@inproceedings{kim-etal-2024-kpopmt,
title = "{K}pop{MT}: Translation Dataset with Terminology for Kpop Fandom",
author = "Kim, JiWoo and
Kim, Yunsu and
Bak, JinYeong",
editor = "Ojha, Atul Kr. and
Liu, Chao-hong and
Vylomova, Ekaterina and
Pirinen, Flammie and
Abbott, Jade and
Washington, Jonathan and
Oco, Nathaniel and
Malykh, Valentin and
Logacheva, Varvara and
Zhao, Xiaobing",
booktitle = "Proceedings of the Seventh Workshop on Technologies for Machine Translation of Low-Resource Languages (LoResMT 2024)",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.acl-1.3/",
doi = "10.18653/v1/2024.loresmt-1.3",
pages = "37--43",
abstract = "While machines learn from existing corpora, humans have the unique capability to establish and accept new language systems. This makes human form unique language systems within social groups. Aligning with this, we focus on a gap remaining in addressing translation challenges within social groups, where in-group members utilize unique terminologies. We propose KpopMT dataset, which aims to fill this gap by enabling precise terminology translation, choosing Kpop fandom as an initiative for social groups given its global popularity. Expert translators provide 1k English translations for Korean posts and comments, each annotated with specific terminology within social groups' language systems. We evaluate existing translation systems including GPT models on KpopMT to identify their failure cases. Results show overall low scores, underscoring the challenges of reflecting group-specific terminologies and styles in translation. We make KpopMT publicly available."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kim-etal-2024-kpopmt">
<titleInfo>
<title>KpopMT: Translation Dataset with Terminology for Kpop Fandom</title>
</titleInfo>
<name type="personal">
<namePart type="given">JiWoo</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yunsu</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">JinYeong</namePart>
<namePart type="family">Bak</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Seventh Workshop on Technologies for Machine Translation of Low-Resource Languages (LoResMT 2024)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Atul</namePart>
<namePart type="given">Kr.</namePart>
<namePart type="family">Ojha</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chao-hong</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Vylomova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Flammie</namePart>
<namePart type="family">Pirinen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jade</namePart>
<namePart type="family">Abbott</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">Washington</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nathaniel</namePart>
<namePart type="family">Oco</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Valentin</namePart>
<namePart type="family">Malykh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Varvara</namePart>
<namePart type="family">Logacheva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaobing</namePart>
<namePart type="family">Zhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>While machines learn from existing corpora, humans have the unique capability to establish and accept new language systems. This makes human form unique language systems within social groups. Aligning with this, we focus on a gap remaining in addressing translation challenges within social groups, where in-group members utilize unique terminologies. We propose KpopMT dataset, which aims to fill this gap by enabling precise terminology translation, choosing Kpop fandom as an initiative for social groups given its global popularity. Expert translators provide 1k English translations for Korean posts and comments, each annotated with specific terminology within social groups’ language systems. We evaluate existing translation systems including GPT models on KpopMT to identify their failure cases. Results show overall low scores, underscoring the challenges of reflecting group-specific terminologies and styles in translation. We make KpopMT publicly available.</abstract>
<identifier type="citekey">kim-etal-2024-kpopmt</identifier>
<identifier type="doi">10.18653/v1/2024.loresmt-1.3</identifier>
<location>
<url>https://aclanthology.org/2024.acl-1.3/</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>37</start>
<end>43</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T KpopMT: Translation Dataset with Terminology for Kpop Fandom
%A Kim, JiWoo
%A Kim, Yunsu
%A Bak, JinYeong
%Y Ojha, Atul Kr.
%Y Liu, Chao-hong
%Y Vylomova, Ekaterina
%Y Pirinen, Flammie
%Y Abbott, Jade
%Y Washington, Jonathan
%Y Oco, Nathaniel
%Y Malykh, Valentin
%Y Logacheva, Varvara
%Y Zhao, Xiaobing
%S Proceedings of the Seventh Workshop on Technologies for Machine Translation of Low-Resource Languages (LoResMT 2024)
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F kim-etal-2024-kpopmt
%X While machines learn from existing corpora, humans have the unique capability to establish and accept new language systems. This makes human form unique language systems within social groups. Aligning with this, we focus on a gap remaining in addressing translation challenges within social groups, where in-group members utilize unique terminologies. We propose KpopMT dataset, which aims to fill this gap by enabling precise terminology translation, choosing Kpop fandom as an initiative for social groups given its global popularity. Expert translators provide 1k English translations for Korean posts and comments, each annotated with specific terminology within social groups’ language systems. We evaluate existing translation systems including GPT models on KpopMT to identify their failure cases. Results show overall low scores, underscoring the challenges of reflecting group-specific terminologies and styles in translation. We make KpopMT publicly available.
%R 10.18653/v1/2024.loresmt-1.3
%U https://aclanthology.org/2024.acl-1.3/
%U https://doi.org/10.18653/v1/2024.loresmt-1.3
%P 37-43
Markdown (Informal)
[KpopMT: Translation Dataset with Terminology for Kpop Fandom](https://aclanthology.org/2024.acl-1.3/) (Kim et al., LoResMT 2024)
ACL
- JiWoo Kim, Yunsu Kim, and JinYeong Bak. 2024. KpopMT: Translation Dataset with Terminology for Kpop Fandom. In Proceedings of the Seventh Workshop on Technologies for Machine Translation of Low-Resource Languages (LoResMT 2024), pages 37–43, Bangkok, Thailand. Association for Computational Linguistics.