@inproceedings{edlin-reiss-2023-identifying,
title = "Identifying Visual Depictions of Animate Entities in Narrative Comics: An Annotation Study",
author = "Edlin, Lauren and
Reiss, Joshua",
editor = "Akoury, Nader and
Clark, Elizabeth and
Iyyer, Mohit and
Chaturvedi, Snigdha and
Brahman, Faeze and
Chandu, Khyathi",
booktitle = "Proceedings of the 5th Workshop on Narrative Understanding",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.wnu-1.14",
doi = "10.18653/v1/2023.wnu-1.14",
pages = "82--91",
abstract = "Animate entities in narrative comics stories are expressed through a number of visual representations across panels. Identifying these entities is necessary for recognizing characters and analysing narrative affordances unique to comics, and integrating these with linguistic reference annotation, however an annotation process for animate entity identification has not received adequate attention. This research explores methods for identifying animate entities visually in comics using annotation experiments. Two rounds of inter-annotator agreement experiments are run: the first asks annotators to outline areas on comic pages using a Polygon segmentation tool, and the second prompts annotators to assign each outlined entity{'}s animacy type to derive a quantitative measure of agreement. The first experiment results show that Polygon-based outlines successfully produce a qualitative measure of agreement; the second experiment supports that animacy status is best conceptualised as a graded, rather than binary, concept.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="edlin-reiss-2023-identifying">
<titleInfo>
<title>Identifying Visual Depictions of Animate Entities in Narrative Comics: An Annotation Study</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lauren</namePart>
<namePart type="family">Edlin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joshua</namePart>
<namePart type="family">Reiss</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 5th Workshop on Narrative Understanding</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nader</namePart>
<namePart type="family">Akoury</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Elizabeth</namePart>
<namePart type="family">Clark</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohit</namePart>
<namePart type="family">Iyyer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Snigdha</namePart>
<namePart type="family">Chaturvedi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Faeze</namePart>
<namePart type="family">Brahman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khyathi</namePart>
<namePart type="family">Chandu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Toronto, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Animate entities in narrative comics stories are expressed through a number of visual representations across panels. Identifying these entities is necessary for recognizing characters and analysing narrative affordances unique to comics, and integrating these with linguistic reference annotation, however an annotation process for animate entity identification has not received adequate attention. This research explores methods for identifying animate entities visually in comics using annotation experiments. Two rounds of inter-annotator agreement experiments are run: the first asks annotators to outline areas on comic pages using a Polygon segmentation tool, and the second prompts annotators to assign each outlined entity’s animacy type to derive a quantitative measure of agreement. The first experiment results show that Polygon-based outlines successfully produce a qualitative measure of agreement; the second experiment supports that animacy status is best conceptualised as a graded, rather than binary, concept.</abstract>
<identifier type="citekey">edlin-reiss-2023-identifying</identifier>
<identifier type="doi">10.18653/v1/2023.wnu-1.14</identifier>
<location>
<url>https://aclanthology.org/2023.wnu-1.14</url>
</location>
<part>
<date>2023-07</date>
<extent unit="page">
<start>82</start>
<end>91</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Identifying Visual Depictions of Animate Entities in Narrative Comics: An Annotation Study
%A Edlin, Lauren
%A Reiss, Joshua
%Y Akoury, Nader
%Y Clark, Elizabeth
%Y Iyyer, Mohit
%Y Chaturvedi, Snigdha
%Y Brahman, Faeze
%Y Chandu, Khyathi
%S Proceedings of the 5th Workshop on Narrative Understanding
%D 2023
%8 July
%I Association for Computational Linguistics
%C Toronto, Canada
%F edlin-reiss-2023-identifying
%X Animate entities in narrative comics stories are expressed through a number of visual representations across panels. Identifying these entities is necessary for recognizing characters and analysing narrative affordances unique to comics, and integrating these with linguistic reference annotation, however an annotation process for animate entity identification has not received adequate attention. This research explores methods for identifying animate entities visually in comics using annotation experiments. Two rounds of inter-annotator agreement experiments are run: the first asks annotators to outline areas on comic pages using a Polygon segmentation tool, and the second prompts annotators to assign each outlined entity’s animacy type to derive a quantitative measure of agreement. The first experiment results show that Polygon-based outlines successfully produce a qualitative measure of agreement; the second experiment supports that animacy status is best conceptualised as a graded, rather than binary, concept.
%R 10.18653/v1/2023.wnu-1.14
%U https://aclanthology.org/2023.wnu-1.14
%U https://doi.org/10.18653/v1/2023.wnu-1.14
%P 82-91
Markdown (Informal)
[Identifying Visual Depictions of Animate Entities in Narrative Comics: An Annotation Study](https://aclanthology.org/2023.wnu-1.14) (Edlin & Reiss, WNU 2023)
ACL