
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations), pages 172–179
August 11-16, 2024 ©2024 Association for Computational Linguistics

IMGTB: A Framework for Machine-Generated Text Detection
Benchmarking

Michal Spiegel1,2 and Dominik Macko1

1 Kempelen Institute of Intelligent Technologies
2 Faculty of Informatics, Masaryk University

michal.spiegel@intern.kinit.sk, dominik.macko@kinit.sk

Abstract

In the era of large language models generating
high quality texts, it is a necessity to develop
methods for detection of machine-generated
text to avoid their harmful use or simply for
annotation purposes. It is, however, also im-
portant to properly evaluate and compare such
developed methods. Recently, a few bench-
marks have been proposed for this purpose;
however, integration of newest detection meth-
ods is rather challenging, since new methods
appear each month and provide slightly dif-
ferent evaluation pipelines. In this paper, we
present the IMGTB framework, which simpli-
fies the benchmarking of machine-generated
text detection methods by easy integration of
custom (new) methods and evaluation datasets.
In comparison to existing frameworks, it en-
ables to objectively compare statistical metric-
based zero-shot detectors with classification-
based detectors and with differently fine-tuned
detectors. Its configurability and flexibility
makes research and development of new de-
tection methods easier, especially their com-
parison to the existing state-of-the-art detec-
tors. The default set of analyses, metrics and
visualizations offered by the tool follows the
established practices of machine-generated text
detection benchmarking found in state-of-the-
art literature.

1 Introduction

Due to indistinguishability between human-written
texts and high-quality texts generated by mod-
ern large language models (LLMs) (Sadasivan
et al., 2023), the machine-generated text detection
(MGTD) belongs to the key challenges identified
by (Kaddour et al., 2023). MGTD methods are
needed in many areas, such as prevention of dis-
information spreading, plagiarism, impersonation
and identity theft, automated scams and frauds, or
even prevention of unintentional inclusion of lesser
quality generated texts in future models’ training

IMGTB

Results AnalysisText Dataset

Configuration
Logs

Figure 1: IMGTB framework exemplar usage overview.

data (Kaddour et al., 2023; Weidinger et al., 2021;
Zellers et al., 2019; Wahle et al., 2022; Vykopal
et al., 2023).

Regardless of the area of application, we are
witnessing a race of new MGTD methods compet-
ing with new generation methods and appearing
monthly. This presents a challenge to efficiently
evaluate and benchmark the new methods. The
problem is twofold, missing the uniform implemen-
tation of the methods and standardized evaluation.
Even when source codes for experiment replication
are released, they are usually too specific and not
flexible for reuse. Moreover, across application
areas, domains, text lengths, or topics, the perfor-
mance of different MGTD methods varies. There-
fore, a flexible way of comparison over various
datasets (even custom ones) is currently missing.
These problems are usually addressed by common
benchmarking frameworks.

There is a lack of flexibility, configurability, and
extensibility in the current MGTD benchmarking
frameworks; therefore, we have focused on refining
the most recent one, MGTBench (He et al., 2023),
by integrating missing features and extending sup-
port to new types of detection pipelines. The key
contributions of the proposed extended framework
IMGTB1 are as follows:

• objective comparison of statistical metric-
based zero-shot methods with others,

1
https://github.com/kinit-sk/IMGTB

172

https://github.com/kinit-sk/IMGTB


• integration of the newest MGTD methods
(e.g., MFD, Binoculars, S5) and fine-tuning
processes (e.g., PEFT, per-language)2,

• simplified ability to implement custom MGTD
methods (plug-in by abstract classes and tem-
plates),

• more flexible usage of custom evaluation
datasets (multi-format support),

• increased configurability of the benchmark
settings (e.g., classifier selection),

• benchmark results analysis (configurability,
automated charts generation).

2 Related Works

Due to increasing quality of texts generated by
modern LLMs, the research around detection of
machine-generated text increased its importance.
However, a common way to properly compare sev-
eral detection methods was missing, mainly due
to missing publicly available datasets. Few years
ago, MGTD researchers mostly used data gener-
ated by a single LLM, such as GPT-23 or Grover
(Zellers et al., 2019), results on which could not be
properly generalized. Later on, larger-scale multi
LLM benchmarks for MGTD task have been pro-
posed, such as TuringBench (Uchendu et al., 2021),
DeepfakeTextDetect (Li et al., 2023), M4 (Wang
et al., 2023), or MULTITuDE (Macko et al., 2023).
As a result, MGTD methods can now be evaluated
on such benchmark datasets and compared to each
other. However, these datasets do not share com-
mon class labels, structure, or form, what makes
the evaluation on multiple of them complicated and
unnecessarily prolongs the research.

The other issue significantly prolonging the re-
search is a missing unified implementation of exist-
ing MGTD methods. It leaves on the researchers a
burden to either reuse the published source codes of
individual methods (if there is some), which are dif-
ferent among each other and require customization,
or implement them completely into their evaluation
framework to be evaluated in a unified way with
their newly proposed MGTD method. Some of
the proposed MGTD methods, such as DetectGPT
(Mitchell et al., 2023), released the full source code
including implementation of other existing SOTA
methods, enabling complete replication of exper-
iments and providing a good basis to build upon.

2see section 3.2.4 for a description of the implemented methods
3
https://github.com/openai/gpt-2-output-dataset

The result is a faster advancement by extension of
the original method, in the form of DetectLLM (Su
et al., 2023) or Fast-DetectGPT (Bao et al., 2023),
proving the benefits of full replication possibilities.

However, these methods focused on zero-shot
statistical-based detection of machine-generated
text, comparing various statistical metrics to dis-
tinguish between human-written and machine-
generated samples, not providing the classification
prediction. Thus, the implementations do not allow
easy comparison with supervised high-performing
pretrained LLMs finetuned for MGTD task, such
as the popular OpenAI detector (Solaiman et al.,
2019). The proposed MGTBench framework (He
et al., 2023) attempted to solve the problem, by im-
plementation of these methods in a common frame-
work. Using a dedicated classifier trained individu-
ally for metric-based statistical MGTD methods, it
provides a class prediction, enabling a direct com-
parison to LLMs-based MGTD classifiers. MGT-
Bench has already accelerated MGTD research,
such as (Wu and Xiang, 2023) or (Macko et al.,
2023).

However, MGTBench provides a quite compli-
cated way to use custom datasets or to integrate
new MGTD methods. Moreover, the used classifier-
based (must be trained) evaluation of metric-based
statistical detectors does not enable their true zero-
shot evaluation (without training, as reported in
the corresponding papers). Therefore, a more flexi-
ble and configurable benchmarking framework is
needed.

3 IMGTB – Integrated MGTD
Benchmark Framework

In this section, we introduce the central design
principles, IMGTB was built with, as well as its
architecture and the functionality of the main com-
ponents. We use a term experiment to denote a
single run of the specified detection method on
data from the specified dataset.

3.1 Design Principles

The IMGTB framework was designed with several
main principles in mind. We consider them impor-
tant to mention because they encompass what was
missing in other similar works and why this tool
was developed in the first place.

[P1: Modularity] All the subtasks and respon-
sibilities, such as configuration parsing, data load-
ing, and runnning experiments, were divided and

173

https://github.com/openai/gpt-2-output-dataset


Figure 2: Figure displays an overview of the framework architecture. The Manager acts as the coordinator,
interconnecting all other components. In a usual workflow, the Manager requests user-specified configurations
from the Configuration Parser. Given the configurations, it requests the train and test datasets from the Data
Loader. Furthermore, it forwards the configurations and datasets for evaluation using user-specified detection
methods (Experiment component). Finally, it stores the results returned by experiments and calls a Results Analysis
component which provides a basic evaluation and visualization of the results.

assigned to their respective modules that only com-
municate between themselves through a very gen-
eral interface. Such a decreased inter-module cou-
pling makes the framework very robust and resis-
tant to changes and easy to update, which is useful
in order to utilize all the technologies that are yet
to be discovered.

[P2: Ease of use] The issue and a main blocker
when testing and experimenting with new MGTD
methods and new datasets seems to be the need to
manually set up and integrate a new method, which
often does not work out-of-the-box, to manually
parse each dataset and then write one’s own analy-
sis tools. This framework was designed to mitigate
this issue. Simple experiments can be running in
seconds just using the terminal via command-line
arguments or, for more complex experiments, us-
ing a YAML configuration file. Any dataset or
detector can be easily accessed from the Hugging
Face Hub without the need to manually download
it. The framework also includes many parsing util-
ity functions that enable to load and parse almost
any dataset without any need to provide a custom
code. Additionally, with built-in analysis tools, it
is possible to have basic analysis done right after
the experiment has finished.

[P3: Customizability] The structure of input
data can vary significantly, detection methods of-
ten need different resources, and although we do
try to provide utility functions to provide for most
of them, it is not possible to cover all such possi-
ble cases. Therefore, we have put great emphasis
on making the customization of our codebase and

extending our functionalities as simple and straight-
forward as possible.

3.2 Architecture Overview

Figure 2 overviews the main components of the
framework architecture, further described in the
following subsections.

3.2.1 Manager
The Manager, interconnecting all the other compo-
nents, serves as the user interface. Its main task
is to orchestrate the other components. It calls the
data loader, forwards configurations, runs experi-
ments and so on.

3.2.2 Configuration Parser
Configuration Parser provides the functionality to
specify configurations directly in the terminal via
command-line arguments for quick experiment
setup or via a YAML configuration file for more
complex experiments. However, command-line
arguments offer only a subset of the options the
YAML configurations system offers. For conve-
nience, user-specified configurations are always
merged with a system default configurations (see
lib/default_config.yaml). To add a new parameter
to the configurations is as easy as adding it to one’s
YAML configurations file, or to the system default
(lib/default_config.yaml), no changes to the code
itself are needed.

3.2.3 Data Loader
Data loader’s main responsibility is to offer func-
tionalities to parse as many different dataset for-
mats and structures as possible. Currently, it is pos-

174



sible to specify column names, labels, a Hugging
Face Hub dataset just by providing its identifier,
use different subsets, splits, test on machine or hu-
man only text data, and much more. In the case
that these predefined functionalities would not be
sufficient, we try to make it as easy as possible to
integrate custom parser functions.

3.2.4 Experiment
Experiment is an abstract class defining a single
abstract method run(data, config) that runs the ex-
periment on the provided data and given configu-
rations and returns results (ideally in the standard-
ized format). In regards to detectors, the frame-
work offers many already implemented (method-
s/implemented_methods), such as single metric-
based methods (e.g., Entropy by Lavergne et al.,
2008, or Binoculars by Hans et al., 2024), multi-
metric-based methods (e.g., GLTR by Gehrmann
et al., 2019, MFD by Wu and Xiang, 2023, or S5 by
Spiegel and Macko, 2024), or perturbation-based
methods (e.g., DetectGPT by Mitchell et al., 2023,
or DetectLLM-NPR by Su et al., 2023). Single met-
ric methods (even perturbation based) can be run
with a to-be-trained classifier on top or in zero-shot
manner using a predefined or a calibrated classifi-
cation threshold. To run a Sequence Classification
Hugging Face Hub model, only its identifier needs
to be specified in the methods configurations as
a file path. In addition to running such models
directly, they can be fine-tuned using three differ-
ent configurable processes: full, PEFT (QLoRA
based parameter-efficient fine-tuning by Dettmers
et al., 2023), or per-language based multilingual
fine-tuning (Spiegel and Macko, 2024). Although
there are many MGTD methods already imple-
mented in the framework, the true feature of this
component is the possibility to quickly implement
new custom experiments. By using some of the
predefined experiment templates for metric-based
or perturbation-based methods, it is possible to im-
plement experiments in just a few lines of code.
There is, however, still a possibility to implement a
fully custom experiment by implementing the run()
method from scratch.

3.2.5 Results Analysis
Results analysis can be run either right after a
benchmark run, can be specified in the configu-
rations, or later by loading the results from a file.
We implement several analysis methods ourselves,
such as detection performance (Accuracy, Preci-

sion, Recall, F1-score, ROC - receiver operating
characteristic), false positives/negatives, or run-
time performance. But it is ensured for easy in-
tegration of new analysis methods.

4 Case Study

To better illustrate the use of the framework in
practice, in this section we showcase a few example
use case scenarios. We look at:

A. How to quickly run and evaluate simple
experiments using CLI

B. How to run complex experiments using
YAML configuration files

For a more visual version of this demonstration,
see the video4. For more detailed and runnable
version, see the Jupyter notebook5.

4.1 Example Scenario A
Let’s assume we obtained a completely new never-
before-seen dataset of texts generated by one of the
latest SOTA large language models. In a similar
manner, we could also use existing datasets, even
from completely unrelated domains, such as AI-
powered text summarization, translation, question
answering, or disinformation detection.

Out of curiosity, we’d like to see how the cur-
rent SOTA detection methods roughly (i.e., default
settings) perform on this new data.

Starting from scratch, this would probably take a
significant amount of effort to preprocess the data,
find the source code of the detectors, integrate the
detectors, evaluate and plot the results, as well as
considerable knowledge about tools like pandas,
numpy or transformers, not to mention the time
spent browsing the documentation of said tools.

This all seems a little bit too much. But with our
framework we could accomplish the same just by
running one CLI command as follows:

python benchmark.py --dataset
xzuyn/futurama-alpaca huggingfacehub
machine_only output --methods
roberta-base-openai-detector
Hello-SimpleAI/chatgpt-detector-roberta
andreas122001/roberta-mixed-detector

↪→
↪→
↪→
↪→
↪→

In the command, the option --dataset is used
for specification of xzuyn/futurama-alpaca dataset,
available at HuggingFace (see the huggingfacehub
keyword), which contains only machine-generated

4
https://www.youtube.com/watch?v=NlHIC4HDQrc

5
https://colab.research.google.com/drive/15C7kzpnDnx_

zqwplCpc949xVJ4Bhdnjl?usp=sharing

175

https://www.youtube.com/watch?v=NlHIC4HDQrc
https://colab.research.google.com/drive/15C7kzpnDnx_zqwplCpc949xVJ4Bhdnjl?usp=sharing
https://colab.research.google.com/drive/15C7kzpnDnx_zqwplCpc949xVJ4Bhdnjl?usp=sharing


texts (see the machine-only keyword), and the data
field/column to be used for texts being output. For
the full description of the dataset parameters see
the GitHub repository6. The option --methods is
followed by identifiers of the methods to be eval-
uated and compared in the benchmark. If such
identifiers are not found in the local implementa-
tions of the MGTD methods, the HuggingFace is
used as a repository of the models.

When the benchmark run finishes, we are able to
find all the results in the latest results/logs log entry.
It contains a JSON file storing all the benchmark
results and the output plots (examples in Figure 3
and 4) of the results analysis component. Using the
provided plots, per-detection-method performance
is easily comparable.

Regarding Figure 3, only machine-class samples
were included in the Scenario A dataset; therefore,
the precision of all detectors is 1.0 (i.e., no false
positives) and the accuracy is the same as the recall.
Based on Figure 4, the last detection method clearly
has problems in identifying machine texts from
the provided dataset, due to prevalence of false
negatives (with a high certainty, based on machine-
class probability score).

6
https://github.com/kinit-sk/IMGTB/tree/main#

dataset-parameters

Figure 3: Automatically generated chart for detection-
performance metrics analysis.

Figure 4: Automatically generated chart for false-
negatives analysis (inspired by Weber-Wulff et al.,
2023), where FN , PFN , UNC and PTP represent
false negatives, potential false negatives, uncertainty,
potential true positives and true positives, respectively.

4.2 Example Scenario B
In this scenario, let’s assume that we have devel-
oped and integrated a new metric-based MGT de-
tection method called MiracleMetric. IMGTB im-
plements a number of state-of-the-art detection
methods. Implementing new methods is stream-
lined by the use of template abstract classes that
allow fast prototyping of new statistical and fine-
tuned methods. To make a complex evaluation on
multiple datasets, comparing with multiple differ-
ent detection methods, and with different parame-
ters, we can design a very compact and readable
YAML configuration file.

Firstly, in Figure 5 we specify the data to be used.
After that we can specify multiple methods (includ-
ing our MiracleMetric) with different parameters,
models, etc. in Figure 6. As opposed to other
benchmarks (e.g. MGTBench (He et al., 2023)),
IMGTB enables users to specify custom datasets,
detection methods and various other parameters by
simply creating a configuration file, without the
need to modify the codebase. This crucial advan-
tage enables fast prototyping and eliminates unnec-
essary, repetitive tasks that often hinder researchers
in this field.

With this done, the only step keeping us from
the results is running the benchmark using these
configurations:

python benchmark.py
--from_config=example_config.yaml↪→

This will output similar results to the previous

176

https://github.com/kinit-sk/IMGTB/tree/main#dataset-parameters
https://github.com/kinit-sk/IMGTB/tree/main#dataset-parameters


data:
global:
filetype: auto

list:
- filepath: WxWx/ChatGPT-Detector-Bias
filetype: huggingfacehub
text_field: text
label_field: kind
human_label: Human-Written

- filepath: yaful/DeepfakeTextDetect
filetype: huggingfacehub
train_split: test_ood_gpt
test_split: test_ood_gpt_para
human_label: "1"

Figure 5: Data configurations in YAML format.

methods:
global:
base_model_name: gpt2-medium
mask_filling_model_name: t5-large
DEVICE: cuda

list:
- name: MiracleMetric
- name: MiracleMetric
clf_algo_for_threshold:

name: MLPClassifier
hidden_layer_sizes: [64, 32, 16]

- name: LoglikelihoodMetric
- name: LogRankMetric
- name: EntropyMetric
- name: DetectLLM_LLR
- name: EntropyMetric
- name: roberta-base-openai-detector

Figure 6: Methods configurations in YAML format.

example scenario. However, this time we might
not be satisfied with the simple automatic analysis
provided to us by the framework and we might want
to do a more complex and custom-made analysis
fitting to the specific needs of our benchmark run.
For a demonstration on this exact issue, see the
provided Jupyter notebook with the full demo.

5 Discussion

The usefulness of the IMGTB framework has been
evaluated in practice by its usage in (Macko et al.,
2024b; Spiegel and Macko, 2024; Macko et al.,
2024a), where it proved to be valuable especially
for its implementation of the statistical detectors.

In comparison to the SOTA MGTD framework
called MGTBench (He et al., 2023), IMGTB en-
ables an objective comparison of statistical zero-
shot detectors (i.e., without classifier training) by
using ROC curve. Further, IMGTB integrates the
newest detectors, such as MFD, Binoculars, or S5.

It directly enables multiple fine-tuning processes
for language models. Most of all, in MGTBench
(He et al., 2023), configurations, datasets and de-
tection methods are often hard coded and cannot
be easily changed or reconfigured, IMGTB sim-
plifies usage of custom datasets and detectors by
supporting plug-in like extension. Faster evaluation
is provided by the implemented results analysis and
automated comparison charts generation.

To fine-tune a model for binary classification, a
more generic SOTA framework, such as Ludwig
(Molino et al., 2019), could be used. However,
such a framework would not be usable to com-
pare the fine-tuned detectors to statistical detection
methods or online services. Therefore, a special-
ized MGTD framework, such as MGTBench or
IMGTB is needed for such a comparison. IMGTB
enables such a fine-tuning process by itself and
also includes a unique multilingual MGTD spe-
cific version of per-language fine-tuning, not avail-
able in other frameworks. Similarly, the Evaluate
framework7 could be directly used to compare pre-
trained classification models. However, to com-
pare also to statistical and other custom detection
methods, a significant effort would be required to
implement the custom pipelines, loosing flexibility,
configurability (especially concerning the detectors
training), and tailor-made analysis and visualiza-
tion tools in comparison to the proposed IMGTB.

5.1 Extensions & Enhancements Possibilities
There are various limitations and many possible
extensions of the current version of the framework
which can be targeted to increase its usability even
more. Multiple MGTD methods with vastly dif-
ferent evaluation pipelines are not yet compatible
with the framework such as Grover by Zellers et al.,
2019, FAST by Zhong et al., 2020 or many zero-
shot online services (usually paid), available by a
custom API (application programming interface),
of which only GPTZero8 is currently supported by
the framework. We are continuously working on
extension for these additional features.

To speed up the experiments, bitsandbytes li-
brary has already been utilized for quantized infer-
ence and fine-tuning of LLMs for some methods.
This can be further extended to be used also for met-
ric computation in metric-based methods. Further
speed-ups can be achieved by eliminating redun-
dant tasks (e.g., loading of the same base models

7
https://huggingface.co/docs/evaluate/en/index

8
https://gptzero.me/

177

https://huggingface.co/docs/evaluate/en/index
https://gptzero.me/


for multiple methods, calculating the same metrics
or generating the same perturbations for multiple
methods).

There are also possibilities for significant exten-
sion of the framework beyond the current scope.
Similarly to detection methods, authorship obfus-
cation methods (i.e., evading detection) can be inte-
grated into the framework to offer automated eval-
uation of adversarial robustness of the detection
methods in the benchmark. The extension can be
also focused to methods for detection of AI content
in other modalities (or mixed modalities), such as
images, voice or videos, which would make it even
more universal.

6 Conclusion

The machine-generated text detection belongs to
the key challenges connected with the advance-
ments of large language models for prevention of
misuse of high-quality text generation capability.
The proposed IMGTB framework unifies the eval-
uation of the existing detection methods and sim-
plifies comparison of new detection methods to the
state-of-the-art. With a plug-and-play testing abil-
ity of new methods, research hypotheses can be
easily examined. The framework can also be used
for evaluation of state-of-the-art detection methods
on custom data to identify the best performing one
to be further used for some specific application.
Automated results analysis and methods compar-
ison also enables less proficient users to interpret
the results and make a selection.

The framework reduces unnecessarily redundant
work of researchers and enables them to focus their
effort towards development of more effective de-
tection methods. This can eventually accelerate
the research in machine-generated text detection to
catch up with the text generation, currently in the
lead.

Ethical Considerations

We believe that there is only a limited possibility of
misuse of our framework. By easily identifying
the most successful detection methods, the focus
of malicious actors can be moved towards them in
order to find ways to avoid detection. Although
the mentioned risk is serious, the benefits of the
provided framework mentioned in the introduction
surpass such risks. The detection methods are al-
ready available, we just provide means to compare
their performance.

There are additional potential ethical risks asso-
ciated with the MGTD in general, such as difficulty
to differentiate between malicious and legitimate
use of machine-generated texts, potential harm
caused by false positives or over-reliance on the re-
sults of an automated detection methods. However,
these pertain more to the deployment of an MGTD
service rather than to the benchmarking framework,
and are therefore deemed out of scope of this work.

Acknowledgements

This work was partially supported by the VIGI-
LANT - Vital IntelliGence to Investigate ILlegAl
DisiNformaTion, a project funded by the Euro-
pean Union under the Horizon Europe, GA No.
101073921, and by vera.ai - VERification Assisted
by Artificial Intelligence, a project funded by Eu-
ropean Union under the Horizon Europe, GA No.
101070093.

References
Guangsheng Bao, Yanbin Zhao, Zhiyang Teng, Linyi

Yang, and Yue Zhang. 2023. Fast-DetectGPT: Effi-
cient zero-shot detection of machine-generated text
via conditional probability curvature. arXiv preprint
arXiv:2310.05130.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2023. QLoRA: Efficient finetun-
ing of quantized llms. arXiv:2305.14314.

Sebastian Gehrmann, Hendrik Strobelt, and Alexan-
der M. Rush. 2019. GLTR: Statistical detection and
visualization of generated text. arXiv:1906.04043.

Abhimanyu Hans, Avi Schwarzschild, Valeriia
Cherepanova, Hamid Kazemi, Aniruddha Saha,
Micah Goldblum, Jonas Geiping, and Tom Gold-
stein. 2024. Spotting LLMs with Binoculars:
Zero-shot detection of machine-generated text.
arXiv:2401.12070.

Xinlei He, Xinyue Shen, Zeyuan Chen, Michael Backes,
and Yang Zhang. 2023. MGTBench: Benchmarking
machine-generated text detection. arXiv preprint
arXiv:2303.14822.

Jean Kaddour, Joshua Harris, Maximilian Mozes, Her-
bie Bradley, Roberta Raileanu, and Robert McHardy.
2023. Challenges and applications of large language
models. arXiv preprint arXiv:2307.10169.

Thomas Lavergne, Tanguy Urvoy, and François Yvon.
2008. Detecting fake content with relative entropy
scoring. In Proceedings of the 2008 International
Conference on Uncovering Plagiarism, Authorship
and Social Software Misuse - Volume 377, PAN’08,
page 27–31, Aachen, DEU. CEUR-WS.org.

178

https://doi.org/10.3030/101073921
https://doi.org/10.3030/101070093
https://arxiv.org/abs/2310.05130
https://arxiv.org/abs/2310.05130
https://arxiv.org/abs/2310.05130
http://arxiv.org/abs/2305.14314
http://arxiv.org/abs/2305.14314
http://arxiv.org/abs/1906.04043
http://arxiv.org/abs/1906.04043
http://arxiv.org/abs/2401.12070
http://arxiv.org/abs/2401.12070
http://arxiv.org/abs/2303.14822
http://arxiv.org/abs/2303.14822
http://arxiv.org/abs/2307.10169
http://arxiv.org/abs/2307.10169


Yafu Li, Qintong Li, Leyang Cui, Wei Bi, Longyue
Wang, Linyi Yang, Shuming Shi, and Yue Zhang.
2023. Deepfake text detection in the wild. arXiv
preprint arXiv:2305.13242.

Dominik Macko, Jakub Kopal, Robert Moro, and Ivan
Srba. 2024a. MultiSocial: Multilingual benchmark
of machine-generated text detection of social-media
texts. arXiv:2406.12549.

Dominik Macko, Robert Moro, Adaku Uchendu, Ja-
son Lucas, Michiharu Yamashita, Matúš Pikuliak,
Ivan Srba, Thai Le, Dongwon Lee, Jakub Simko, and
Maria Bielikova. 2023. MULTITuDE: Large-scale
multilingual machine-generated text detection bench-
mark. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing,
pages 9960–9987, Singapore. Association for Com-
putational Linguistics.

Dominik Macko, Robert Moro, Adaku Uchendu, Ivan
Srba, Jason Samuel Lucas, Michiharu Yamashita,
Nafis Irtiza Tripto, Dongwon Lee, Jakub Simko,
and Maria Bielikova. 2024b. Authorship obfusca-
tion in multilingual machine-generated text detection.
arXiv:2401.07867.

Eric Mitchell, Yoonho Lee, Alexander Khazatsky,
Christopher D. Manning, and Chelsea Finn. 2023.
DetectGPT: Zero-shot machine-generated text de-
tection using probability curvature. arXiv preprint
arXiv:2301.11305.

Piero Molino, Yaroslav Dudin, and Sai Sumanth
Miryala. 2019. Ludwig: a type-based declarative
deep learning toolbox. arXiv:1909.07930.

Vinu Sankar Sadasivan, Aounon Kumar, Sriram Bala-
subramanian, Wenxiao Wang, and Soheil Feizi. 2023.
Can AI-generated text be reliably detected? arXiv
preprint arXiv:2303.11156.

Irene Solaiman, Miles Brundage, Jack Clark, Amanda
Askell, Ariel Herbert-Voss, Jeff Wu, Alec Rad-
ford, Gretchen Krueger, Jong Wook Kim, Sarah
Kreps, et al. 2019. Release strategies and the so-
cial impacts of language models. arXiv preprint
arXiv:1908.09203.

Michal Spiegel and Dominik Macko. 2024. KInIT
at SemEval-2024 task 8: Fine-tuned LLMs
for multilingual machine-generated text detection.
arXiv:2402.13671.

Jinyan Su, Terry Yue Zhuo, Di Wang, and Preslav Nakov.
2023. DetectLLM: Leveraging log rank information
for zero-shot detection of machine-generated text.
arXiv preprint arXiv:2306.05540.

Adaku Uchendu, Zeyu Ma, Thai Le, Rui Zhang, and
Dongwon Lee. 2021. TURINGBENCH: A bench-
mark environment for Turing test in the age of neu-
ral text generation. In Findings of the Association
for Computational Linguistics: EMNLP 2021, pages
2001–2016, Punta Cana, Dominican Republic. Asso-
ciation for Computational Linguistics.

Ivan Vykopal, Matúš Pikuliak, Ivan Srba, Robert Moro,
Dominik Macko, and Maria Bielikova. 2023. Dis-
information capabilities of large language models.
arXiv preprint arXiv:2311.08838.

Jan Philip Wahle, Terry Ruas, Frederic Kirstein, and
Bela Gipp. 2022. How large language models are
transforming machine-paraphrase plagiarism. In Pro-
ceedings of the 2022 Conference on Empirical Meth-
ods in Natural Language Processing, pages 952–963,
Abu Dhabi, United Arab Emirates. Association for
Computational Linguistics.

Yuxia Wang, Jonibek Mansurov, Petar Ivanov, Jinyan
Su, Artem Shelmanov, Akim Tsvigun, Chenxi
Whitehouse, Osama Mohammed Afzal, Tarek Mah-
moud, Alham Fikri Aji, and Preslav Nakov. 2023.
M4: Multi-generator, multi-domain, and multi-
lingual black-box machine-generated text detection.
arXiv:2305.14902.

Debora Weber-Wulff, Alla Anohina-Naumeca, Sonja
Bjelobaba, Tomáš Foltýnek, Jean Guerrero-Dib, Olu-
mide Popoola, Petr Šigut, and Lorna Waddington.
2023. Testing of detection tools for ai-generated
text. International Journal for Educational Integrity,
19(1).

Laura Weidinger, John Mellor, Maribeth Rauh, Conor
Griffin, Jonathan Uesato, Po-Sen Huang, Myra
Cheng, Mia Glaese, Borja Balle, Atoosa Kasirzadeh,
Zac Kenton, Sasha Brown, Will Hawkins, Tom
Stepleton, Courtney Biles, Abeba Birhane, Julia
Haas, Laura Rimell, Lisa Anne Hendricks, William
Isaac, Sean Legassick, Geoffrey Irving, and Iason
Gabriel. 2021. Ethical and social risks of harm from
language models. arXiv preprint arXiv:2112.04359.

Zhendong Wu and Hui Xiang. 2023. MFD: Multi-
feature detection of LLM-generated text.

Rowan Zellers, Ari Holtzman, Hannah Rashkin,
Yonatan Bisk, Ali Farhadi, Franziska Roesner, and
Yejin Choi. 2019. Defending against neural fake
news. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Ad-
vances in Neural Information Processing Systems 32,
pages 9054–9065. Curran Associates, Inc.

Wanjun Zhong, Duyu Tang, Zenan Xu, Ruize Wang,
Nan Duan, Ming Zhou, Jiahai Wang, and Jian Yin.
2020. Neural deepfake detection with factual struc-
ture of text. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 2461–2470, Online. Association
for Computational Linguistics.

179

http://arxiv.org/abs/2305.13242
http://arxiv.org/abs/2406.12549
http://arxiv.org/abs/2406.12549
http://arxiv.org/abs/2406.12549
https://doi.org/10.18653/v1/2023.emnlp-main.616
https://doi.org/10.18653/v1/2023.emnlp-main.616
https://doi.org/10.18653/v1/2023.emnlp-main.616
http://arxiv.org/abs/2401.07867
http://arxiv.org/abs/2401.07867
https://arxiv.org/abs/2301.11305
https://arxiv.org/abs/2301.11305
http://arxiv.org/abs/arXiv:1909.07930
http://arxiv.org/abs/arXiv:1909.07930
http://arxiv.org/abs/2303.11156
http://arxiv.org/abs/2402.13671
http://arxiv.org/abs/2402.13671
http://arxiv.org/abs/2402.13671
http://arxiv.org/abs/2306.05540
http://arxiv.org/abs/2306.05540
https://doi.org/10.18653/v1/2021.findings-emnlp.172
https://doi.org/10.18653/v1/2021.findings-emnlp.172
https://doi.org/10.18653/v1/2021.findings-emnlp.172
http://arxiv.org/abs/2311.08838
http://arxiv.org/abs/2311.08838
https://doi.org/10.18653/v1/2022.emnlp-main.62
https://doi.org/10.18653/v1/2022.emnlp-main.62
http://arxiv.org/abs/2305.14902
http://arxiv.org/abs/2305.14902
https://doi.org/10.1007/s40979-023-00146-z
https://doi.org/10.1007/s40979-023-00146-z
http://arxiv.org/abs/2112.04359
http://arxiv.org/abs/2112.04359
https://doi.org/10.21203/rs.3.rs-3226684/v1
https://doi.org/10.21203/rs.3.rs-3226684/v1
http://papers.nips.cc/paper/9106-defending-against-neural-fake-news.pdf
http://papers.nips.cc/paper/9106-defending-against-neural-fake-news.pdf
https://doi.org/10.18653/v1/2020.emnlp-main.193
https://doi.org/10.18653/v1/2020.emnlp-main.193

