@inproceedings{suzgun-etal-2024-string2string,
title = "string2string: A Modern Python Library for String-to-String Algorithms",
author = "Suzgun, Mirac and
Shieber, Stuart and
Jurafsky, Dan",
editor = "Cao, Yixin and
Feng, Yang and
Xiong, Deyi",
booktitle = "Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.acl-demos.26",
doi = "10.18653/v1/2024.acl-demos.26",
pages = "278--285",
abstract = "We introduce **string2string**, an open-source library that offers a comprehensive suite of efficient algorithms for a broad range of string-to-string problems. It includes traditional algorithmic solutions as well as recent advanced neural approaches to tackle various problems in string alignment, distance measurement, lexical and semantic search, and similarity analysis�along with several helpful visualization tools and metrics to facilitate the interpretation and analysis of these methods. Notable algorithms featured in the library include the Smith-Waterman algorithm for pairwise local alignment, the Hirschberg algorithm for global alignment, the Wagner-Fischer algorithm for edit distance, BARTScore and BERTScore for similarity analysis, the Knuth-Morris-Pratt algorithm for lexical search, and Faiss for semantic search. In addition, it wraps existing efficient and widely-used implementations of certain frameworks and metrics, such as sacreBLEU and ROUGE. Overall, the library aims to provide extensive coverage and increased flexibility in comparison to existing libraries for strings. It can be used for many downstream applications, tasks, and problems in natural-language processing, bioinformatics, and computational social sciences. It is implemented in Python, easily installable via pip, and accessible through a simple API. Source code, documentation, and tutorials are all available on our GitHub page: https://github.com/stanfordnlp/string2string* Documentation: https://string2string.readthedocs.io/en/latest/* GitHub page: https://github.com/stanfordnlp/string2string* Short video: https://drive.google.com/file/d/1IT-pBACDVUoEHewk{\_}{\_}5Pz5mU5oAMq5k{\_}/view?usp=sharing",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="suzgun-etal-2024-string2string">
<titleInfo>
<title>string2string: A Modern Python Library for String-to-String Algorithms</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mirac</namePart>
<namePart type="family">Suzgun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stuart</namePart>
<namePart type="family">Shieber</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dan</namePart>
<namePart type="family">Jurafsky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yixin</namePart>
<namePart type="family">Cao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Feng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Deyi</namePart>
<namePart type="family">Xiong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We introduce **string2string**, an open-source library that offers a comprehensive suite of efficient algorithms for a broad range of string-to-string problems. It includes traditional algorithmic solutions as well as recent advanced neural approaches to tackle various problems in string alignment, distance measurement, lexical and semantic search, and similarity analysis�along with several helpful visualization tools and metrics to facilitate the interpretation and analysis of these methods. Notable algorithms featured in the library include the Smith-Waterman algorithm for pairwise local alignment, the Hirschberg algorithm for global alignment, the Wagner-Fischer algorithm for edit distance, BARTScore and BERTScore for similarity analysis, the Knuth-Morris-Pratt algorithm for lexical search, and Faiss for semantic search. In addition, it wraps existing efficient and widely-used implementations of certain frameworks and metrics, such as sacreBLEU and ROUGE. Overall, the library aims to provide extensive coverage and increased flexibility in comparison to existing libraries for strings. It can be used for many downstream applications, tasks, and problems in natural-language processing, bioinformatics, and computational social sciences. It is implemented in Python, easily installable via pip, and accessible through a simple API. Source code, documentation, and tutorials are all available on our GitHub page: https://github.com/stanfordnlp/string2string* Documentation: https://string2string.readthedocs.io/en/latest/* GitHub page: https://github.com/stanfordnlp/string2string* Short video: https://drive.google.com/file/d/1IT-pBACDVUoEHewk__5Pz5mU5oAMq5k_/view?usp=sharing</abstract>
<identifier type="citekey">suzgun-etal-2024-string2string</identifier>
<identifier type="doi">10.18653/v1/2024.acl-demos.26</identifier>
<location>
<url>https://aclanthology.org/2024.acl-demos.26</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>278</start>
<end>285</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T string2string: A Modern Python Library for String-to-String Algorithms
%A Suzgun, Mirac
%A Shieber, Stuart
%A Jurafsky, Dan
%Y Cao, Yixin
%Y Feng, Yang
%Y Xiong, Deyi
%S Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F suzgun-etal-2024-string2string
%X We introduce **string2string**, an open-source library that offers a comprehensive suite of efficient algorithms for a broad range of string-to-string problems. It includes traditional algorithmic solutions as well as recent advanced neural approaches to tackle various problems in string alignment, distance measurement, lexical and semantic search, and similarity analysis�along with several helpful visualization tools and metrics to facilitate the interpretation and analysis of these methods. Notable algorithms featured in the library include the Smith-Waterman algorithm for pairwise local alignment, the Hirschberg algorithm for global alignment, the Wagner-Fischer algorithm for edit distance, BARTScore and BERTScore for similarity analysis, the Knuth-Morris-Pratt algorithm for lexical search, and Faiss for semantic search. In addition, it wraps existing efficient and widely-used implementations of certain frameworks and metrics, such as sacreBLEU and ROUGE. Overall, the library aims to provide extensive coverage and increased flexibility in comparison to existing libraries for strings. It can be used for many downstream applications, tasks, and problems in natural-language processing, bioinformatics, and computational social sciences. It is implemented in Python, easily installable via pip, and accessible through a simple API. Source code, documentation, and tutorials are all available on our GitHub page: https://github.com/stanfordnlp/string2string* Documentation: https://string2string.readthedocs.io/en/latest/* GitHub page: https://github.com/stanfordnlp/string2string* Short video: https://drive.google.com/file/d/1IT-pBACDVUoEHewk__5Pz5mU5oAMq5k_/view?usp=sharing
%R 10.18653/v1/2024.acl-demos.26
%U https://aclanthology.org/2024.acl-demos.26
%U https://doi.org/10.18653/v1/2024.acl-demos.26
%P 278-285
Markdown (Informal)
[string2string: A Modern Python Library for String-to-String Algorithms](https://aclanthology.org/2024.acl-demos.26) (Suzgun et al., ACL 2024)
ACL