@inproceedings{tahir-etal-2024-jora,
title = "{JORA}: {JAX} Tensor-Parallel {L}o{RA} Library for Retrieval Augmented Fine-Tuning",
author = "Tahir, Anique and
Cheng, Lu and
Liu, Huan",
editor = "Cao, Yixin and
Feng, Yang and
Xiong, Deyi",
booktitle = "Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.acl-demos.15",
doi = "10.18653/v1/2024.acl-demos.15",
pages = "152--159",
abstract = "The scaling of Large Language Models (LLMs) for retrieval-based tasks, particularly in Retrieval Augmented Generation (RAG), faces significant memory constraints, especially when fine-tuning extensive prompt sequences. Current open-source libraries support full-model inference and fine-tuning across multiple GPUs but fall short of accommodating the efficient parameter distribution required for retrieved context. Addressing this gap, we introduce a novel framework for PEFT-compatible fine-tuning of GPT models, leveraging distributed training. Our framework uniquely utilizes JAX{'}s just-in-time (JIT) compilation and tensor-sharding for efficient resource management, thereby enabling accelerated fine-tuning with reduced memory requirements. This advancement significantly improves the scalability and feasibility of fine-tuning LLMs for complex RAG applications, even on systems with limited GPU resources. Our experiments show more than 12x improvement in runtime compared to Hugging Face/DeepSpeed implementation with four GPUs while consuming less than half the VRAM per GPU.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="tahir-etal-2024-jora">
<titleInfo>
<title>JORA: JAX Tensor-Parallel LoRA Library for Retrieval Augmented Fine-Tuning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anique</namePart>
<namePart type="family">Tahir</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lu</namePart>
<namePart type="family">Cheng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Huan</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yixin</namePart>
<namePart type="family">Cao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Feng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Deyi</namePart>
<namePart type="family">Xiong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The scaling of Large Language Models (LLMs) for retrieval-based tasks, particularly in Retrieval Augmented Generation (RAG), faces significant memory constraints, especially when fine-tuning extensive prompt sequences. Current open-source libraries support full-model inference and fine-tuning across multiple GPUs but fall short of accommodating the efficient parameter distribution required for retrieved context. Addressing this gap, we introduce a novel framework for PEFT-compatible fine-tuning of GPT models, leveraging distributed training. Our framework uniquely utilizes JAX’s just-in-time (JIT) compilation and tensor-sharding for efficient resource management, thereby enabling accelerated fine-tuning with reduced memory requirements. This advancement significantly improves the scalability and feasibility of fine-tuning LLMs for complex RAG applications, even on systems with limited GPU resources. Our experiments show more than 12x improvement in runtime compared to Hugging Face/DeepSpeed implementation with four GPUs while consuming less than half the VRAM per GPU.</abstract>
<identifier type="citekey">tahir-etal-2024-jora</identifier>
<identifier type="doi">10.18653/v1/2024.acl-demos.15</identifier>
<location>
<url>https://aclanthology.org/2024.acl-demos.15</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>152</start>
<end>159</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T JORA: JAX Tensor-Parallel LoRA Library for Retrieval Augmented Fine-Tuning
%A Tahir, Anique
%A Cheng, Lu
%A Liu, Huan
%Y Cao, Yixin
%Y Feng, Yang
%Y Xiong, Deyi
%S Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F tahir-etal-2024-jora
%X The scaling of Large Language Models (LLMs) for retrieval-based tasks, particularly in Retrieval Augmented Generation (RAG), faces significant memory constraints, especially when fine-tuning extensive prompt sequences. Current open-source libraries support full-model inference and fine-tuning across multiple GPUs but fall short of accommodating the efficient parameter distribution required for retrieved context. Addressing this gap, we introduce a novel framework for PEFT-compatible fine-tuning of GPT models, leveraging distributed training. Our framework uniquely utilizes JAX’s just-in-time (JIT) compilation and tensor-sharding for efficient resource management, thereby enabling accelerated fine-tuning with reduced memory requirements. This advancement significantly improves the scalability and feasibility of fine-tuning LLMs for complex RAG applications, even on systems with limited GPU resources. Our experiments show more than 12x improvement in runtime compared to Hugging Face/DeepSpeed implementation with four GPUs while consuming less than half the VRAM per GPU.
%R 10.18653/v1/2024.acl-demos.15
%U https://aclanthology.org/2024.acl-demos.15
%U https://doi.org/10.18653/v1/2024.acl-demos.15
%P 152-159
Markdown (Informal)
[JORA: JAX Tensor-Parallel LoRA Library for Retrieval Augmented Fine-Tuning](https://aclanthology.org/2024.acl-demos.15) (Tahir et al., ACL 2024)
ACL