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Abstract
Quality Estimation (QE) systems are important
in situations where it is necessary to assess
the quality of translations, but there is no
reference available. This paper describes
the approach adopted by the SurreyAI team
for addressing the Sentence-Level Direct
Assessment shared task in WMT23. The
proposed approach builds upon the TransQuest
framework, exploring various autoencoder
pre-trained language models within the
MonoTransQuest architecture using single and
ensemble settings. The autoencoder pre-
trained language models employed in the
proposed systems are XLMV, InfoXLM-large,
and XLMR-large. The evaluation utilizes
Spearman and Pearson correlation coefficients,
assessing the relationship between machine-
predicted quality scores and human judgments
for 5 language pairs (English-Gujarati, English-
Hindi, English-Marathi, English-Tamil and
English-Telugu). The MonoTQ-InfoXLM-
large approach emerges as a robust strategy,
surpassing all other individual models proposed
in this study by significantly improving over the
baseline for the majority of the language pairs.

1 Introduction

The primary objective of quality estimation (QE)
systems is to assess the quality of a translation
without relying on a reference translation. This
make QE valuable within translation processes,
as it enables the determination of whether an
automatically generated translation is sufficiently
accurate for a specific purpose. This aids in
deciding whether the translation can be used as
is, requires human intervention for full translation,
or necessitates post-editing by a human translator
(Kepler et al., 2019b). Quality estimation can
be conducted across various levels: word/phrase
level, sentence level and document level. This
paper considers only the sentence-level QE and
presents our participation in the WMT23 Sentence-
level direct assessment (DA) shared task. In

the context of this task, participating systems are
required to predict the DA score for a given (source,
target) pair. This score serves as a measure of the
translation quality.

Building upon the ideas presented in TransQuest
by Ranasinghe et al. (2020b), our investigation
explores the use of various pre-trained models
within the MonoTransQuest architecture for the
sentence-level quality estimation shared task.
The architecture employs autoencoder pre-trained
language models to fine-tune the QE data to predict
a score which indicates the quality of translation.
Using the MonoTransQuest architecture as the
base we employ the pre-trained transformers
separately to implement the systems MonoTQ-
XLMV, MonoTQ-InfoXLM-large and MonoTQ-
XLMR-large. In addition, we propose ensembleTQ
which combines the output of MonoTransQuest
when using different pre-trained models. All
the proposed systems achieve a significantly
higher Spearman correlation score compared to
the baseline.

The paper is structured as follows. Section 2
briefly presents related work on quality estimation.
Section 3 provides a concise overview of the
dataset used in the sentence-level QE shared
task. Moving on to Section 4, we introduce
the autoencoder pre-trained language models
and proposed systems and detail the training
methodology. Section 5 is dedicated to the
evaluation and Section 6 comprises the result and
discussion. The paper concludes by summarizing
findings, highlighting conclusions, and suggesting
potential avenues for future research in the final
section.

2 Related work

Quality estimation in machine translation has
evolved significantly throughout the years. Initially,
it relied on feature engineering and conventional
machine learning techniques like SVM and basic
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neural networks (Specia et al., 2015; Scarton and
Specia, 2014). However, Neural Networks has
since become central to quality estimation, where
there is no more need of feature engineering,
and the models can be trained directly on the
data (Kepler et al., 2019b,a; Specia et al., 2018).
Recently, Transformer-based architectures have
arisen as robust solutions for machine translation
and quality estimation. Notably, there are two
widely recognized frameworks that leverage this
transformative approach for QE tasks: TransQuest
(Ranasinghe et al., 2020a) and CometKIWI (Rei
et al., 2022).

Ensemble methods have also been explored
extensively in Quality Estimation tasks (Bao
et al., 2022; Geng et al., 2022; Kepler et al.,
2019b; Ranasinghe et al., 2020b; Rei et al.,
2022). The ensemble approach from Lim and Park
(2022) using K-folds consistently outperformed the
standard method, underscoring the prevalent belief
that ensemble strategies enhance performance
outcomes. However, some of the research
studies (Ranasinghe et al., 2020b; Bao et al., 2022;
Rei et al., 2022) show that combining multi-lingual
models through ensembling yields better results
than the traditional k-fold ensemble technique.
Geng et al. (2022) suggest an alternative ensemble
method that merges the results from models trained
using various sentence-level metrics.

Our study delves into the performance of cutting-
edge pre-trained transformer-based approaches
when applied to sentence-level Quality Estimation
tasks.

3 Dataset

We focus on Sentence-Level Direct Assessment
tasks which comprise datasets for 5 language pairs
which has English on the source side and Indian
languages on the target side: English-Gujarati (En-
Gu), English-Hindi (En-Hi), English-Marathi (En-
Mr), English-Tamil (En-Ta) and English-Telugu
(En-Te). Among these language pairs, En-Hi
language pair is considered mid-resourced and all
the other language pairs are low-resourced. Each
language pair includes around 7,000 sentence pairs
in the training set, as well as around 1,000 sentence
pairs in both the development and testing sets. Each
translation was evaluated by three professional
translators who assigned a score between 0 and
100. These Direct Assessment (DA) scores were
normalized using the z-score. The final score for

the sentence-level task requires predicting the mean
DA z-scores for the test sentence pairs. More
details on this can be found in Zerva et al. (2022).

4 Methodology

This section outlines the approach taken to
formulate our quality estimation techniques. We
begin by detailing the autoencoder pre-trained
language models employed in our architecture.
Then we explain the architecture and the strategy
employed to train these network architectures in
detail.

4.1 Pre-trained models for fine-tuning

1. XLMR-large

XLM-Roberta (Conneau et al., 2020) is
a pre-trained transformer-based language
model which is a part of the Cross-lingual
Language Model (XLM). This model
employs large-scale cross-lingual pre-
training to capture contextual information
and representations across 100 languages.
The model is trained on 2.5TB of filtered
CommonCrawl data from multiple languages,
allowing it to effectively learn cross-lingual
and language-specific patterns. The XLM-R
architecture takes sequences as input, with a
maximum token limit of 512, and generates
contextualized embeddings for each token,
enabling it to perform well on various natural
language processing tasks across different
languages (Ranasinghe et al., 2020b, 2021).

2. XLMV

XLMV is a multilingual language model with
a one million token vocabulary trained on
2.5TB of data from Common Crawl (same as
XLM-R) (Liang et al., 2023). In the context
of large multilingual language models, a
common practice involves employing a
single vocabulary shared across a diverse
set of languages. Even with the expansion
in model complexity, including parameter
count and depth, the vocabulary size has
remained relatively static. This constraint
in vocabulary hampers the potential of
multilingual models such as XLM-R to
capture nuanced representations effectively
(Wang et al., 2019).
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Figure 1: Architecture diagram of the proposed approaches

XLMV introduced an innovative strategy
addressing this issue by achieving scalability
to extensive multilingual vocabularies.
XLMV involves prioritizing vocabulary
allocation based on language-specific lexical
overlap, ensuring sufficient coverage for each
language. The outcome is tokenizations that
hold enhanced semantic significance and are
generally more concise compared to those
generated by XLM-R.

3. InfoXLM-large

InfoXLM-large (Chi et al., 2021), is
an information-theoretic framework for
cross-lingual language model pre-training.
It extends the XLM-R architecture by
formulating cross-lingual pre-training to
maximize mutual information between
multilingual texts at different granularities.
This approach enhances the model’s capability
to learn effective cross-lingual representations
by capturing shared information across
languages. InfoXLM-large introduces a
novel pre-training task based on contrastive
learning, treating bilingual sentence pairs
as views of the same meaning. By jointly
training on monolingual and parallel corpora,
the model improves the transferability of
its representations for various downstream
cross-lingual tasks (Rei et al., 2022; Bao
et al., 2022).

4.2 Architecture

The proposed architecture of MonoTransQuest
employs a pre-trained language model as shown
in Figure 1. The MonoTransQuest architecture in
TransQuest (Ranasinghe et al., 2020b) considers
only the XLMR transformer model. In our
proposed system, we train multiple multilingual
QE models by fine-tuning autoencoder pre-trained
language models (PTLMs) and report mean z-
scores. The PTLMs are namely XLMV, InfoXLM-
large, and XLMR-large which we have explained
in section 4.1. The model’s input consists of
the original sentence (source) and its translation
(target) concatenated, with a [SEP] token. This
token marks the separation of the original sentence
and the translated sentence. The pre-trained auto-
encoder accepts input sequences with a token limit
of 512 and produces a sequence representation as
output. The initial token of the sequence is [CLS]
token, encompassing a distinctive embedding
to signify the entire sequence. Subsequently,
embeddings are assigned to each word in the
sequence. Ranasinghe et al. (2020b) highlights the
superiority of the CLS-strategy over the MEAN-
strategy (calculating the mean of all output vectors
corresponding to the input words) and MAX-
strategy (determining the maximum value across
the output vectors of input words) for pooling
within the MonoTransQuest framework. We
have used the CLS-strategy (using the output of
the [CLS] token) to extract the output from the
transformer model. Consequently, we employed
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En-Gu En-Hi En-Mr En-Ta En-Te

Method ρ r ρ r ρ r ρ r ρ r

I Baseline 0.337 0.307 0.281 0.245 0.392 0.427 0.507 0.402 0.193 0.153

II MonoTQ-XLMV 0.673 0.536 0.572 0.687 0.642 0.425 0.670 0.559 0.464 0.642

III MonoTQ-InfoXLM-large 0.713 0.656 0.624 0.726 0.470 0.030 0.726 0.662 0.462 0.719

IV MonoTQ-XLMR-large 0.438 0.299 0.440 0.430 0.395 -0.117 0.482 0.454 0.345 0.211

V ensembleTQ 0.649 0.700 0.551 0.668 0.596 0.668 0.674 0.710 0.349 0.376

Table 1: Spearman (ρ) and Pearson (r) correlation between the proposed approach predictions and human DA
judgments. The best Spearman score obtained for each language pair (any method) is marked in bold. Rows II,
III, and IV indicate the single-configuration settings of MonoTransQuest architecture with different pre-trained
transformer models as explained in Section 5.1, and ensembleTQ in row V is explained in Section 5.2. The baseline
results are in Row I.

the [CLS] token’s embedding as input for a
softmax layer. The softmax layer predicts the
translation’s quality score. The mean-squared-error
loss function was used as the objective function for
training.

4.3 Training and Implementation Details

We started the training with MonoTQ-XLMV
which incorporates the XLMV-base model with
MonoTransQuest for all 5 language pairs. We
had the batch size as 8. We have used Adam
Optimizer (Kingma and Ba, 2014) with a
learning rate of 2e-5. The model is trained
using 3 epochs. The training process exclusively
utilized the training data. Early stopping was
enforced if the evaluation loss failed to show
improvements over ten consecutive evaluation
rounds. We continued the training with the same
set of configurations for MonoTQ-InfoXLM-large
and MonoTQ-XLMR-large separately. MonoTQ-
XLMV and MonoTQ-InfoXLM-large required
twice the training time compared to MonoTQ-
XLMR-large which required approximately 40
minutes of training on a GPU with 48GB of
memory.

The proposed systems are built upon the most
up-to-date version of TransQuest1 framework
and executed using Python 3.9 and PyTorch 2.0.1.
The integration of pre-trained encoders (XLMV2,
XLMR-large3 and InfoXLM-large4) into
the MonoTransQuest architecture was facilitated

1https://github. com/tharindudr/transQuest
2https://huggingface.co/facebook/xlm-v-base
3https://huggingface.co/xlm-roberta-large
4https://huggingface.co/microsoft/infoxlm-large

through the application of HuggingFace’s
Transformers library.

5 Evaluation

In this section, we outline the evaluation outcomes
of our models. We assess the performance of the
proposed models under two circumstances: single
model configuration and ensembleTQ.

The primary evaluation criterion employed was
Spearman’s rank correlation coefficient (Sedgwick,
2014), which is a statistical measure used to
evaluate the strength and direction of association
between two variables. Also, we have calculated
the Pearson correlation coefficient (Cohen et al.,
2009) as a secondary metric for the evaluation.
In the context of Quality Estimation (QE) for
machine translation, it is used to evaluate the
correlation between the machine-predicted quality
scores and the gold standard labels provided by
human annotators in the test dataset. Spearman’s
rank correlation coefficient assesses the monotonic
relationship between the two variables, unlike
the Pearson correlation (Cohen et al., 2009),
which measures the linear relationship between
two variables. It is calculated by first ranking
the values of both variables in ascending or
descending order and then computing the Pearson
correlation coefficient between the two sets of
ranks. Spearman’s rank correlation coefficient is
often preferred because it is less sensitive to outliers
and non-linear relationships between the predicted
scores and human scores.
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En-Gu En-Hi En-Mr En-Ta En-Te

Team ρ r ρ r ρ r ρ r ρ r

1 Unbabel-IST 0.714 0.745 0.598 0.667 0.704 0.735 0.739 0.733 0.388 0.362

2 IOL Research 0.695 0.742 0.6 0.667 0.505 0.372 0.74 0.742 0.376 0.344

3 HW-TSC 0.691 0.714 0.644 0.72 0.692 0.718 0.775 0.778 0.394 0.35

4 MMT 0.54 0.581 0.494 0.57 0.65 0.663 0.547 0.531 0.337 0.281

5 Baseline 0.337 0.307 0.281 0.245 0.392 0.427 0.507 0.402 0.193 0.153

6 SurreyAI-ensembleTQ 0.649 0.700 0.551 0.668 0.596 0.668 0.674 0.710 0.349 0.376

Table 2: Spearman (ρ) and Pearson (r) correlation between the predictions from the participated systems in WMT23
sentence-level QE shared task and human DA judgments. The best Spearman and Pearson score obtained for each
language pair is marked in bold. Even though we have experimented with the single model configurations, we only
submitted our ensembled approach (SurreyAI-ensembleTQ) for the shared task competition.

5.1 Single model configurations

Initially, our evaluation focused on the single
model configurations of the proposed framework.
This involved training a quality estimation model
using a single autoencoder pre-trained language
model on the training data for each language
pair separately. Subsequently, we assessed each
model’s performance (MonoTQ-XLMV, MonoTQ-
InfoXLM-large, MonoTQ-XLMR-large) on the
corresponding test set for each language pair. The
outcomes of this evaluation for the single model
configuration are presented in Table 1.

5.2 EnsembleTQ

Recently, ensemble techniques have demonstrated
their efficacy in enhancing transformer-based
models’ performance (Xu et al., 2020). Following
this approach, we employed an ensemble strategy
to experiment further to see whether it enhance
the performance. For every input within the
test set, we aggregate the output scores from
various distinct pre-trained models integrated into
the MonoTransQuest architecture. Subsequently,
we calculate the average of the cumulative score,
divided by the number of pre-trained models,
resulting in the ensembleTQ score. Finally, we
compute the Spearman and Pearson correlation
scores for the ensembleTQ score, providing
a comprehensive evaluation of our ensemble
approach.

6 Result and Discussion

The research is divided into two distinct settings,
as outlined in Sections 5.1 and 5.2. The primary
evaluation metric employed in this study is the
Spearman correlation coefficient.

As shown in Table 1, is notable that the baseline
model does not surpass our proposed approaches
in terms of Spearman correlation scores in most
cases. This outcome underscores the specific
strengths and limitations associated with different
model architectures. Complementing the Spearman
correlation analysis, the examination of Pearson
correlation scores further enriches the assessment.
The MonoTQ-InfoXLM-large model consistently
exhibits superior Pearson correlation scores across
a majority of the language pairs, accentuating its
robust performance characteristics.

From our experiment results, as shown in Table
1, it’s notable that the single-model configuration
of MonoTQ-InfoXLM-large and MonoTQ-XLMV
outperform ensemble-TQ for the majority of the
language pairs. Observing the results outlined in
both Table 1 and Table 2, it becomes evident that
MonoTQ-InfoXLM-large and MonoTQ-XLMV
not only outperform other systems among our
own proposed approaches, they also exhibit a
competitive performance with the best-performing
system in the WMT23 sentence-level shared-
task. MonoTQ-InfoXLM-large shows a very
close Spearman correlation score with the winning
system of the WMT23 sentence-level task for the
En-Gu, En-Hi and En-Ta language pairs. Also,
MonoTQ-XLMV shows the highest Spearman
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No. Name DiskFootPrint
(Bytes)

1 Unbabel-IST 42,868,104,221

2 IOL Research 2,357,242,105

3 HW-TSC 27,730,527,504

4 MMT 2,448,132,038

5 SurreyAI-
ensembleTQ

7,945,689,496

6 SurreyAI-MonoTQ-
XLMV

3,221,225,472

7 SurreyAI-MonoTQ-
InfoXLM-large

2,362,232,012

8 SurreyAI-MonoTQ-
XLMR-large

2,254,857,830

Table 3: Rows 1-5 display the disk footprint of
ensemble model submissions related to the sentence-
level task for WMT23. Meanwhile, Rows 6-8 present
the disk footprint of our TQ models with single model
configuration.

correlation score for the En-Te language pair. This
observation raises the question that do the practice
of ensembling always guarantees performance
enhancement. Table 3 presents the memory
requirements of both ensemble approaches and
single-model configurations. Interestingly, in most
cases ensemble models demand significantly more
memory space than single-model setups, despite
only offering a marginal boost in performance.
This observation prompts us to reconsider the
efficiency of employing ensemble models.

The conducted experiments across mid-
resourced and low-resourced language pairs
unravel intricate performance dynamics among
various models.

7 Conclusion

This paper comprehensively evaluates the
proposed architecture within the context
of sentence-level direct quality assessment,
employing diverse encoder-based pre-trained
models. Our investigation notably highlights
the enhanced performance attributed to the
MonoTQ-InfoXLM-large, which surpasses
the other configuration approaches, namely
MonoTQ-XLMV, ensembleTQ strategy and

MonoTQ-XLMR-large. While our outcomes in the
WMT23 sentence-level Direct Assessment task
did not attain peak performance, they nevertheless
exhibited a marked improvement over the baseline
and showed notable performance scores close to
the winning systems.

Looking ahead, our research trajectory
anticipates a continued exploration of quality
estimation employing large language models. This
involves further experimentation encompassing
a broader spectrum of low-resourced language
pairs. These forthcoming endeavours aspire to
deepen our insights into the intricacies of direct
quality assessment and contribute to advancing
the frontiers of natural language processing. Also,
we are focused on continuing the experimentation
of pre-trained language models incorporated into
different QE frameworks.
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