
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations), pages 232–246
August 11-16, 2024 ©2024 Association for Computational Linguistics

DocPilot: Copilot for Automating PDF Edit Workflows in Documents

Puneet Mathur, Alexa Siu, Varun Manjunatha, Tong Sun
Adobe Research

{puneetm, asiu, manjunatha, tsun}@adobe.com
Demo Video: https://github.com/docpilot-ai/demo

Abstract

Digital documents, such as PDFs, are vital in
business workflows, enabling communication,
documentation, and collaboration. Handling
PDFs can involve navigating complex work-
flows and numerous tools (e.g., comprehension,
annotation, editing), which can be tedious and
time-consuming for users. We introduce DocPi-
lot, an AI-assisted document workflow Copilot
system capable of understanding user intent
and executing tasks accordingly to help users
streamline their workflows. DocPilot under-
takes intelligent orchestration of various tools
through LLM prompting in four steps: (1) Task
plan generation, (2) Task plan verification and
self-correction, (3) Multi-turn User Feedback,
and (4) Task Plan Execution via Code Gener-
ation and Error log-based Code Self-Revision.
Our goal is to enhance user efficiency and pro-
ductivity by simplifying and automating their
document workflows with task delegation to
DocPilot.

1 Introduction

Digital documents, particularly PDFs, play a cru-
cial role in business workflows, facilitating commu-
nication, documentation, and collaboration. Han-
dling PDF documents involves a wide array of
functionalities. These include tasks such as un-
derstanding content, annotating, editing content
(e.g., comments, redaction, highlights), organizing
pages (e.g., crop, rotate, extract), adding signatures
or watermarks, and form-filling.

Several document processing applications pro-
vide standalone tools and APIs to help users com-
plete these tasks. However, accomplishing com-
plex workflows involving numerous tools can be
tedious and time-consuming. Additionally, unfa-
miliar users may face challenges in understanding
and navigating the various tools available. Hence,
there is a need for an AI-assisted copilot system
that can comprehend the user’s intent, clarify un-

User Request Task Plan

Code Solution

File Output

DocPilot

Initial PDF File

1.Task Planning 2.Plan Verification

3.Code Generation4.Task Execution

Tool Documentation
Few shot Prompting

Retrieval-based
Tool Selection

Syntax Hallucination
Argument Validity
Tool Hallucination

Dependency Checks

Guardrails

Error-log Code
Self Revision

API Encapsulation
Few-shot Prompting

Code Compiler

Response
Generation

Tool Name
Input Args

Output

Figure 1: DocPilot is an LLM-assisted document workflow
Copilot system capable of understanding user intent and exe-
cuting PDF actions to help users achieve their editing needs.

specified details to eliminate ambiguity in require-
ments, and incorporate user feedback by interact-
ing with the user . Further, it is desired that such
a system should be able to sample from a large
diversity of tools and resolve interdependencies be-
tween selected sub-tasks to generate coherent task
plans. The copilot must then produce executable
programs consistent with the initial intent while
being extensible to accommodate the addition of
new tools in the future (Kudashkina et al., 2020).

To address these issues, we present DocPilot
(Fig. 1), an LLM-based framework for automating
editing workflows in PDF documents. Inspired by
recent work like HuggingGPT, (Shen et al., 2024)
and ControlLM (Liu et al., 2023), DocPilot takes
the user’s requests along with the PDF documents
as inputs and leverages LLMs to infer the user’s
intent and transforms it into a task plan consist-
ing of a sequence of PDF action tools. The task
plan undergoes thorough verification checks to en-
sure accuracy and reliability. Any errors in the
task plan are self-corrected by the LLM, and the
final task plan is then presented to the user in easy-
to-understand language, inviting feedback through
conversation. Once the plan is approved by the
user, DocPilot converts the task plan into a soft-
ware program that can orchestrate external tool

232

https://github.com/docpilot-ai/demo

User Request

Redact
Input Args

Output

Underline
Input Args

Output

Search
Input Args

Output

Count
Input Args

Output

Tool Documentation
TASK PLANNING

Retrieval-augmented Tool Selection

Syntax
Hallucination
Verification

Tool
Hallucination
Verification

Argumant
Validity

Verification

Dependency
Hallucination
Verification

Error Logs Description

TASK PLAN VERIFICATION

Dependency
Consistency
Verification

LLM-
based Self
Correction

MULTI-TURN USER FEEDBACK

Compiler Error Logs

Python Code
Compiler

Error-log
Code Self
Revision

TASK EXECUTION

File
Output

LLM

LLM

Code Solution

CODE GENERATION

Retrieval-augmented
Few Shot Prompting

Task
Plans

Code
SolutionTop-K Pairs

DataStore
<Task Plan ,Code >

API Encapsulation Prompting

Software
Import

Compatibility

Code
Generation

Syntax

File Handling

Guard Rails
def Redact(args)

return
def Search(args)

return
def Redact(args)

return

LLM

Request
Embedding Model

Corpus

Task
Plans

Sample
Requests

< Request , Task Plan >
DataStore

Top-K Pairs

Tool: REDACT
Input: Filename, Text
Output: Filename

Tool: COUNT
Input: Filename
Output: Integer

Tool: SEARCH
Input: Filename, Text
Output: Text

Tool: ADD PAGE
Input: Filename
Output: Filename

Tool:COMPRESS
Input: Filename
Output: NA

Tool: QnA
Input: Filename, Text
Output: Filename

Task Plan

Task Dependencies

Figure 2: DocPilot: (1) Task Plan Generation decomposes user requests into a task plan using Tool Documentation
prompting of Retrieval-augmented selection of PDF tools. (2) Task Plan Verification applies a series of syntax and
dependency checks, and error descriptions are passed as feedback for LLM-based self-correction. (3) Multi-turn
User Feedback allows users to critique the verbose task plan via the chat interface. (4) Task Plan Execution converts
the approved task plan into Python code via API Encapsulation-based few-shot prompting with guardrails. Error
log-based Code Self-Revision repairs code errors; the compiler executes code solution to generate output files.

API calls using LLM’s code generation capabili-
ties. The generated program is simulated using a
code interpreter and detected error logs are passed
as feedback to the LLM for code revision. The re-
sultant error-free code solution executes seamless
cooperation between diverse tools and provides
users with a modified document that meets their
expectations. To assess DocPilot’s performance
in supporting users, we collected user feedback
on diverse workflows completed with the help of
DocPilot. We find that DocPilot is effective in
improving user productivity by automating repeti-
tive tasks and simplifying complex processes.

The main contributions of DocPilot are:

(1) Accessibility: By employing LLMs as task
planners, DocPilot engages users in multi-turn in-
teractions to disambiguate complex requests. This
eliminates the need to master the skillful use of doc-
ument processing software, making it accessible to
a broader audience.

(2) Modularity: DocPilot is designed to be highly
extensible, allowing users to expand its functional-
ity by adding more PDF tools and APIs. To achieve
this, we introduce Tool Documentation-based
prompting for generating task plans grounded in
real-world tool usage, Retrieval-Augmented Tool

Selection to tailor few-shot tool usage examples
suitable for input queries, and API Encapsulation
prompting for generating modularized code.
(3) Reliability: DocPilot promotes reliable work-
flow automation by mitigating task hallucinations,
handling complex interdependencies between sub-
tasks via dependency verification, and iterative self-
correction to generate an executable program.

2 Related Work

Recent research informs us how LLMs can act as
autonomous agents for task automation in various
application domains (Xi et al., 2023; Wang et al.,
2023a). AI-powered LLM Agents: Frameworks
like AgentGPT and HuggingGPT (Shen et al.,
2024) leverage LLMs as a controller to analyze
user requests and invoke relevant tools for solving
the task. AudioGPT (Huang et al., 2023) solves nu-
merous audio understanding and generation tasks
by connecting LLMs with input/output interface
(ASR, TTS) for speech conversations. TPU (Ruan
et al., 2023) proposes a structured framework tai-
lored for LLM-based AI Agents for task planning
and execution. (Zhu et al., 2023) introduced the
Ghost in Minecraft (GITM), a framework of Gener-
ally Capable Agents (GCAs) that can skillfully nav-

233

igate complex, sparse-reward environments with
text-based interactions and develop a set of struc-
tured actions executed via LLMs. AssistGPT (Gao
et al., 2023) proposed an interleaved code and lan-
guage reasoning approach called Plan, Execute, In-
spect, and Learn (PEIL) for processing complex im-
ages and long-form videos. RecMind (Wang et al.,
2023b) designed an LLM-powered autonomous
recommender agent capable of leveraging external
knowledge and utilizing tools with careful plan-
ning to provide zero-shot personalized recommen-
dations. Frameworks like AutoDroid (Wen et al.,
2023) and AppAgent (Zhang et al., 2023a) pre-
sented smartphone task automation systems that
can automate arbitrary tasks on any mobile appli-
cation by mimicking human-like interactions such
as tapping and swiping leveraged through LLMs
like GPT-3.5/GPT-4. AdaPlanner (Sun et al., 2024)
allows LLM agents to refine their self-generated
plan adaptively in response to environmental feed-
back using few-shot demonstrations. (Chen et al.,
2023) proposed a tool-augmented chain-of-thought
reasoning framework that allows chat-based LLMs
(e.g., ChatGPT) to indulge in multi-turn conver-
sations to utilize tools in a more natural conver-
sational manner. CREATOR (Qian et al., 2023)
built a novel framework that enables LLMs to cre-
ate their own tools using documentation and code
realization. ControlLLM (Liu et al., 2023) pro-
posed a Thoughts-on-Graph (ToG) paradigm that
searches the optimal solution path on a pre-built
tool graph to resolve parameter and dependency
relations among different tools for image, audio,
and video processing. LUMOS (Yin et al., 2023)
trained open-source LLMs with unified data to
represent complex interactive tasks. DataCopilot
(Zhang et al., 2023b) built an LLM-based system
to autonomously transform raw data into visual-
ization results that best match the user’s intent by
designing versatile interfaces for data management,
processing, and visualization. (Song et al., 2023)
connects LLMs with REST software architectural
style (RESTful) APIs, conducts coarse-to-fine on-
line planning, and executes the APIs by meticu-
lously formulating API parameters and parsing re-
sponses. Gorilla (Patil et al., 2023) explores the use
of self-instruct fine-tuning and retrieval to enable
LLMs to accurately select from a large, overlap-
ping, and changing set of APIs. LLM-Grounder
(Yang et al., 2023) created a novel open-vocabulary
LLM-based 3D visual grounding pipeline to de-
compose complex natural language queries into

semantic constituents for spatial object identifica-
tion in 3D scenes. (Qiao et al., 2024) put forth
the AUTOACT framework that automatically syn-
thesizes planning trajectories from experience to
alleviate the reliance of copilot systems on large-
scale annotated data. Toolken (Hao et al., 2024)
addresses the inherent problems of context length
constraints and adaptability to a new set of tools by
proposing LLM tool embeddings. Recent work has
shown that descriptive tool documentation can be
more beneficial than simple few-shot demonstra-
tions for tool-augmented LLM automation (Hsieh
et al., 2023).

3 DocPilot

Fig. 2 shows DocPilot, a chat-based AI assistant
framework that uses LLM as a controller to trans-
late a user’s PDF editing request into an actionable
task plan and orchestrates numerous software tools
to realize the document editing tasks into modi-
fied PDF outputs. DocPilot undertakes intelligent
orchestration of various LLM capabilities into an
executable workflow, which includes four steps: (1)
Task plan generation, (2) Task plan verification and
self-correction, (3) Multi-turn User Feedback, and
(4) Task Plan Execution via Code Generation and
Error log-based Code Self-Revision.

3.1 Task Plan Generation

User requests involve several intricate intentions
that need to be decomposed into a sequence of sub-
tasks to be solved to achieve the final output. The
task planning stage utilizes an LLM to analyze the
user request and determine the execution orders
of the PDF Tool API calls based on their resource
dependencies. We represent the LLM-generated
task plan in the JSON format to parse the sub-tasks
through slot filing. Each sub-task is composed of
five slots - "task", "id", "dep", "args", and "return"
to represent the PDF tool function name, unique
identifier, dependencies, arguments, and returned
values, respectively. To better understand the inten-
tion and criteria for task planning, we utilize Tool
Documentation-based prompting. The task plan-
ning prompt contains documentation of the PDF
tool APIs (see Table 1 for the API list), briefly men-
tioning each function’s utilities, arguments, and
return values. Without explicitly exposing the API
implementation, this novel prompting technique
ensures that our methodology embraces API-level
abstraction and encapsulation by restricting access

234

to proprietary data and internal functions for en-
hanced user privacy to black-box LLM models.

Retrieval-Augmented Tool Selection: The task
planning stage may involve a large number of tools.
Many of these tools might not be relevant to the
user request, and including all in the LLM prompt
may lead to reduced context length for subsequent
chat prompting. Hence, based on the incoming user
request, we utilized a retrieval-augmented selection
approach to only include the most relevant few-shot
examples in the task plan prompt.

Let q denote the user request and Z =
{(1, y1), (2, y2), · · · , (n, yn)} represents
the set of few-shot examples curated for the task
plan prompt. Each example consists of a sample
request () paired with the corresponding ground
truth task plan (y). We use a text embedding
model E to encode the sample user requests from
the few-shot examples into vector representations
- {E(), E(2), · · · , E(n)}, respectively. We
construct a datastore of few-shot examples with
keys as vectorized sample requests and values as
ground truth task plans. We encode the incom-
ing user request via embedding model as E(q)
at inference. Next, we use the k-nearest neigh-
bor technique with the Euclidean distance metric
to query top-k sample requests from the datastore
which are semantically most similar to the encoded
user query. The selected pairs of user requests and
their task plans, similar to the example shown in
Fig. ??, are utilized in prompting the LLM model
to generate the task plan for the current user query.

3.2 Task Plan Verification and Self-Correction

LLM-generated task plans involve a risk of hal-
lucinations when selecting unspecified functions,
connecting dependency connections, or invalid ar-
gument parsing, which may lead to undesired out-
puts. We introduce two novel modules to ensure
robustness in the generated task plans against log-
ical inconsistencies: "Task Plan Verification" and
"LLM-based Self-Correction".

First, the "Task Plan Verification" consists of
three static composition verification and two inter-
task dependency verification checks on the gener-
ated task plan JSON (Appendix Figure 6 shows an
illustrative example). Static composition verifica-
tion checks the individual constituents of the task
plan for hallucinations on syntax, tool name and
API calls, and function arguments (Appendix A.4).
Second, the inter-task dependency verification

checks the validity of dependency relations be-
tween various function calls in the task plan as:
(1) Dependency hallucination verification – Each
function call depends on arguments provided by
the user request or outputs of preceding functions
in the task plan. We add checks to ensure the LLM
does not hallucinate dependencies referencing non-
existent or future function calls in the task plan.
(2) Dependency consistency verification: Each
function call in the task plan sequence may de-
pend on one or more prior function calls. These
functional dependencies need not be linear and
can be better represented as a graph of connected
components (also known as a dependency graph).
A function call may often try to access resources
from another function call. However, in some cases,
these interdependencies may be cyclic or unreach-
able. Hence, subsequent function calls can not
proceed ahead without resolving the prior. This
may give rise to deadlock conditions during the
task execution. To avoid deadlocks and resource
conflicts, it is important to ensure that there are
no cyclic dependencies between the intermediate
function calls. To solve this problem, we create a
dependency graph G from the task plan T where
all function calls denote the set of nodes V, and
their interdependencies represent the set of edges
E of the graph. To check for the presence of cyclic
dependencies in a graph, it should be sufficient to
check if the dependency graph is a directed acyclic
graph (DAG). We utilize Kahn’s algorithm (Kahn,
1962) to evaluate this condition, which involves
performing a topological sort of the dependency
graph followed by a depth-first traversal to evaluate
if all nodes have been visited exactly once without
repetition. Violation of this condition indicates a
lack of DAG property. The dependency error is
then attributed to the API function corresponding
to the failure node in the graph.
LLM-based Self-Correction: The verification
module generates error log descriptions based on
the nature of the fault and the responsible API func-
tions. The error logs and original task plan se-
quence are passed as feedback to the LLM model
as a chat completion prompt to rework the solution.
This process recursively improves the task plan
solution until no further errors are encountered.

3.3 Multi-turn User Feedback
User consent is a prerequisite for executing actions
that could potentially alter a user’s proprietary PDF
files. Adhering to this principle, the meticulously

235

verified error-free task plan is transformed into
a clear and comprehensible layman explanation
through LLM prompting. This elucidation is then
presented to the user through the chat interface.
Subsequently, the user can engage in a multi-turn
chat conversation with the LLM to challenge the
proposed task plan and provide additional feedback.
The user’s input is integrated to iteratively refine
the task plan by recursively following the task plan-
ning and verification stages. This iterative process
of modifying the task plan through multi-turn chat
conversations continues until the user is content
with the solution or decides to abort the request.

3.4 Task Plan Execution
The task plan obtained in the last step lists tool
APIs with corresponding arguments and return
values. However, the sequence of function calls
that need to be executed is not linear due to inter-
dependencies between the API calls. Hence, there
is a need to convert the task plan into a software pro-
gram with a logical flow of information. We intro-
duce the Task Plan Program Execution step, where
the LLM converts the task plan into a software
program that can be executed to give the desired
output PDF file to the user. This stage is divided
into two modules - "Task Plan Code Generation"
and "Error log-based Code Self-Revision".
Task Code Generation: We utilize the LLM code
generation abilities to transform the task plan se-
quence into executable Python code. However, un-
restricted LLM-generated code may hallucinate
functions that do not exist, use incompatible li-
braries, be unable to navigate file handling at the
user’s end or perform flawed executions that may
harm user data, leading to deteriorated user trust.

To safeguard against such detrimental cases, we
incorporate a novel API Encapsulation-based few-
shot prompting with strong guardrails. The prompt
consists of the code documentation of PDFTools()
class, which encapsulates publicly accessible tool
API function methods and exposes limited informa-
tion regarding the function name, input arguments,
and returned values. The LLM can utilize this ab-
stracted view of tool APIs for program synthesis
without knowing or modifying their internal code
implementation. In this manner, we alleviate the
problem of function hallucinations while ensuring
that only well-trusted and rigorously tested API
functions are used for user data modifications. Ad-
ditionally, we augment the prompt with a few shot
examples of task plans (y) retrieved during the

task plan generation step, paired with their corre-
sponding ground truth Python code solutions (c)
to guide the code generation process to remain
faithful to task plan logic. Further, we designed
stringent guard rails to safeguard program execu-
tion by ensuring consistency in code generation
syntax, avoiding lazy code generation phenomenon
of LLMs, machine compatibility of software im-
ports, safe-listing of approved Python packages,
secure access of file addresses, and cautious file
handling. More details in Appendix Sec. A.5.
Error log-based Code Self-Revision: Despite
carefully crafted prompts and strong guard rails,
the generated program solution may give errors
upon code execution. To screen for errors in ad-
vance and recover from a failed execution state, we
propose Error log-based Self-Revision prompting.
In particular, we build a Python code interpreter to
simulate code execution in a sandboxed environ-
ment to mimic the actual PDF file editing. Compila-
tion errors from the code interpreter are captured as
error logs and combined with the original code so-
lution to be passed as feedback to the LLM model
to rework the code solution. The code interpreter
again tests the reworked code solution to check for
errors, and the process continues recursively until
the code solution is improved and no further errors
are encountered. Fig. 7 in the Appendix shows an
example code solution. Finally, we execute the re-
sultant error-free code solution to produce the PDF
document modifications requested by the user.

4 Implementation Details

Backbone LLM: We use GPT-4 API through the
Microsoft Azure platform for all our experiments.
We also tried GPT-3.5 model but it performed con-
sistently worse than GPT-4 owing to its limited
context length and weak code generation abilities.
RAG architecture: We utilized FAISS to construct
the data stores for the Retrieval-augmented tool se-
lection module. We used SentenceBert (Reimers
and Gurevych, 2019) as the embedding model.
We used Scikit Learn’s KNN library to get top-
k request-task plan pairs. We used Gradio for the
demo UI hosted on the AWS cloud platform.

5 User Evaluation

We conducted a user evaluation to assess the effi-
cacy of DocPilot in supporting users’ PDF work-
flows. The research goals were as follows:

236

Figure 3: a) Self-reported user satisfaction scores from using DocPilot to complete 80 workflow requests. b)
Simple requests (<=5 actions) had higher satisfaction scores compared to c) complex requests (>5 actions).

Figure 4: (a) Frequency of different actions referenced
in task plans; (b) Distribution of actions executed per
request during user evaluation.

R1 Measure DocPilot’s performance in suggest-
ing a reasonable plan in response to a user-
provided multi-step workflow. Relatedly, we
wanted to understand how well our system
handled ambiguity in user requests.

R2 Understand when/how breakdowns happen
and whether users are able to refine their plan
through conversation with DocPilot.

Our data collection focused on a case study with
one expert PDF user who works on PDF processing
tasks daily as part of his professional work. Our
evaluator was hired through UpWork with exper-
tise in PDF workflows. The evaluator interacted
with the DocPilot app (Fig. 5) to complete several
workflows and provided feedback through a survey
form (Methodology details in Appendix A.7.1).

5.1 Results
5.1.1 User Workflow Requests
We collected data from 80 workflow requests. 16
workflows were user-provided based on the users’
real-world PDF workflows, and 64 were workflows
suggested to the user. We provided the suggested
workflows to ensure that the workflows evaluated
included a variety of the types of actions used and
the number of actions requested. Appendix A.7.3
has examples of user-provided and suggested work-
flows. Fig. 4a shows the frequency of different
actions referenced as part of the user’s requests.
The most common actions included duplicating a
file (77), renaming a file (74), searching content
(65), redacting content (30), and counting pages
(20). Fig. 4b shows the distribution of actions exe-
cuted per request with a median of 5 (IQR 4 − 7).

5.1.2 Self-Reported Satisfaction Ratings
To understand DocPilot’s performance in suggest-
ing a satisfactory plan in response to a user’s re-
quest (R1), we collected self-reported measures of
user satisfaction after each step of the DocPilot
pipeline (Fig. 1). Fig. 3a shows user satisfaction ag-
gregated over all 80 workflow requests. DocPilot
performs extremely well in suggesting a reason-
able initial plan, with 88.75% (71/80) receiv-
ing positive ratings of Extremely satisfied and the
majority of requests not requiring plan revisions
from the user. The main concern of dissatisfaction
with DocPilot was related to the task execution
step, which received the Extremely satisfied ratings
only in 36.25% (29/80) of requests, similarly
reflected in the Overall satisfaction ratings.

To understand whether workflow complexity im-
pacts the system’s efficacy in planning, we further
analyze satisfaction ratings by complexity. Fig. 3(b-
c) show satisfaction ratings for simple (n=45) and
complex (n=33) requests. We consider simple re-
quests as those requiring 5 actions or less to be

237

executed to fulfill the users’ request. We observe
that the positive satisfaction ratings (Extremely sat-
isfied + Somewhat satisfied) are higher for simple
requests (25/45, or 55.55%) compared to those
on complex requests (11/33, or 33.33%). Sim-
ple requests also resulted in much higher satisfac-
tion with task execution (27/45, or 60%) com-
pared to complex requests (10/33, or 30.3%).

5.1.3 Qualitative Feedback
To further understand breakdowns in DocPilot
from the users’ perspective (R2), we conducted a
thematic analysis of users’ requests that resulted in
failure as well as open-ended user feedback. For
the Task Planning step, the user majorly provided
positive comments, "The plan is concise, to the
point, and explained well. I like that the assistant
understands the request completely".

However, we also report a small number of neg-
ative comments that were primarily centered on
the Task Execution step, where DocPilot either
missed a step or detail in the resulting files. The
user had certain expectations of the results based
on the plan suggested by DocPilot, which were
unmet. We observed instances where DocPilot
executed the action incorrectly, "Instead of delet-
ing pages 1, 2, and 5, the assistant deleted pages
1 to 4". Users also reported a few cases where
DocPilot simply missed an action, "...the assis-
tant successfully converted pages but was unable
to add digital signatures.". We also noticed some
cases where DocPilot did not understand the mul-
timodal content in the document properly, which in
turn affected performance for actions that required
searching for content in the document. For exam-
ple, "My request is to redact the numerical values
in the ’Annual Energy Use’ and ’Water’ columns
of the table. However, the assistant does not under-
stand and redacts incorrect words." Lastly, we also
recorded a handful of cases where the user had high
expectations that were beyond the DocPilot’s cur-
rent tooling capabilities (e.g., replacing text and im-
ages). In the future, we aim to handle such discrep-
ancies by improving prompt engineering, extend-
ing the PDF tool APIs available to DocPilot, and
integrating Large Multimodal Models such as GPT-
4V for multimodal document search/QA tasks.

5.1.4 LLM Iterations & Self-Correction
To quantify breakdowns due to program execution
(R2), we analyzed the code interpreter error logs
for output code. A small number of workflow re-

quests (8/80) required more than one LLM self-
correction step (Sec. 3.2) to reach a desirable action
plan. In contrast, the majority of requests (69/80)
required at least one LLM self-correction (Sec. 3.4)
to produce an executable program that passed all
checks. More details in Appendix Table 2.

6 Discussion, Limitations & Future Work

Our evaluation results show that DocPilot’s Task
Planning step is effective for most workflows as
the proposed task plan captures the user’s intent
well and requires few clarifications by the user.
Only 10% of the evaluated workflows required
more than one LLM iteration to self-correct the
generated task plans. The majority of breakdowns
we observed occurred due to a mismatch in the
user’s expectations between the plan suggested by
DocPilot and how it was executed. Our current
interface with DocPilot primarily uses a conver-
sational UI. Leveraging interactions from graphi-
cal UIs can help lessen this gap by providing the
user affordances for direct manipulation in content
selection when executing a workflow (Ma et al.,
2023). Additionally, DocPilot may allow users
to edit action parameters (e.g., page number, pass-
word) directly rather than requiring the user to type
a new request. Both of these future works could
increase user control and understanding of the sys-
tem plan (Amershi et al., 2019). Quantitatively, we
observe that most workflows (69/80) required at
least one LLM-based code revision to produce an
error-free program, thus introducing latency and
impacting the utility of the tool. Self-reported rat-
ings indicate more failures in the task execution
step for complex workflows. Hence, our future
work will focus on instruction-tuning LLMs on
pairs of ground truth task plans and Python code.

7 Conclusion

We present Docpilot, an LLM-powered copilot
for automating document workflows. Our copilot
helps novices plan document workflows by select-
ing the appropriate tools and executing the task
plan autonomously. DocPilot benefits the users
by enhancing their accessibility, being extensible to
include more tools, and being consistently reliable.

8 Ethics Statement

Our experiments used publicly available API-
accessible LLM - GPT-3.5 and GPT-4 (March 2024

238

version). For our user evaluation, participants’ per-
sonal information is maintained confidential and
private. Participants were trained and informed
about the task before participating. Participants
were also compensated fairly, with each annotator
paid equal to or more than 15 USD/hr.

References
Saleema Amershi, Dan Weld, Mihaela Vorvoreanu,

Adam Fourney, Besmira Nushi, Penny Collisson,
Jina Suh, Shamsi Iqbal, Paul Bennett, Kori Inkpen,
Jaime Teevan, Ruth Kikin-Gil, and Eric Horvitz.
2019. Guidelines for human-ai interaction. In CHI
2019. ACM. CHI 2019 Honorable Mention Award.

Kranti Chalamalasetti, Jana Götze, Sherzod Haki-
mov, Brielen Madureira, Philipp Sadler, and David
Schlangen. 2023. clembench: Using game play to
evaluate chat-optimized language models as conver-
sational agents. arXiv preprint arXiv:2305.13455.

Zhipeng Chen, Kun Zhou, Beichen Zhang, Zheng
Gong, Xin Zhao, and Ji-Rong Wen. 2023. Chat-
CoT: Tool-augmented chain-of-thought reasoning on
chat-based large language models. In Findings of the
Association for Computational Linguistics: EMNLP
2023, pages 14777–14790, Singapore. Association
for Computational Linguistics.

Difei Gao, Lei Ji, Luowei Zhou, Kevin Qinghong Lin,
Joya Chen, Zihan Fan, and Mike Zheng Shou. 2023.
Assistgpt: A general multi-modal assistant that can
plan, execute, inspect, and learn. arXiv preprint
arXiv:2306.08640.

Shibo Hao, Tianyang Liu, Zhen Wang, and Zhiting Hu.
2024. Toolkengpt: Augmenting frozen language
models with massive tools via tool embeddings. Ad-
vances in neural information processing systems, 36.

Cheng-Yu Hsieh, Si-An Chen, Chun-Liang Li, Yasuhisa
Fujii, Alexander Ratner, Chen-Yu Lee, Ranjay Kr-
ishna, and Tomas Pfister. 2023. Tool documenta-
tion enables zero-shot tool-usage with large language
models. arXiv preprint arXiv:2308.00675.

Rongjie Huang, Mingze Li, Dongchao Yang, Jia-
tong Shi, Xuankai Chang, Zhenhui Ye, Yuning Wu,
Zhiqing Hong, Jiawei Huang, Jinglin Liu, et al. 2023.
Audiogpt: Understanding and generating speech,
music, sound, and talking head. arXiv preprint
arXiv:2304.12995.

Arthur B Kahn. 1962. Topological sorting of large
networks. Communications of the ACM, 5(11):558–
562.

Katya Kudashkina, Patrick M. Pilarski, and Richard S.
Sutton. 2020. Document-editing assistants and
model-based reinforcement learning as a path to con-
versational ai. ArXiv, abs/2008.12095.

Jiaju Lin, Haoran Zhao, Aochi Zhang, Yiting Wu, Huqi-
uyue Ping, and Qin Chen. 2023. Agentsims: An
open-source sandbox for large language model evalu-
ation.

Zhaoyang Liu, Zeqiang Lai, Zhangwei Gao, Erfei Cui,
Xizhou Zhu, Lewei Lu, Qifeng Chen, Yu Qiao, Jifeng
Dai, and Wenhai Wang. 2023. Controlllm: Augment
language models with tools by searching on graphs.
ArXiv, abs/2310.17796.

Xiao Ma, Swaroop Mishra, Ariel Liu, Sophie Su, Jilin
Chen, Chinmay Kulkarni, Heng-Tze Cheng, Quoc
Le, and Ed Chi. 2023. Beyond chatbots: Explorellm
for structured thoughts and personalized model re-
sponses. arXiv preprint arXiv:2312.00763.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in neural in-
formation processing systems, 35:27730–27744.

Shishir G Patil, Tianjun Zhang, Xin Wang, and
Joseph E Gonzalez. 2023. Gorilla: Large language
model connected with massive apis. arXiv preprint
arXiv:2305.15334.

Cheng Qian, Chi Han, Yi Ren Fung, Yujia Qin, Zhiyuan
Liu, and Heng Ji. 2023. Creator: Tool creation for
disentangling abstract and concrete reasoning of large
language models. In Conference on Empirical Meth-
ods in Natural Language Processing.

Shuofei Qiao, Ningyu Zhang, Runnan Fang, Yujie Luo,
Wangchunshu Zhou, Yuchen Eleanor Jiang, Chengfei
Lv, and Huajun Chen. 2024. Autoact: Automatic
agent learning from scratch via self-planning. ArXiv,
abs/2401.05268.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
In Conference on Empirical Methods in Natural Lan-
guage Processing.

Jingqing Ruan, Yihong Chen, Bin Zhang, Zhiwei Xu,
Tianpeng Bao, Guoqing Du, Shiwei Shi, Hangyu
Mao, Xingyu Zeng, and Rui Zhao. 2023. Tptu: Task
planning and tool usage of large language model-
based ai agents. arXiv preprint arXiv:2308.03427.

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li,
Weiming Lu, and Yueting Zhuang. 2024. Hugging-
gpt: Solving ai tasks with chatgpt and its friends
in hugging face. Advances in Neural Information
Processing Systems, 36.

Yifan Song, Weimin Xiong, Dawei Zhu, Wenhao Wu,
Han Qian, Mingbo Song, Hailiang Huang, Cheng
Li, Ke Wang, Rong Yao, Ye Tian, and Sujian Li.
2023. Restgpt: Connecting large language models
with real-world restful apis.

239

https://www.microsoft.com/en-us/research/publication/guidelines-for-human-ai-interaction/
https://doi.org/10.18653/v1/2023.findings-emnlp.985
https://doi.org/10.18653/v1/2023.findings-emnlp.985
https://doi.org/10.18653/v1/2023.findings-emnlp.985
https://api.semanticscholar.org/CorpusID:221340723
https://api.semanticscholar.org/CorpusID:221340723
https://api.semanticscholar.org/CorpusID:221340723
http://arxiv.org/abs/2308.04026
http://arxiv.org/abs/2308.04026
http://arxiv.org/abs/2308.04026
https://api.semanticscholar.org/CorpusID:264555643
https://api.semanticscholar.org/CorpusID:264555643
https://api.semanticscholar.org/CorpusID:258841653
https://api.semanticscholar.org/CorpusID:258841653
https://api.semanticscholar.org/CorpusID:258841653
https://api.semanticscholar.org/CorpusID:266902590
https://api.semanticscholar.org/CorpusID:266902590
https://api.semanticscholar.org/CorpusID:201646309
https://api.semanticscholar.org/CorpusID:201646309
http://arxiv.org/abs/2306.06624
http://arxiv.org/abs/2306.06624

Haotian Sun, Yuchen Zhuang, Lingkai Kong, Bo Dai,
and Chao Zhang. 2024. Adaplanner: Adaptive plan-
ning from feedback with language models. Advances
in Neural Information Processing Systems, 36.

Lei Wang, Chengbang Ma, Xueyang Feng, Zeyu Zhang,
Hao ran Yang, Jingsen Zhang, Zhi-Yang Chen, Ji-
akai Tang, Xu Chen, Yankai Lin, Wayne Xin Zhao,
Zhewei Wei, and Ji rong Wen. 2023a. A survey
on large language model based autonomous agents.
ArXiv, abs/2308.11432.

Yancheng Wang, Ziyan Jiang, Zheng Chen, Fan Yang,
Yingxue Zhou, Eunah Cho, Xing Fan, Xiaojiang
Huang, Yanbin Lu, and Yingzhen Yang. 2023b. Rec-
mind: Large language model powered agent for rec-
ommendation. arXiv preprint arXiv:2308.14296.

Hao Wen, Yuanchun Li, Guohong Liu, Shanhui Zhao,
Tao Yu, Toby Jia-Jun Li, Shiqi Jiang, Yunhao Liu,
Yaqin Zhang, and Yunxin Liu. 2023. Empowering
llm to use smartphone for intelligent task automation.
arXiv preprint arXiv:2308.15272.

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen
Ding, Boyang Hong, Ming Zhang, Junzhe Wang,
Senjie Jin, Enyu Zhou, Rui Zheng, Xiaoran Fan, Xiao
Wang, Limao Xiong, Qin Liu, Yuhao Zhou, Weiran
Wang, Changhao Jiang, Yicheng Zou, Xiangyang
Liu, Zhangyue Yin, Shihan Dou, Rongxiang Weng,
Wensen Cheng, Qi Zhang, Wenjuan Qin, Yongyan
Zheng, Xipeng Qiu, Xuanjing Huan, and Tao Gui.
2023. The rise and potential of large language model
based agents: A survey. ArXiv, abs/2309.07864.

Binfeng Xu, Xukun Liu, Hua Shen, Zeyu Han, Yuhan
Li, Murong Yue, Zhiyuan Peng, Yuchen Liu, Ziyu
Yao, and Dongkuan Xu. 2023a. Gentopia.AI: A col-
laborative platform for tool-augmented LLMs. In
Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 237–245, Singapore. Associa-
tion for Computational Linguistics.

Qiantong Xu, Fenglu Hong, Bo Li, Changran Hu,
Zhengyu Chen, and Jian Zhang. 2023b. On the
tool manipulation capability of open-source large
language models. arXiv preprint arXiv:2305.16504.

Jianing Yang, Xuweiyi Chen, Shengyi Qian, Nikhil
Madaan, Madhavan Iyengar, David F. Fouhey, and
Joyce Chai. 2023. Llm-grounder: Open-vocabulary
3d visual grounding with large language model as an
agent. ArXiv, abs/2309.12311.

Shunyu Yao, Howard Chen, John Yang, and Karthik
Narasimhan. 2022. Webshop: Towards scalable real-
world web interaction with grounded language agents.
Advances in Neural Information Processing Systems,
35:20744–20757.

Da Yin, Faeze Brahman, Abhilasha Ravichander, Khy-
athi Raghavi Chandu, Kai-Wei Chang, Yejin Choi,
and Bill Yuchen Lin. 2023. Lumos: Learning agents
with unified data, modular design, and open-source
llms. ArXiv, abs/2311.05657.

China. Xiaoyan Zhang, Zhao Yang, Jiaxuan Liu,
Yucheng Han, Xin Chen, Zebiao Huang, Bin Fu, and
Gang Yu. 2023a. Appagent: Multimodal agents as
smartphone users. ArXiv, abs/2312.13771.

Wenqi Zhang, Yongliang Shen, Weiming Lu, and
Yue Ting Zhuang. 2023b. Data-copilot: Bridging
billions of data and humans with autonomous work-
flow. ArXiv, abs/2306.07209.

Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou,
Robert Lo, Abishek Sridhar, Xianyi Cheng, Yonatan
Bisk, Daniel Fried, Uri Alon, et al. 2023. Webarena:
A realistic web environment for building autonomous
agents. arXiv preprint arXiv:2307.13854.

Xizhou Zhu, Yuntao Chen, Hao Tian, Chenxin Tao, Wei-
jie Su, Chenyu Yang, Gao Huang, Bin Li, Lewei Lu,
Xiaogang Wang, et al. 2023. Ghost in the minecraft:
Generally capable agents for open-world enviroments
via large language models with text-based knowledge
and memory. arXiv preprint arXiv:2305.17144.

A Appendix

A.1 DocPilot Demo App
Figure 5 shows the DocPilot demo app. This app
was also used by our evaluator to complete all work-
flow requests. The app was built using Gradio1.
The app requires an OpenAI token to access the
GPT-4 model. The interface includes a PDF upload
panel, a PDF viewer, and a chat panel. Users can
directly upload their input PDF file and type in their
request in the chat panel. The chat panel facilitates
multi-turn chat and shows all the intermediate inter-
actions and results generated by the system. Once
a workflow is executed, the user can download the
resulting files for inspection. The users also has
the ability to reset their chat history to start a new
workflow conversation.

A.2 Implementation Details
Backbone LLM: We use GPT-4 API through the
Microsoft Azure platform for all our experiments.
We also tried GPT-3.5 model but it performed con-
sistently worse that GPT-4 owing to its limited
context length and weak code generation abilities.
RAG architecture: We utilized FAISS to construct
the data stores for the Retrieval-augmented tool se-
lection module. We used SentenceBert (Reimers
and Gurevych, 2019) as the embedding model.
We used Scikit Learn’s KNN library to get top-
k request-task plan pairs. We used Gradio for the
demo UI hosted on the AWS cloud platform.
LLM Agent Evaluations: ToolBench (Xu et al.,
2023b) released a tool manipulation benchmark

1https://www.gradio.app

240

https://api.semanticscholar.org/CorpusID:261064713
https://api.semanticscholar.org/CorpusID:261064713
https://api.semanticscholar.org/CorpusID:261817592
https://api.semanticscholar.org/CorpusID:261817592
https://doi.org/10.18653/v1/2023.emnlp-demo.20
https://doi.org/10.18653/v1/2023.emnlp-demo.20
https://api.semanticscholar.org/CorpusID:262084072
https://api.semanticscholar.org/CorpusID:262084072
https://api.semanticscholar.org/CorpusID:262084072
https://api.semanticscholar.org/CorpusID:265128672
https://api.semanticscholar.org/CorpusID:265128672
https://api.semanticscholar.org/CorpusID:265128672
https://api.semanticscholar.org/CorpusID:266435868
https://api.semanticscholar.org/CorpusID:266435868
https://api.semanticscholar.org/CorpusID:259137864
https://api.semanticscholar.org/CorpusID:259137864
https://api.semanticscholar.org/CorpusID:259137864
https://webarena.dev
https://webarena.dev
https://webarena.dev

Figure 5: UI for DocPilot

consisting of diverse software tools for real-world
tasks to evaluate LLM capabilities for tool manip-
ulation. AgentSim (Lin et al., 2023) created an
interactive infrastructure for researchers to evaluate
the task completion abilities of LLM agents in a
simulated environment. WebArena (Zhou et al.,
2023) introduces a benchmark on interpreting high-
level realistic natural language commands to con-
crete web-based interactions. ClemBench (Chala-
malasetti et al., 2023) provides a systematic evalu-
ation of LLM’s capability to follow game-play in-
structions. (Xu et al., 2023a) created the GentPool
platform that registers and shares user-customized,
composable, and collaborative agents. WebShop
(Yao et al., 2022) is another challenging bench-
mark that tests LLM agent’s capabilities to navi-
gate multiple types of webpages, find, customize,
and purchase a product given text instruction in
an e-commerce website simulation with 1.18 mil-
lion real-world products. This is the first work to
provide a novel benchmark for evaluating LLM
agent workflows in a document editing software
environment.

A.3 DocPilot PDF Tool APIs

Table 1 shows the set of PDF tool APIs and their de-
scriptions available during the task plan generation
in DocPilot.

A.4 Task Plan Verification Module
Figure ?? shows a qualitative example of task veri-
fication checks - Syntax Hallucination, Tool Hallu-
cination, Argument Validity, Dependency Halluci-
nation, and Dependency Consistency.

Static composition verification checks the indi-
vidual constituents of the task plan for hallucina-
tions on syntax, tool name and API calls, and func-
tion arguments:

1. Syntax hallucination verification – Incorrect
JSON formatting of the task plan may cause
downstream JSON parsing errors. This ver-
ification step ensures the task plan returned
is a list of Python maps with key-value pairs
denoting function names, dependencies, input
arguments, and returned values.

2. Tool hallucination verification – Despite
prompting the syntactically correct task plan,
LLMs may hallucinate invalid tool names and
API calls. This step ensures that all PDF tool
APIs are valid and present in the documenta-
tion.

3. Argument validity verification - Each func-
tion in the task plan has a pre-defined number
and type of arguments and return values. Any
hallucinations in this regard may cause errors
during program execution. Hence, we check
for any extra, missing, or incorrect arguments
in each task plan sequence function call.

241

Tool Description
Duplicate Initializes a duplicate of the input file and saves it as "input.pdf"
Rename Renames the input file to the output file name with a default value "output.pdf"
Search Returns a list of text strings matching the matching query found in the input document denoted as filename; Otherwise, returns an empty list.
QnA Answers a question in the form of a text string from the LLM query result.
Count Pages Counts the number of pages in the PDF file and returns it as an integer
Compress Reduce the PDF file size given as the input filename and save the new file as the output filename.
Convert to PPT Convert the input PDF file into a PowerPoint presentation (ppt) file and save the converted file as output filename
Convert to Word Convert the input PDF file into a Word (docx) file and save the converted file as output filename
Convert to PNG Convert the input PDF file into a PNG image file and save the converted file as output filename
Convert to JPEG Convert the input PDF file into a JPEG image file and save the converted file as output filename
Convert to TIFF Convert the input PDF file into a TIFF image file and save the converted file as output filename
Convert to Excel Convert the input PDF file into an Excel (.xlsx) file and save the converted file as output filename
Add Password Add the input passcode text string as password protection to the input PDF file.
Check Password Check if the input PDF file has password protection
Combine Files Combine all files given in the list of input files into a single file and save the output file as output_filename
Redact Pages Redacts all pages of the input PDF file in the range starting from start_page till end_page. Start and end pages are 1-indexed
Redact Text Redacts all mentions of strings in the list denoted by "object_name" from the input PDF file within the range starting from the start page to the end page. Start and end pages are 1-indexed
Highlight Text Highlight all instances in the input PDF file matched by input string
Underline Text Underline all instances in the input PDF file matched by input string
Extract Pages Extracts pages from the input PDF in the range from the start page to the end page. Start and end pages are 1-indexed
Delete Page Deletes page denoted by integer "page_number_to_delete" from the input PDF file; the page number to be deleted is 1-indexed
Delete Page Range Deletes pages from the input PDF in the range from the start page to the end page. Start and end pages are 1-indexed
Add Signature Add an image of the signature on the page denoted by "page_number" in the input PDF file; input page number is 1-indexed
Add Watermark Fix the watermark image on the input PDF file pages in the range from the start page to the end page. Start and end pages are 1-indexed
Add Comment Add input text comment in the input PDF file at the input page number or by default at the last page
Add Page Text Add a new page to the input PDF file at the page number specific by "page number". The new page has the text string "content" added to it. Page numbers are 1-indexed

Table 1: Overview of tasks and associated tools in DocPilot

“{
 "task": " add_speaker_notes ",

 "id": 7, "dep": [5],

 "args": {
"input_file": ”ABD.pdf",
"start_page":“4"

 },
"end_page":“6”},

 "returns": {
”output_file": ”ABD.pdf”,
“speaker_count”: “2”

 },

 “source”: {
“start_page”:“<resource>_5”,
"end_page": “<resource>_6>”

 },

}"

“add_speaker_notes” is not a
valid task in DocPilot

JSON is not properly formatted

”<resource>_6>” does not exist

Return argument “speaker_count”
not valid

Syntax Hallucination
Verification

Argument Validity
Verification

Tool Hallucination
Verification

Dependency Hallucination
Verification

SEARCH

COUNT

REDACT QnA

ADD
Search mentions of "Philly Co."

Count number of pages

Redact mentions of "Philly Co."

Add answer to new page

Q-"Philly is CEO of ____?"

Dependency Consistency
Verification

Figure 6: Task Verification example for syntax hallucinations, tool hallucinations, argument validity, dependency hallucinations,
and dependency consistency.

242

A.5 Guard Rails for Task Plan Code
Generation

1. Code Generation Syntax: Most state-of-the-
art LLM architectures are geared towards a
conversational chat interface trained via hu-
man chat feedback (Ouyang et al., 2022). Con-
sequently, LLMs may occasionally interleave
conversational text with code syntax during
generation. Moreover, some LLMs may even
provide pseudo-code instead of independently
executable Python code. In order to avoid
such pitfalls, we add explicit instructions in
the prompt to force the LLM to follow a pre-
defined Python syntax with all other extrane-
ous text formatted as comments in the code
block. Moreover, it has been recently re-
ported that SOTA LLMs like ChatGPT-3.5
and GPT-4 tend to show signs of "lazy assis-
tance" wherein they refuse to generate fully
executable code, instead explaining how the
user could answer the question. We care-
fully designed the LLM prompt with explicit
instructions to satisfy our need for indepen-
dently executable Python code as the output
of the step.

2. Software Import Compatibility: Allowing
unrestricted permission to import any soft-
ware library or package specified in the LLM-
generated code may potentially harm user pri-
vacy and security. Some of these may not
be compatible with the user hardware, con-
flict with existing software versions, or be no
longer supported by programming languages.
Hence, appropriate guard rails are needed to
regulate what software libraries can be im-
ported during task plan execution. Towards
this, we maintain a software safe-list of ap-
proved Python packages, libraries, and exe-
cutable files in the tool API documentation
that are permitted to be invoked by LLM-
generated code. We add explicit instructions
to the prompts to forbid the LLMs from gen-
erating any overhead software libraries and
packages for code execution. Instead, we pre-
append the safe-listed software imports to the
generated code.

3. File Handling: An essential aspect of copilot-
driven external file modifications is safeguard-
ing data privacy by not exposing the input
file names and types that need to be modi-

fied and the resultant output files generated
by the copilot to the LLM. We achieve this
by strongly type-casting all references to in-
put and output file names and addresses in the
generated code to their actual values at the
code execution step. Further, we impose strict
directory access restrictions on the copilot sys-
tem, preventing accessing, reading, or saving
files without explicit user permissions. The
code execution step involves creating a copy
of all files required as inputs to a temporary
directory and saving all intermediate files and
the final output PDF to avoid overwriting or
modifying non-permitted files.

A.6 Task Plan Code Generation Examples

Figure 7 shows a qualitative example of a code
solution generated by DocPilot corresponding to
the task plan response to the user request - "Hey,
can you please blacken out any sensitive client
names from my ’VoltGaurd Electric.pdf’ file and
convert it into a PowerPoint presentation".

A.7 Qualitative Examples

Figures 8 and 9 show qualitative examples of PDf
files edited by a user through DocPilot.

A.7.1 Evaluation Procedure
As an introduction, the user was provided with a
guidelines document that detailed the PDF capa-
bilities of DocPilot. The user was also provided
access to the DocPilot app (Figure 5) and given a
short tutorial on its usage. For data collection, the
user was provided with a repository of PDF docu-
ments (n=61), a suggested prompt library (n=151),
and a link to a survey form for data collection. The
user was instructed their overall evaluation goal
was to complete several PDF workflows as best as
possible with the help of DocPilot.

For the first task, the user was asked to select a
PDF document and either craft a prompt based on
their own usage or select one from the suggested
list. For the second task, the user was asked to
prompt DocPilot with their workflow request and
to carefully review DocPilot’s responses. The user
was encouraged to request changes as needed to the
suggested plan until satisfied that it met their work-
flow goals. For the third task, the user was asked to
review the actions as executed by DocPilot in the
resulting files. Last, after completing all interac-
tions with DocPilot for one workflow, regardless
of success or failure, the user was instructed to

243

Figure 7: An example of task plan code solution generated for the query - "Hey, can you please blacken out any sensitive client
names from my ’VoltGaurd Electric.pdf’ file and convert it into a PowerPoint presentation"

Initial Input File Final Output File

Redact all PII and save as “demo.pdf”

Figure 8: Example of a visa document being edited using DocPilot. The user asks to "redact all mentions of
Personally Identifiable Information in the document". DocPilot removes names, passport numbers, date of birth,
sex, nationality, and dates in the input document.

complete a short survey form reflecting on their
experience. Each of the tasks were repeated for
every new workflow evaluated.

A.7.2 Measures

Our data collection included: 1) interaction logs
during DocPilot app usage, 2) self-reported feed-
back after each workflow request, and 3) open-
ended user feedback. The interaction logs included

244

Initial Input File Final Output File

Hey, can you underline all dates and redact
any names of people mentioned in this file

Figure 9: Example of a legal court document being edited using DocPilot. The user asks, " Hey, can you underline
all dates and redact any names of people mentioned in this file?". DocPilot covers names ("Saiprasad Kalyankar",
"Mohd Naushad") and underlines dates ("4th Feb 2015", "2014", "January 13 and 21, 2015") in the input document.

the chat history, program execution actions, and
resulting files after execution. The self-reported
measures included overall workflow, satisfaction
with the initial DocPilot suggested plan, satisfac-
tion with DocPilot incorporating user feedback to
the plan, and satisfaction with how well actions
were executed in the resulting files.

A.7.3 Example Workflows

In total we collected data from 80 workflow re-
quests. 16 workflows were user-provided based on
the users’ real world PDF workflows and 64 were
workflows suggested to the user. We provided the
suggested workflows to ensure workflows evalu-
ated included variety in the types of actions used
and in the number of actions requested. The user
was encouraged to make small adjustments to the
suggested workflows (as needed). For example if

the workflow requested to delete page 5 of a docu-
ment but the document only had 3 pages, then the
user modified the workflow prompt accordingly.

Examples of user-provided workflows:

1. Add a watermark with the text "DRAFT" on
every page, underline the test cycle types in
the table, and extract the cleaning index values
into a separate list

2. Highlight the text "ENERGY STAR Test
Method for Determining Residential Dish-
washer Cleaning Performance" in the docu-
ment, convert page into image file, and add a
header with the text "Energy Star Most Effi-
cient 2016

3. Underline all section headings, redact the com-
pany’s physical address, and add a watermark
with text "Evaluation Copy" on each page

245

4. Extract pages 1-2 as a separate file with pass-
word "BUDGET2013", summarize the key
issues discussed and action points, then add
this summary to a new first page.

5. Extract all key terms and concepts, and create
a glossary or index at the end of the document

Examples of suggested workflows:

1. Summarize all mentions of product launch
dates and marketing strategies from the doc-
ument, add a new page in front add this sum-
mary. Finally convert it to a Word file for later
reference.

2. Redact all salary figures from the document,
then add a line at the end stating the average
salary of the listed positions. Underline the
final mean salary figure for emphasis

3. Search for any mentions of project deadlines
and add them as a new page at the end, then
compress the file size to optimize storage
space.

4. Search for any occurrences of the term ’Confi-
dential’ and redact them, after deleting pages
1-2. And add a watermark "Top Secret" to
each remaining page.

5. Identify and highlight any technical or special-
ized terminology used within the document
and add a signature to page 1 and protect the
document with encryption.

A.7.4 Results: Code Iterations
Table 2 illustrates the number of code iterations
for each workflow (n=80). The majority of work-
flows (48/80) required one code iteration, and most
workflows were successful in a maximum of two
LLM-based code revision cycles.

of iterations Count
0 11
1 48
2 13
3 1
5 2
6 3

Table 2: The number of code iterations for each work-
flow (n=80). The majority of workflows (48/80) re-
quired one code iteration.

246

