@inproceedings{ademtew-birbo-2024-age,
title = "{AGE}: {A}mharic, {G}e`ez and {E}nglish Parallel Dataset",
author = "Ademtew, Henok Biadglign and
Birbo, Mikiyas Girma",
editor = "Ojha, Atul Kr. and
Liu, Chao-hong and
Vylomova, Ekaterina and
Pirinen, Flammie and
Abbott, Jade and
Washington, Jonathan and
Oco, Nathaniel and
Malykh, Valentin and
Logacheva, Varvara and
Zhao, Xiaobing",
booktitle = "Proceedings of the Seventh Workshop on Technologies for Machine Translation of Low-Resource Languages (LoResMT 2024)",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.acl-1.14/",
doi = "10.18653/v1/2024.loresmt-1.14",
pages = "139--145",
abstract = "African languages are not well-represented in Natural Language Processing (NLP). The main reason is a lack of resources for training models. Low-resource languages, such as Amharic and Ge`ez, cannot benefit from modern NLP methods because of the lack of high-quality datasets. This paper presents AGE, an open-source tripartite alignment of Amharic, Ge`ez, and English parallel dataset. Additionally, we introduced a novel, 1,000 Ge`ez-centered sentences sourced from areas such as news and novels. Furthermore, we developed a model from a multilingual pre-trained language model, which brings 12.29 and 30.66 for English-Ge`ez and Ge`ez to English, respectively, and 9.39 and 12.29 for Amharic-Ge`ez and Ge`ez-Amharic respectively."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ademtew-birbo-2024-age">
<titleInfo>
<title>AGE: Amharic, Ge‘ez and English Parallel Dataset</title>
</titleInfo>
<name type="personal">
<namePart type="given">Henok</namePart>
<namePart type="given">Biadglign</namePart>
<namePart type="family">Ademtew</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mikiyas</namePart>
<namePart type="given">Girma</namePart>
<namePart type="family">Birbo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Seventh Workshop on Technologies for Machine Translation of Low-Resource Languages (LoResMT 2024)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Atul</namePart>
<namePart type="given">Kr.</namePart>
<namePart type="family">Ojha</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chao-hong</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Vylomova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Flammie</namePart>
<namePart type="family">Pirinen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jade</namePart>
<namePart type="family">Abbott</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">Washington</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nathaniel</namePart>
<namePart type="family">Oco</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Valentin</namePart>
<namePart type="family">Malykh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Varvara</namePart>
<namePart type="family">Logacheva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaobing</namePart>
<namePart type="family">Zhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>African languages are not well-represented in Natural Language Processing (NLP). The main reason is a lack of resources for training models. Low-resource languages, such as Amharic and Ge‘ez, cannot benefit from modern NLP methods because of the lack of high-quality datasets. This paper presents AGE, an open-source tripartite alignment of Amharic, Ge‘ez, and English parallel dataset. Additionally, we introduced a novel, 1,000 Ge‘ez-centered sentences sourced from areas such as news and novels. Furthermore, we developed a model from a multilingual pre-trained language model, which brings 12.29 and 30.66 for English-Ge‘ez and Ge‘ez to English, respectively, and 9.39 and 12.29 for Amharic-Ge‘ez and Ge‘ez-Amharic respectively.</abstract>
<identifier type="citekey">ademtew-birbo-2024-age</identifier>
<identifier type="doi">10.18653/v1/2024.loresmt-1.14</identifier>
<location>
<url>https://aclanthology.org/2024.acl-1.14/</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>139</start>
<end>145</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T AGE: Amharic, Ge‘ez and English Parallel Dataset
%A Ademtew, Henok Biadglign
%A Birbo, Mikiyas Girma
%Y Ojha, Atul Kr.
%Y Liu, Chao-hong
%Y Vylomova, Ekaterina
%Y Pirinen, Flammie
%Y Abbott, Jade
%Y Washington, Jonathan
%Y Oco, Nathaniel
%Y Malykh, Valentin
%Y Logacheva, Varvara
%Y Zhao, Xiaobing
%S Proceedings of the Seventh Workshop on Technologies for Machine Translation of Low-Resource Languages (LoResMT 2024)
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F ademtew-birbo-2024-age
%X African languages are not well-represented in Natural Language Processing (NLP). The main reason is a lack of resources for training models. Low-resource languages, such as Amharic and Ge‘ez, cannot benefit from modern NLP methods because of the lack of high-quality datasets. This paper presents AGE, an open-source tripartite alignment of Amharic, Ge‘ez, and English parallel dataset. Additionally, we introduced a novel, 1,000 Ge‘ez-centered sentences sourced from areas such as news and novels. Furthermore, we developed a model from a multilingual pre-trained language model, which brings 12.29 and 30.66 for English-Ge‘ez and Ge‘ez to English, respectively, and 9.39 and 12.29 for Amharic-Ge‘ez and Ge‘ez-Amharic respectively.
%R 10.18653/v1/2024.loresmt-1.14
%U https://aclanthology.org/2024.acl-1.14/
%U https://doi.org/10.18653/v1/2024.loresmt-1.14
%P 139-145
Markdown (Informal)
[AGE: Amharic, Ge’ez and English Parallel Dataset](https://aclanthology.org/2024.acl-1.14/) (Ademtew & Birbo, LoResMT 2024)
ACL
- Henok Biadglign Ademtew and Mikiyas Girma Birbo. 2024. AGE: Amharic, Ge’ez and English Parallel Dataset. In Proceedings of the Seventh Workshop on Technologies for Machine Translation of Low-Resource Languages (LoResMT 2024), pages 139–145, Bangkok, Thailand. Association for Computational Linguistics.