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Abstract

Machine translation is a natural language gener-
ation (NLG) problem that involves translating
source text from one language to another. Like
every task in the machine learning domain, it
requires an evaluation metric. The most ob-
vious one is human evaluation; however, it is
expensive, time-consuming, and not easily re-
producible automatically. In recent years, with
the introduction of pretrained transformer ar-
chitectures and large language models (LLMs),
state-of-the-art results in automatic machine
translation evaluation have significantly im-
proved in terms of correlation with expert as-
sessments. We introduce MRE-Score, which
stands for seMantically-informed Regression
Encoder Score. It is an approach that constructs
an automatic machine translation evaluation
system based on a regression encoder and con-
trastive pretraining for the downstream prob-
lem.

1 Introduction

WMT Metrics Shared Task (Freitag et al., 2022)
is a machine learning competition where partici-
pants have to construct an automatic evaluation sys-
tem for machine translation for several language
pairs. For WMT23 Metrics Shared Task1, three lan-
guage pairs are considered: English-German (en-
de), Chinese-English (zh-en), and Hebrew-English
(he-en). For each source sentence, there is a cor-
responding target machine-translated text and a
reference human translation. The main goals of
this competition are:

1. To achieve the strongest correlation with hu-
man judgment of translation quality over a
diverse set of machine translation systems.

2. To illustrate the suitability of an automatic
evaluation metric as a surrogate for human
evaluation.

∗Equal contribution
1https://wmt-metrics-task.github.io

Figure 1: Final model architecture. Blocks in blue rep-
resents static components that were not trained. Blocks
in yellow represent trained parts of the model.

3. To test the robustness of metrics when evalu-
ating domains other than news data.

4. To create high-quality datasets for developing
and evaluating metrics.

Within the WMT23 Metrics competition, our in-
vestigation focuses on the approach of constructing
evaluation models to solve the regression problem
based on expert degrees. Specifically, we construct
regression models using a pretrained transformer
encoder from the mT0 model family (Muennighoff
et al., 2022), both vanilla models and with addi-
tional contrastive representation tuning. mT0 is
finetuned version of mT5 (Xue et al., 2020), mul-
tilingual transformer model, which demonstrated
capabilities of crosslingual generalization to unseen
tasks and languages. Similar approaches demon-
strated the best results in WMT21 (Freitag et al.,
2021) and WMT22 (Freitag et al., 2022) Shared
Tasks.

We release our code and pre-trained models
openly to foster further research.2

2 Related Work

Evaluation metrics In NLG evaluation, one can
differentiate four types of approaches for model

2https://github.com/v-vskv-v/WMT23-MRE-Score

mailto:vasiliy.viskov@skol.tech
mailto:daniil.larionov@uni-bielefeld.de
https://wmt-metrics-task.github.io
https://github.com/v-vskv-v/WMT23-MRE-Score


816

construction: (1) classical lexical overlap mod-
els, on the one hand, and LLM-based approaches
based on (2) unsupervised matching, (3) regression,
and (4) zero-shot prompting, on the other hand.
Classical lexical overlap methods measure overlap
between source, reference, and target sentence n-
grams (Papineni et al., 2002; Lin, 2004; Banerjee
and Lavie, 2005). Modern unsupervised matching-
based approaches use large language model (LLM)-
based encoders such as BERT to compute the se-
mantic similarity between reference and hypothe-
sis texts (Zhang et al., 2019; Zhao et al., 2019) or
between source and hypothesis texts (Zhao et al.,
2020). In modern regression approaches, models
are fine-tuned to predict human evaluation scores.
Generally, they consist of a transformer encoder
model and a regression head. As input, they can use
late binding with source, reference, and target texts
or different concatenation combinations (Sellam
et al., 2020; Rei et al., 2020). LLM-based zero-
shot approaches use prompt engineering for LLMs
with the expectation of a score in the generation
output (Kocmi and Federmann, 2023). In some
research, attempts are made to predict evaluation
scores as a weighted sum of digit tokens, where
the weights are token probabilities from a Markov
chain probability model (Liu et al., 2023).

The previous winner of the WMT Metrics
Shared Task competition was the proprietary Met-
ricX(Freitag et al., 2022) model, which used a
regression approach. One of the state-of-the-art
models in machine translation is GPT-4 with zero-
shot scoring. However, due to the time consump-
tion of its inference and the closeness of regres-
sion approaches with relatively small backbones
(e.g., COMET used the base version of XLM-
RoBERTa (Conneau et al., 2019) with 2.5B pa-
rameters), task-specific NLG evaluation with so-
phisticated tricks with vector representation and
training datasets may provide better results.

Contrastive Learning Contrastive learning for
NLP problems is a popular pretraining approach
for improving results in downstream tasks. For ex-
ample, the recent E5 model (Wang et al., 2022) is
pretrained in a contrastive manner using a curated
large-scale text pair dataset to solve various tasks
that require a single-vector representation of texts,
both after finetuning and in a zero- or few-shot
manner. Another work that investigated contrastive
learning for extrapolating vector representations for
different tasks is InstructOR (Su et al., 2022). This

model incorporates instructions in contrastive learn-
ing and achieved good results for tasks that were
unseen during pretraining. The idea of knowledge
transfer in the latent space may provide improve-
ments with clean datasets and an appropriate fitting
process.

Figure 2: Architecture of the base model.

3 Method

3.1 Architecture

The main essence of our approach is to use vec-
tor representations from the encoder of the Big
Science mT0 (Muennighoff et al., 2022) model as
input for the Feed-Forward layer. This idea has al-
ready been proven successful in other approaches,
such as COMET (Rei et al., 2020) and BLEURT
(Sellam et al., 2020), and we have attempted to
further improve upon it in various ways.

All our experiments use the same basic structure,
as illustrated in Figure 2. First, the source text is
presented as a prompt and is tokenized using the
mT0 tokenizer. The resulting tokens are then pro-
cessed by the mT0 encoder to obtain vector repre-
sentations. Subsequently, mean pooling is applied
to these vectors, and the resulting representations
are passed through a Multilayer Perceptron (MLP).
Prompting is necessary to present the data (source,
reference, hypothesis) in a convenient format. In
our approach, the prompt consists of concatenat-
ing the source, reference, and hypothesis with a
separator token [sep]. It is worth noting that the
mT0 tokenizer does not have a specific separator
token, so another token can be selected for this
purpose. Mean pooling is used to obtain sentence
embeddings from the mT0 encoder representations,
which are then suitable for further processing by a
fully connected layer.

During the process, we tested various configura-
tions of Multilayer Perceptron (MLP). We experi-
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mented with the number of linear layers, activation
functions between layers and at the end, as well as
with dropouts. Insufficient linear layers resulted
in a deterioration of metrics as they were unable
to extract all the necessary information from the
embeddings. On the other hand, adding too many
layers did not have any significant impact on the
results. Hence, we settled on using 4 layers. We
tested Tanh and ReLU as activation functions be-
tween layers, and found that Tanh yielded slightly
better results. This observation is likely due to the
fact that Tanh is commonly used in neural networks
for working with text embeddings. For the activa-
tion function at the end, we compared two options:
sigmoid and a simple threshold approach (rounding
to 100 if the result is >100 and to 0 if < 0). The use
of sigmoid resulted in significantly better outcomes.
In addition, we experimented with the inclusion of
dropouts and found that it made sense to add only
one dropout before the first linear layer after mean
pooling. Otherwise, too much useful information
was deleted and the MLP did not have sufficient
time to extract it.

We also explored the possibility of incorporating
an external «hint» in addition to the embeddings
of the mT0 encoder. This approach is illustrated in
scheme 1. For obtaining additional representations,
we chose LaBSE (Feng et al., 2020), a state-of-the-
art model in the bitext mining task, which serves
as a proxy task for machine translation. In our ar-
chitecture, we included an additional component
responsible for preprocessing LaBSE embeddings.
After obtaining these representations, they were
passed through a linear layer, and the resulting vec-
tors were concatenated with the outputs from mT0
passed through Mean Pooling. The inclusion of
the linear layer after LaBSE serves as an additional
degree of freedom and helps reduce the dimension-
ality of the vectors.

In the end, we selected a configuration that uti-
lized a pre-trained approach combining contrastive
learning mT0 and LaBSE to submit our results.
This configuration demonstrated the best metrics
on our test data.

3.2 Contrastive pretraining

To enhance the vector representation and address
the specific characteristics of the Hebrew language,
which is not as widely studied as English or Ger-
man, we experimented with tuning encoder embed-
dings using contrastive learning. For each source

text, we created two contrastive loss components:
one for the reference translation and one for the
machine translation. To implement this approach,
we needed to specify negative examples that we
wanted to be dissimilar to the source text in terms
of vector representations. We used the Sentence-
T5 model (Ni et al., 2021) to embed each source
text and its two translations. Additionally, we con-
structed two ANN (Approximate Nearest Neigh-
bor) indexes (Johnson et al., 2019): one for human
references and another for machine translations.
These indexes allowed us to find the K furthest
points from the source texts based on the dot prod-
uct. Note that for normalized vectors:

∥𝑥 − 𝑦∥2
2 = 2 − 2𝑥𝑇 𝑦 →

min
𝑥

(
𝑥𝑇 𝑦

)
= max

𝑥

(
(−𝑥)𝑇 𝑦

)
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𝑥

(
∥(−𝑥) − 𝑦∥2

2

)
(1)

The loss function is defined as the negative log
likelihood with an arbitrary similarity function
sim(𝑥, 𝑦) (we used sim(𝑥, 𝑦) =< 𝑥, 𝑦 >) and a
temperature parameter 𝜏. Our goal is to incorpo-
rate scaled target values of three types: SQM, DA,
and MQM, with different prioritization weights in
the loss function. For a given source text 𝑠, its
reference translation 𝑟, and machine translation 𝑡,
we have an expert degree 𝑎𝑐𝑠,𝑡 ∈ [0, 1] of type 𝑐

with a prioritization weight 𝛾𝑐. Each source text
𝑠 is embedded as 𝑒𝑠, the reference translation 𝑟 is
embedded as 𝑒+𝑟 , and the machine translation 𝑡 is
embedded as 𝑒+𝑡 . In the case of reference transla-
tions, we denote the K furthest points from 𝑠 as{
𝑒−
𝑟 ,𝑘

}𝐾
𝑘=1

. Similarly, in the case of machine trans-
lations, we denote the K furthest points from 𝑠 as{
𝑒−
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}𝐾
𝑘=1

.
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This formula is general negative log-likelihood
(NLL) with temperature for self-supervised learn-
ing (Wang and Isola, 2022).



818

The component for machine translation:

L
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𝛼𝑡 = 𝛾𝑐𝑎
𝑐
𝑠,𝑡 (6)

Here we have a modified version of previous loss
where we use target scores and their prior weights
as temperature, but only for positive object.

Consider the derivative of the temperatured NLL
loss w.r.t. to source text dot product as similarity
function:

(
1 − exp(𝑒𝑇𝑠 𝑒+/𝜏)

𝑍 (𝑒𝑠 )

)
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We have two separate additives with actually
independent temperature coefficients. Increasing
them removes the gradient changing effect and pro-
vides a pipeline for reducing the gradient step for
bad and noisy translations. We can model such
effect with human degrees with prioritizing ones
over others.

Having a batch of quadruplets{(
𝑠, 𝑟, 𝑡, 𝑎𝑐𝑠,𝑡

)
𝑛

}𝑁
𝑛=1

and using formulas above, the

total loss can be written as:
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Here we have an empirical risk over the batch,
for each point we have two additive components
for human reference and machine translation corre-
spondingly.

3.3 Synthetic data
In this year’s WMT Metrics Shared Tasks, the

organizers presented us with a novel language pair:
Hebrew-English. This language pair is not included
in any of the available training data for MT eval-
uation metrics. Consequently, we believe that it
was intended to test the ability of novel metrics for
zero-shot transfer. To address this challenge, we
made the decision to create a synthetic dataset for
the Hebrew-English language pair, following the
approach proposed by Rei et al. (2022b).

First, we selected a subset of English-Hebrew
translations from the publicly available OPUS
dataset (Tiedemann, 2012). From a total of ap-
proximately 1 million translations, we randomly
chose 60,000 translations (Hebrew texts) and trans-
lated them back from Hebrew to English. To ensure
a diverse range of translation quality, we selected
three translation models of different sizes from the
NLLB project (Costa-jussà et al., 2022): models
with 600M and 1.3B parameters, which were dis-
tilled from 54B Mixture-of-Experts teacher mod-
els, as well as a 3.3B model that was trained from
scratch. Each model was used to generate trans-
lations for an equally-sized portion of the dataset.
Synthetic quality scores for these translations were
computed as the average of scores calculated by
the COMET-22 (Rei et al., 2022a) and BLEURT-20
(Sellam et al., 2020) metrics.

4 Experiments

4.1 Data
For our experiments, we utilize datasets from

the previous year’s WMT Metrics Shared Tasks as
both training and evaluation data. These datasets
provide three types of scores:

• MQM - Multidimensional Quality Metrics
(Burchardt, 2013): This metric encompasses
a wide range of issues that occur with transla-
tion.

• SQM - Scalar Quality Measure: This met-
ric provides segment-level scalar ratings with
document context.

• DA - Direct Assessment: This metric mea-
sures the quality of a translation on a scale
from 0 to 100, based on the adequacy and
fluency of the sentence.

We utilize all the available data and apply min-
max scaling to rescale the score values, ensuring
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they fall within the range of 0 to 1. For DA and
SQM scores, we used dataset-level statistics for
scaling. However, for MQM scores, we adapted
the scaling to accommodate different score ranges.
Specifically, the English-German and Chinese-
English pairs had a range of −25 to 0, while the
English-Russian pair had a range of −∞ to 100.

The resulting composition of the training dataset
for our experiments is as follows:

• MQM scores for WMT competitions from the
years 2020 and 2021, covering 3 language
pairs (en-ru, zh-en, en-de).

• SQM scores for the year 2022, covering 12
language pairs.

• DA scores for the years 2017-2022, covering
41 language pairs.

For the test set, we selected the MQM scores for
the year 2022 to ensure comparability with existing
metrics.

Furthermore, we included synthetic data for the
Hebrew-English language pair, as described in Sec-
tion 3.3. Out of the total 60,000 examples, we ran-
domly chose 50,000 examples for the training set
and the remaining 10,000 examples for the test set.
Since the scores for the synthetic data were com-
puted using existing metric models, they naturally
fell within the range of 0 to 1, and no additional
re-scaling was required. In total, we had 1,527,567
examples in the training set and 77,575 in the test
set.

4.2 Experimental settings
All experiments were conducted with a fixed

random seed. For the base of the generic model,
we chose the encoder part of the mT0-large model
introduced in Muennighoff et al. (2022). An MLP
on top of the encoder consists of three layers with
hidden sizes of 384, 96, and 1, using the hyperbolic
tangent activation function. We also apply dropout
with a rate of 𝑝 = 0.1. For models that utilize
embeddings, we include a resizing dense layer that
projects the concatenated embeddings vector into
vectors with a size of 512.

For contrastive pretraining, we once again uti-
lize the encoder part of the mT0-large model. Con-
trastive examples are collected into a total batch
size of 128 examples. Furthermore, we accumulate
batches across four iterations, resulting in an effec-
tive batch size of 512 for each training process.

Pipeline en-de zh-en en-ru he-en
Comet-22 0.281 0.395 0.330 NA
CometKiwi 0.266 0.343 0.297 NA
Base 0.276 0.179 0.350 0.796
Base + Emb. 0.255 0.173 0.331 0.785
CL Base 0.223 0.101 0.307 0.786
CL Base +
Emb.

0.222 0.105 0.315 0.792

Table 1: Experimental results on WMT22 Test Set along
with our synthetic test set for He-En. Base model rep-
resents model that only consits of mT0-large encoder
and MLP head. CL Base represents model that was
pretrained with contrastive loss before fine-tunning.

The first two models, which are based on the
original mT0-large encoder, were trained for 3
epochs with an aggressive learning rate of 2×10−4.
The other two models, which utilize a contrastively-
pretrained encoder, were trained for 1 epoch with a
learning rate of 5 × 10−5. In both cases, the batch
size was set to 8 due to the substantially larger
sequence sizes.

All our experiments were conducted in a dis-
tributed data-parallel setting across 4 GPUs. The
learning rate was scaled accordingly based on the
number of processes.

4.3 Hardware, Computational Budget and
Environmental Impact

For our experiments, we utilized the CITEC com-
putational cluster hosted at Bielefeld University.
Each node in the cluster consists of 4xA40 GPUs
with 48GB of VRAM, 1xAMD EPYC 7713 64-
Core CPU, and 512GB of RAM.

The total computational budget for our exper-
iments is 175 GPU-hours (4̃3.75 hours per node
× 4 GPUs). Considering that the A40 GPU has
a power draw of 300W under full load, and the
current carbon intensity of the German power grid
is 510gCO2eq/kWh 3, our estimated total carbon
footprint is approximately 26.775 kgCO2eq. It is
important to note that this number should be con-
sidered a lower bound, as we have not accounted
for the power draw of other components of the
computing node, such as the CPU and cooling.
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5 Results and Discussion

We trained and tested each configuration on our
test data using the Kendall-𝜏 correlation metric.
The results in Table 1 show that the base configura-
tion has the best performance in most language
pairs. However, adding external semantically-
informed embeddings improves the quality for the
model version with the contrastive loss. We didn’t
manage to get better results relatively to the base
model, even for the rare language pair. We think
that it’s due to choice of negative sampling strategy,
lack of theoretical approach analysis and hyperpa-
rameter tuning. Temperature is sensitive parameter,
the wrong choice of it could lead to permanent
overfitting and noisy results. We need to test more
natural approach with adding scaled human degrees
as general temperature for all softmax components.
Also we should test other approaches with metric
learning, e.g. Multi-Class N-pair loss (Sohn, 2016).

6 Conclusion

This paper presents our experiments with se-
mantically informed architectures with a regression
head. This led us to conclude that the additional
awareness of the encoder and extra pretraining may
positively affect the model quality in these condi-
tions. In the future, it would be possible to explore
other ways to inform the model and conduct ex-
periments with larger versions of our implemented
architectures.

Limitations

While we examine a novel approach to NLG
evaluation, it is important to note limitations in our
research.

Firstly, due to time and computational resource
constraints, we have not conducted hyperparameter
search. This opens up a possibility of finding better
results for reported model configurations. Addi-
tionally, we have only made one experiment with
one fixed random seed for each configuration. In-
creasing the number of runs would improve result
stability.
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