@inproceedings{roy-etal-2024-enhancing,
title = "Enhancing Low-Resource {NMT} with a Multilingual Encoder and Knowledge Distillation: A Case Study",
author = "Roy, Aniruddha and
Ray, Pretam and
Maheshwari, Ayush and
Sarkar, Sudeshna and
Goyal, Pawan",
editor = "Ojha, Atul Kr. and
Liu, Chao-hong and
Vylomova, Ekaterina and
Pirinen, Flammie and
Abbott, Jade and
Washington, Jonathan and
Oco, Nathaniel and
Malykh, Valentin and
Logacheva, Varvara and
Zhao, Xiaobing",
booktitle = "Proceedings of the Seventh Workshop on Technologies for Machine Translation of Low-Resource Languages (LoResMT 2024)",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.acl-1.7/",
doi = "10.18653/v1/2024.loresmt-1.7",
pages = "64--73",
abstract = "Neural Machine Translation (NMT) remains a formidable challenge, especially when dealing with low-resource languages. Pre-trained sequence-to-sequence (seq2seq) multi-lingual models, such as mBART-50, have demonstrated impressive performance in various low-resource NMT tasks. However, their pre-training has been confined to 50 languages, leaving out support for numerous low-resource languages, particularly those spoken in the Indian subcontinent. Expanding mBART-50`s language support requires complex pre-training, risking performance decline due to catastrophic forgetting. Considering these expanding challenges, this paper explores a framework that leverages the benefits of a pre-trained language model along with knowledge distillation in a seq2seq architecture to facilitate translation for low-resource languages, including those not covered by mBART-50. The proposed framework employs a multilingual encoder-based seq2seq model as the foundational architecture and subsequently uses complementary knowledge distillation techniques to mitigate the impact of imbalanced training. Our framework is evaluated on three low-resource Indic languages in four Indic-to-Indic directions, yielding significant BLEU-4 and chrF improvements over baselines. Further, we conduct human evaluation to confirm effectiveness of our approach. Our code is publicly available at https://github.com/raypretam/Two-step-low-res-NMT."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="roy-etal-2024-enhancing">
<titleInfo>
<title>Enhancing Low-Resource NMT with a Multilingual Encoder and Knowledge Distillation: A Case Study</title>
</titleInfo>
<name type="personal">
<namePart type="given">Aniruddha</namePart>
<namePart type="family">Roy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pretam</namePart>
<namePart type="family">Ray</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ayush</namePart>
<namePart type="family">Maheshwari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sudeshna</namePart>
<namePart type="family">Sarkar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pawan</namePart>
<namePart type="family">Goyal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Seventh Workshop on Technologies for Machine Translation of Low-Resource Languages (LoResMT 2024)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Atul</namePart>
<namePart type="given">Kr.</namePart>
<namePart type="family">Ojha</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chao-hong</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Vylomova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Flammie</namePart>
<namePart type="family">Pirinen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jade</namePart>
<namePart type="family">Abbott</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">Washington</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nathaniel</namePart>
<namePart type="family">Oco</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Valentin</namePart>
<namePart type="family">Malykh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Varvara</namePart>
<namePart type="family">Logacheva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaobing</namePart>
<namePart type="family">Zhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Neural Machine Translation (NMT) remains a formidable challenge, especially when dealing with low-resource languages. Pre-trained sequence-to-sequence (seq2seq) multi-lingual models, such as mBART-50, have demonstrated impressive performance in various low-resource NMT tasks. However, their pre-training has been confined to 50 languages, leaving out support for numerous low-resource languages, particularly those spoken in the Indian subcontinent. Expanding mBART-50‘s language support requires complex pre-training, risking performance decline due to catastrophic forgetting. Considering these expanding challenges, this paper explores a framework that leverages the benefits of a pre-trained language model along with knowledge distillation in a seq2seq architecture to facilitate translation for low-resource languages, including those not covered by mBART-50. The proposed framework employs a multilingual encoder-based seq2seq model as the foundational architecture and subsequently uses complementary knowledge distillation techniques to mitigate the impact of imbalanced training. Our framework is evaluated on three low-resource Indic languages in four Indic-to-Indic directions, yielding significant BLEU-4 and chrF improvements over baselines. Further, we conduct human evaluation to confirm effectiveness of our approach. Our code is publicly available at https://github.com/raypretam/Two-step-low-res-NMT.</abstract>
<identifier type="citekey">roy-etal-2024-enhancing</identifier>
<identifier type="doi">10.18653/v1/2024.loresmt-1.7</identifier>
<location>
<url>https://aclanthology.org/2024.acl-1.7/</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>64</start>
<end>73</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Enhancing Low-Resource NMT with a Multilingual Encoder and Knowledge Distillation: A Case Study
%A Roy, Aniruddha
%A Ray, Pretam
%A Maheshwari, Ayush
%A Sarkar, Sudeshna
%A Goyal, Pawan
%Y Ojha, Atul Kr.
%Y Liu, Chao-hong
%Y Vylomova, Ekaterina
%Y Pirinen, Flammie
%Y Abbott, Jade
%Y Washington, Jonathan
%Y Oco, Nathaniel
%Y Malykh, Valentin
%Y Logacheva, Varvara
%Y Zhao, Xiaobing
%S Proceedings of the Seventh Workshop on Technologies for Machine Translation of Low-Resource Languages (LoResMT 2024)
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F roy-etal-2024-enhancing
%X Neural Machine Translation (NMT) remains a formidable challenge, especially when dealing with low-resource languages. Pre-trained sequence-to-sequence (seq2seq) multi-lingual models, such as mBART-50, have demonstrated impressive performance in various low-resource NMT tasks. However, their pre-training has been confined to 50 languages, leaving out support for numerous low-resource languages, particularly those spoken in the Indian subcontinent. Expanding mBART-50‘s language support requires complex pre-training, risking performance decline due to catastrophic forgetting. Considering these expanding challenges, this paper explores a framework that leverages the benefits of a pre-trained language model along with knowledge distillation in a seq2seq architecture to facilitate translation for low-resource languages, including those not covered by mBART-50. The proposed framework employs a multilingual encoder-based seq2seq model as the foundational architecture and subsequently uses complementary knowledge distillation techniques to mitigate the impact of imbalanced training. Our framework is evaluated on three low-resource Indic languages in four Indic-to-Indic directions, yielding significant BLEU-4 and chrF improvements over baselines. Further, we conduct human evaluation to confirm effectiveness of our approach. Our code is publicly available at https://github.com/raypretam/Two-step-low-res-NMT.
%R 10.18653/v1/2024.loresmt-1.7
%U https://aclanthology.org/2024.acl-1.7/
%U https://doi.org/10.18653/v1/2024.loresmt-1.7
%P 64-73
Markdown (Informal)
[Enhancing Low-Resource NMT with a Multilingual Encoder and Knowledge Distillation: A Case Study](https://aclanthology.org/2024.acl-1.7/) (Roy et al., LoResMT 2024)
ACL