricX-23, a regression-based MT
evaluation metric. We submitted six versions of
MetricX-23 to the WMT23 Metrics Shared Task,
including both reference-based and QE variants.
Some of our findings are that (1) training on di-
rect assessment (DA) ratings and subsequently
on MQM ratings leads to a significantly better
performance than training on either of the two
datasets alone, (2) z-normalization of DA ratings
helps achieve better segment-level performance,
but is not useful for high-quality MQM ratings,
and (3) adding a small amount of synthetic data to
the training set, targeting a challenge set, can also
boost the metric’s overall performance.

Throughout our experiments, we observed an
undesirable tension between segment- and system-
level performance, making it challenging to im-
prove our metric in both aspects at the same time.
Nevertheless, increasing the size of the model used
to pre-initialize the metric appears to be one reli-
able way to increase the overall performance, at
least to a certain point. Future work may benefit
from a better understanding of the trade-off be-
tween segment- and system-level performance, and
whether it would be better to focus on separate
metrics for these two types of MT evaluation.
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