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Abstract

Terminology correctness is important in the
downstream application of machine translation,
and a prevalent way to ensure this is to inject
terminology constraints into a translation sys-
tem. In our submission to the WMT 2023 ter-
minology translation task, we adopt a translate-
then-refine approach which can be domain-
independent and requires minimal manual ef-
forts. We annotate random source words with
pseudo-terminology translations obtained from
word alignment to first train a terminology-
aware model. Further, we explore two post-
processing methods. First, we use an align-
ment process to discover whether a terminol-
ogy constraint has been violated, and if so, we
re-decode with the violating word negatively
constrained. Alternatively, we leverage a large
language model to refine a hypothesis by pro-
viding it with terminology constraints. Results
show that our terminology-aware model learns
to incorporate terminologies effectively, and
the large language model refinement process
can further improve terminology recall.

1 Introduction

One of the major obstacles encountered by neural
machine translation (NMT) systems pertains to the
utilization of suitable domain-related words when
translating specialized content not present in the
training data. An illustrative instance of this chal-
lenge arises when translating “transformer” from
English into another language, where the accurate
translation depends on the context or the preference
of the audience (Figure 1). A straightforward lit-
eral translation approach often leads to suboptimal
outcomes, prompting human translators unfamiliar
with domain-specific knowledge to resort to ref-
erence materials for terminology precision. This
issue is prevalent in the translation industry, with
many commercial translation service providers of-
fering paid solutions to address it. Furthermore, it

*Equal contribution.

Translate "transformer" to Chinese?

变压器 (electric transformer)
变形金刚 (the Transformer character)
变换器 (something that changes)

Figure 1: Terminology hints can help disambiguate pol-
ysemantic words when translating with limited context.

is a popular area in machine translation research,
indicated by efforts such as WMT shared tasks or-
ganization and participation focusing on terminol-
ogy and domain-specific translations (Alam et al.,
2021; Bawden et al., 2019, 2020, inter alia).

This year’s WMT terminology translation task
features three language directions: German-to-
English, Chinese-to-English, and English-to-Czech.
In addition to reading in a source sentence, partic-
ipating systems need to employ a provided dic-
tionary, which contains source-target terminology
word mappings, to incorporate into the target trans-
lation. For each source sentence in the test set,
there are three modes of applying terminology con-
straints:

1. Terminology constraint: Dictionaries of real
terminology words are provided, to be incor-
porated in the translations.

2. Random constraint: Random (but presumably
correct) word mappings are obtained using a
word alignment tool and provided as a pseudo-
terminology dictionary.

3. No constraint: Source sentences can be freely
translated without external information.

We interpret that the no-constraint setting al-
lows us to measure the competing systems’ quality
and understand to what degree the systems effec-
tively utilize the provided random and terminol-
ogy dictionaries. Our baseline approach is to train
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a terminology-aware translation (TAT) system in-
spired by Dinu et al. (2019), where, in the training
data, source words are tagged with desired transla-
tions inline on the source side. Then we propose
two separate refinement strategies on top of it to
aggressively encourage the appearance of termi-
nologies:

1. We use a neural word aligner to identify ter-
minology constraints missed by the baseline
system, and use the same system to re-decode
the source by negatively constraining (disal-
lowing) previously incorrectly translated to-
kens.

2. We also investigate the capability of a large
language model to simultaneously paraphrase
an existing translation to include the desired
terminology constraints via curated prompts.

Our proposed techniques can incorporate target
terminology words with around 80% recall, using
automatic and soft constraints in a two-step refine-
ment process. We observe that for German-English,
our terminology-aware training and negatively con-
strained decoding perform better, whereas, for
Chinese-English and English-Czech, LLM-based
refinement achieves higher scores. In terms of over-
all translation accuracy, we find that negatively
constrained decoding could lead to a tiny drop and
LLMs are able to maintain or improve quality ac-
cording to a reference-free neural metric.

2 Related Work

Previous research on terminology translation could
be divided into two categories: soft constraint and
hard constraint, depending on whether the resulting
translation system will enforce the appearance of
desired target translations. In the soft constraint set-
ting, the convention is to train a model that is able to
ingest the target terminology words inline, directly
placing them after the corresponding source words
in the source input (Dinu et al., 2019). Many later
implementations stem from this to include new ele-
ments such as additional lemmatization (Bergmanis
and Pinnis, 2021) or grammatical error correction
(Pham et al., 2021) as a post-processing step in
order to achieve a more fluent output. Instead of
placing the target constraint words inline, some
other works train a system that takes the terminol-
ogy constraint as either a prefix or a suffix (Jon
et al., 2021; Turcan et al., 2022).

Most hard constraint work involves post-
processing a translation with desired terminologies.
Post et al. (2019) inserted untranslatable tokens
(also known as placeholders) into the source, which
will remain unchanged through the translation pro-
cess. Then the placeholders are replaced with ter-
minology words in the target language. This is
entirely performed as a post-processing step. Such
terminology replacement could also be done by
keeping and replacing the source word at inference
time, and it is also feasible to run target word re-
placement as post-processing (Molchanov et al.,
2021). A hard constraint method guarantees that
the chosen terminology token will appear, but often
results in less fluent output, especially for morpho-
logically rich languages because the context is not
taken into consideration during replacement. It also
mandates more complicated post-processing than
the soft constraint approaches.

Our first post-processing proposal relies on con-
strained decoding, which refers to either allowing
certain tokens or blocking specific tokens during
inference time (Hokamp and Liu, 2017). It has
been applied to terminology injection, paraphras-
ing, parallel sentence mining, etc (Hasler et al.,
2018; Kajiwara, 2019; Chen et al., 2020). We opt
for negatively constraining the tokens that violated
the given terminology alignments by preventing
them from entering the hypothesis beam in the re-
finement stage. These alignments are computed
using word alignment tools (Dyer et al., 2013; Dou
and Neubig, 2021).

Another post-processing method in our study
prompts an LLM to refine a translation and incorpo-
rate terminology terms simultaneously. Whilst pre-
vious studies have explored the translation capabil-
ity of LLMs (Vilar et al., 2023; Zhang et al., 2023),
the works closely relevant to us are from Moslem
et al. (2023) and Ghazvininejad et al. (2023). We
adopt the paradigm from the latter, which re-words
a constraint dictionary as a natural text and affixes
it into a translation prompt. While they focused on
rare words without directly benchmarking on ter-
minology translation, our post-processing step can
be seen as an extension of word-level controlled
prompting to terminology translation with large lan-
guage models. Both of our post-processing meth-
ods should be categorized as soft constraint ap-
proaches since there is no guarantee that negatively
constrained decoding or an LLM will necessarily
incorporate the constraints in a re-generation.
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3 Terminology-Aware Training

The goal of our system implementation is to create
a general-purpose terminology-aware translation
system that is unsupervised and domain-agnostic,
and requires the minimum effort of pre- and post-
processing.

3.1 Terminology creation
Inspired by Dinu et al. (2019), we applied terminol-
ogy constraints during training, but a key difference
is that, unlike their approach, we assume that we
have no access to downstream domain or terminol-
ogy constraints during training, in order to build
a general-purpose domain-agnostic system. Con-
sequently, we have no curated terminology data to
use. Therefore, we generate (pseudo-)terminology
information using word alignments. Our workflow
can be detailed as:

1. We compute the word alignment information
for the entire training set using fast_align
(Dyer et al., 2013).

2. For each sentence, we select all bijective
source-target mappings as our terminology
candidates. We also filter out trivial mappings
where the source and target tokens are the
same (e.g. numbers, names), because those
mappings are simple and hence likely to be
correctly translated by a translation system
even without any terminology awareness.

3. In the training data, we replace srcwordi in
the source sentence with:
srcwordi __target__ trgwordj __done__
where the srcwordi is the i-th source word in-
side the sentence, and trgwordj is the word
inside the target sentence, corresponding to
srcwordi according to word alignment infor-
mation. This replacement occurs with around
10% probability for each candidate source-
target pair. For a sentence that does not have
an associated terminology constraint, the data
is the same as normal NMT.

4. At inference time, we process the test data sim-
ilarly to above, except that the source-target
word mapping comes from a supplied termi-
nology dictionary.

In practice, our translation system is trained with
a mix of normal translation data and terminology-
injected data. The advantage of this strategy is that

the trained models are general-purpose, so they can
translate normal texts without terminology injec-
tion. Further, they have been exposed to a wide
variety of constraints during training, making them
robust to potentially unseen domain constraints.

Overall, our method is very similar to Bergmanis
and Pinnis (2021)’s work, except that we use whole
words but not lemmas to ease pre-processing. We
presume that the language model will be able to
adjust the terminologies accordingly, especially for
morphologically rich languages on the target side.
This enables our method to be trivially transferable
across languages.

Finally, our systems could easily be turned into
hard-constrained by replacing the source word with
the desired target terminology word. This could
be feasible because our terminology-aware training
installs the copying behaviour in the neural transla-
tion model, although in this mode the model would
produce markedly less fluent output.

3.2 Model architecture

We trained Transformer-style machine translation
models (Vaswani et al., 2017) using the Marian
NMT toolkit (Junczys-Dowmunt et al., 2018). We
used the Transformer-Big preset which is a 6 en-
coder, 6 decoder architecture with 1024 hidden size,
and 4096 feedforward size.1

3.3 Data

The terminology task uses the same data as the
constrained condition in the WMT23 general trans-
lation task. We carefully cleaned, filtered, and de-
duplicated the available WMT training sets pro-
vided by the organisers, as well as the available
back-translation data. After preprocessing we were
left with the following:

• German-to-English (de-en): 199M lines
of parallel data and 29.5M lines of back-
translated data.

• Chinese-to-English (zh-en): 21.8M lines
of parallel data and 15.6M lines of back-
translated data.

• Czech-to-English (cs-en): 61.8M lines of par-
allel data and 57M lines of back-translated
data.

1https://github.com/marian-nmt/marian/blob/
master/src/common/aliases.cpp#L114

https://github.com/marian-nmt/marian/blob/master/src/common/aliases.cpp#L114
https://github.com/marian-nmt/marian/blob/master/src/common/aliases.cpp#L114
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Query Prompt template

Translation
Source: ${source}
Please give me a translation in ${lang} without any explanation.

Refinement

Source: ${source}
Translation: ${translation}
Please give me a better ${lang} translation without any explanation.
“${srcword0}” should be translated as “${trgword0}”;
“${srcword1}” should be translated as “${trgword1}”;
...
“${srcwordk}” should be translated as “${trgwordk}”. (with k >= 0)

Table 1: Large language model prompt templates for unconstrained and constrained translation.

3.4 General quality

The quality of our models without terminology
translation is shown in Table 2, where we report
BLEU (Papineni et al., 2002) and COMETDA

2 (Rei
et al., 2020) scores on test sets from the WMT22
general translation task. We note that terminology
augmentation during training could result in a slight
quality drop.

BLEU COMETDA

de-en 31.3 0.8334
en-cs 39.5 0.8715
zh-en 20.3 0.7559

Table 2: Performance of our terminology-aware transla-
tion systems in the WMT22 general translation task.

4 Post-Translation Terminology Injection

Despite training our model with terminology aware-
ness, there is no mechanism to ensure that the de-
sired terminology constraint will appear on the tar-
get side. The neural network decoding behaviour
is not entirely predictable, especially given the as-
sumption of no additional domain adaptation. Be-
low, we present two distinct strategies to try harder
to promote the terminology constraints, via auto-
matic post-editing through constrained beam search
and large language models.

4.1 Negatively constrained decoding

While it is easy enough to notice when a target
terminology term is not generated as per a given
constraint, it is not trivial to understand which word

2wmt22-comet-da. This is a reference-based metric which
requires the source input, hypothesis, and reference.

has been produced in place of the desired term. In
order to do this, we make use of awesome-align, a
neural multilingual word aligner (Dou and Neubig,
2021), with the following procedure:

1. For each source-translation pair, we check if
all required terminology terms appear on the
target side. If they do, then we stop processing
more rules.

2. Then, we use awesome-align to compute word
alignments and detect the word(s) that have
been generated in place of the desired terms
according to the provided terminology con-
straints.

3. We decode the source sentence again, penal-
ising the words that violated the terminology
constraint, by forbidding the decoder from
generating them at each generation step, un-
less they carry more than 95% of the probabil-
ity mass at a certain step.

In practice, this procedure can be repeated in-
finitely, until all terminology constraints are ful-
filled, but we decided to limit it to only one itera-
tion, to keep this a realistic production scenario in
terms of computational budget.

4.2 Large language models
Recent years saw the rise of large language models
(LLMs), which have a strong capability in various
NLP tasks. In this paper, we investigate the effec-
tiveness of using a large language model to gener-
ate terminology terms during translation by adding
constraints to Chen et al. (2023)’s translation re-
finement prompts. We use two distinct prompts:
free translation and translation refinement queries.
The translation query sends a source sentence and
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Mode Model Refine de→en zh→en en→cs
Recall COMETQE Recall COMETQE Recall COMETQE

terminology
constraints

TAT - 82.30 .0797 49.98 -.0896 73.75 .0601
TAT NCD 82.01 .0775 50.42 -.0903 73.26 .0588
TAT LLM 64.35 .1197 83.06 .0185 76.00 .0866
LLM - 41.86 .1244 46.63 .0191 48.14 .0913
LLM LLM 70.48 .1180 81.01 .0201 78.94 .0882

no
constraint†

TAT - 39.82 .1085 13.64 -.1163 48.11 .0712
TAT LLM 39.59 .1251 42.76 .0203 47.31 .0955
LLM - 41.86 .1244 46.63 .0191 48.14 .0913
LLM LLM 39.65 .1258 46.72 .0228 46.22 .0943

random
constraints

TAT - 76.17 .0716 81.55 -.1105 57.10 .0502
TAT NCD 75.79 .0698 82.03 -.1123 56.42 .0465
TAT LLM 61.46 .1206 63.17 .0175 70.97 .0875
LLM - 38.70 .1244 52.49 .0191 39.34 .0913
LLM LLM 66.74 .1188 67.10 .0196 73.37 .0867

no
constraint‡

TAT - 35.60 .1085 36.18 -.1163 37.35 .0712
TAT LLM 37.58 .1251 49.48 .0203 39.03 .0955
LLM - 38.70 .1244 52.49 .0191 39.34 .0913
LLM LLM 37.62 .1258 49.00 .0228 38.42 .0943

†Recall computed against terminology constraints.
‡Recall computed against random constraints.

Table 3: Terminology recall and translation quality measured by COMETQE of our systems on the blind test set.
TAT: terminology-aware translation; NCD: negatively constrained decoding; LLM: large language model.

requests a translation in the target language with-
out any other information. On the other hand, the
refinement query feeds back an unconstrained trans-
lation together with terminology constraints to re-
quest a new translation. This essentially forms
an LLM version of the constrained beam search
discussed in Section 4.1. The constraints are en-
forced through natural language instructions in the
prompts, under the situation where the softmax dis-
tribution from an LLM is not accessible by users.

The LLM we use is OpenAI’s GPT-3.5.3 It is a
closed-source commercial system, where the model
weights and the inference states are not available
to users. The model has a context window of 4096
which is sufficient to cover an instruction, a source
sentence, several terminology constraints, as well
as the target translation. It is public to all users
at a relatively cheap cost. In our settings, each
translation is carried out in a new query session.

In Table 1 we outline the two prompt templates
we used. During querying, the placeholder vari-
ables are substituted with corresponding string val-

3gpt-3.5-turbo-0613, a snapshot of the GPT-3.5 model
on 13 June 2023

ues. For the refinement query, when a terminology
dictionary is supplied, the source and target words
are fed to the LLM via the prompt (Ghazvininejad
et al., 2023); if there is no terminology dictionary,
the query simply asks for a refined translation. The
two-step experiment with LLMs can be summa-
rized as follows:

1. We obtain an initial unconstrained translation,
which may or may not fulfil all the terminol-
ogy constraints. It can come from either the
LLM itself or the terminology-aware transla-
tion model built in Section 3.1.

2. We query the LLM with the constrained trans-
lation prompt to obtain a refined translation
with terminology incorporated in the prompt.

5 Results and Discussions

We present our blind test results in Table 3, which
include both terminology recall and COMETQE
scores computed by us.4 We used COMETQE in
particular because it does not require references

4wmt21-comet-da-qe
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which are not accessible to us. We assess the ef-
fectiveness of our methods by comparing the ter-
minology recall of our systems with and without
applying terminology constraints, in both random
and real terminology scenarios.

5.1 Translation quality

In terms of translation quality reflected in
COMETQE, we observe that the LLM rows attain
superior results, which is not surprising considering
that we use an unconstrained commercial model
GPT-3.5. By comparing TAT with TAT+NCD, or
comparing LLM with LLM+LLM under a con-
strained scenario, we conclude that applying ter-
minology constraints usually lead to a sacrifice in
translation quality regardless of the language direc-
tion or the systems involved. Nonetheless, as a con-
trasting experiment with no constraint, LLM+LLM
achieves a slightly better COMETQE score than
using an LLM to translate without refinement.

Our model performed poorly on the zh-en task
in terms of COMETQE scores. We suspect that
this is because of the domain mismatch between
the translation data from the general domain and
the Chinese terminology test set. Upon manual
inspection, we found that the latter includes web
novels and literal writing which are likely to be
under-represented in the generic training data.

5.2 Terminology recall

Focusing on terminology generation, compared
with TAT or LLM in unconstrained settings, TAT
marks 30-40 higher recall of terminology terms in
the constrained terminology and random settings.
This indicates that our terminology-aware training
is effective in teaching translation models to follow
customized source-target word alignments.

Next, as a post-processing step, negatively con-
strained decoding seems to be disappointing in
practice. TAT+NCD often produces worse results
than TAT alone in terms of both quality and ter-
minology recall, except for zh-en with random
constraints. We hypothesize that this could be due
to two problems: (1) word alignment errors could
propagate into this process, and (2) by applying
NCD, we might capture a missed terminology term
but at the cost of mis-translating other words. Our
constraining procedure might be improved by per-
forming shortlisting, namely positively constrained
decoding, as opposed to negatively limiting the
beam search in an iterative approach.

We find the results promising when using LLMs
for terminology injection. Looking at LLM+LLM
versus LLM alone in various constrained condi-
tions, terminology recall improves significantly
with very little drop in overall quality. Also by
comparing TAT+LLM with TAT alone, we observe
that TAT and LLMs each have their own merits de-
pending on the language direction. In terms of re-
call, TAT wins in de-en, TAT+LLM wins in zh-en,
and they are close in en-cs. However, TAT+LLM
is way ahead if measured by COMETQE. How-
ever, we must note that an LLM costs significantly
more resources than a dedicated translation model
at both training and inference time.

6 Conclusion and Future Work

We participated in all tracks of the WMT 2023 ter-
minology shared task with a terminology-aware
translation baseline, and two distinct refinement
procedures using negatively constrained beam
search and large language models separately. The
results we produced gave us insights into the pros
and cons of our systems. In future work, we could
explicitly enforce the generation of the terminol-
ogy token by identifying the appropriate time step
and manipulating the probability distribution after
softmax computation, even in an open-source large
language model. This is not entirely trivial due to
the presence of subwords but could be achievable.
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Toms Bergmanis and Mārcis Pinnis. 2021. Facilitating
terminology translation with target lemma annota-
tions. In Proceedings of EACL.

Pinzhen Chen, Nikolay Bogoychev, Kenneth Heafield,
and Faheem Kirefu. 2020. Parallel sentence mining
by constrained decoding. In Proceedings of ACL.

Pinzhen Chen, Zhicheng Guo, Barry Haddow, and Ken-
neth Heafield. 2023. Iterative translation refinement
with large language models. arXiv preprint.

Georgiana Dinu, Prashant Mathur, Marcello Federico,
and Yaser Al-Onaizan. 2019. Training neural ma-
chine translation to apply terminology constraints. In
Proceedings of ACL.

Zi-Yi Dou and Graham Neubig. 2021. Word alignment
by fine-tuning embeddings on parallel corpora. In
Proceedings of EACL.

Chris Dyer, Victor Chahuneau, and Noah A. Smith.
2013. A simple, fast, and effective reparameteriza-
tion of IBM model 2. In Proceedings of NAACL-
HLT.

Marjan Ghazvininejad, Hila Gonen, and Luke Zettle-
moyer. 2023. Dictionary-based phrase-level prompt-
ing of large language models for machine translation.
arXiv preprint.

Eva Hasler, Adrià de Gispert, Gonzalo Iglesias, and
Bill Byrne. 2018. Neural machine translation decod-
ing with terminology constraints. In Proceedings of
NAACL-HLT.

Chris Hokamp and Qun Liu. 2017. Lexically con-
strained decoding for sequence generation using grid
beam search. In Proceedings of ACL.

Josef Jon, Michal Novák, João Paulo Aires, Dusan Varis,
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