@inproceedings{agrawal-etal-2023-neural,
title = "Neural Machine Translation for {E}nglish - {M}anipuri and {E}nglish - {A}ssamese",
author = "Agrawal, Goutam and
Das, Rituraj and
Biswas, Anupam and
Thounaojam, Dalton Meitei",
editor = "Koehn, Philipp and
Haddow, Barry and
Kocmi, Tom and
Monz, Christof",
booktitle = "Proceedings of the Eighth Conference on Machine Translation",
month = dec,
year = "2023",
address = "Singapore",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.wmt-1.86",
doi = "10.18653/v1/2023.wmt-1.86",
pages = "931--934",
abstract = "The internet is a vast repository of valuable information available in English, but for many people who are more comfortable with their regional languages, accessing this knowledge can be a challenge. Manually translating this kind of text, is a laborious, expensive, and time-consuming operation. This makes machine translation an effective method for translating texts without the need for human intervention. One of the newest and most efficient translation methods among the current machine translation systems is neural machine translation (NMT). In this WMT23 shared task: low resource indic language translation challenge, our team named ATULYA-NITS used the NMT transformer model for the English to/from Assamese and English to/from Manipuri language translation. Our systems achieved the BLEU score of 15.02 for English to Manipuri, 18.7 for Manipuri to English, 5.47 for English to Assamese, and 8.5 for Assamese to English.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="agrawal-etal-2023-neural">
<titleInfo>
<title>Neural Machine Translation for English - Manipuri and English - Assamese</title>
</titleInfo>
<name type="personal">
<namePart type="given">Goutam</namePart>
<namePart type="family">Agrawal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rituraj</namePart>
<namePart type="family">Das</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anupam</namePart>
<namePart type="family">Biswas</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dalton</namePart>
<namePart type="given">Meitei</namePart>
<namePart type="family">Thounaojam</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Eighth Conference on Machine Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Philipp</namePart>
<namePart type="family">Koehn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Barry</namePart>
<namePart type="family">Haddow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tom</namePart>
<namePart type="family">Kocmi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christof</namePart>
<namePart type="family">Monz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Singapore</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The internet is a vast repository of valuable information available in English, but for many people who are more comfortable with their regional languages, accessing this knowledge can be a challenge. Manually translating this kind of text, is a laborious, expensive, and time-consuming operation. This makes machine translation an effective method for translating texts without the need for human intervention. One of the newest and most efficient translation methods among the current machine translation systems is neural machine translation (NMT). In this WMT23 shared task: low resource indic language translation challenge, our team named ATULYA-NITS used the NMT transformer model for the English to/from Assamese and English to/from Manipuri language translation. Our systems achieved the BLEU score of 15.02 for English to Manipuri, 18.7 for Manipuri to English, 5.47 for English to Assamese, and 8.5 for Assamese to English.</abstract>
<identifier type="citekey">agrawal-etal-2023-neural</identifier>
<identifier type="doi">10.18653/v1/2023.wmt-1.86</identifier>
<location>
<url>https://aclanthology.org/2023.wmt-1.86</url>
</location>
<part>
<date>2023-12</date>
<extent unit="page">
<start>931</start>
<end>934</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Neural Machine Translation for English - Manipuri and English - Assamese
%A Agrawal, Goutam
%A Das, Rituraj
%A Biswas, Anupam
%A Thounaojam, Dalton Meitei
%Y Koehn, Philipp
%Y Haddow, Barry
%Y Kocmi, Tom
%Y Monz, Christof
%S Proceedings of the Eighth Conference on Machine Translation
%D 2023
%8 December
%I Association for Computational Linguistics
%C Singapore
%F agrawal-etal-2023-neural
%X The internet is a vast repository of valuable information available in English, but for many people who are more comfortable with their regional languages, accessing this knowledge can be a challenge. Manually translating this kind of text, is a laborious, expensive, and time-consuming operation. This makes machine translation an effective method for translating texts without the need for human intervention. One of the newest and most efficient translation methods among the current machine translation systems is neural machine translation (NMT). In this WMT23 shared task: low resource indic language translation challenge, our team named ATULYA-NITS used the NMT transformer model for the English to/from Assamese and English to/from Manipuri language translation. Our systems achieved the BLEU score of 15.02 for English to Manipuri, 18.7 for Manipuri to English, 5.47 for English to Assamese, and 8.5 for Assamese to English.
%R 10.18653/v1/2023.wmt-1.86
%U https://aclanthology.org/2023.wmt-1.86
%U https://doi.org/10.18653/v1/2023.wmt-1.86
%P 931-934
Markdown (Informal)
[Neural Machine Translation for English - Manipuri and English - Assamese](https://aclanthology.org/2023.wmt-1.86) (Agrawal et al., WMT 2023)
ACL