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Abstract
Topic models have a rich history with vari-
ous applications and have recently been rein-
vigorated by neural topic modeling. How-
ever, these numerous topic models adopt to-
tally distinct datasets, implementations, and
evaluations. This impedes quick utilization and
fair comparisons, and thereby hinders their re-
search progress and applications. To tackle this
challenge, we in this paper propose a Topic
Modeling System Toolkit (TOPMOST). Com-
pared to existing toolkits, TOPMOST stands
out by supporting more extensive features. It
covers a broader spectrum of topic modeling
scenarios with their complete lifecycles, in-
cluding datasets, preprocessing, models, train-
ing, and evaluations. Thanks to its highly co-
hesive and decoupled modular design, TOP-
MOST enables rapid utilization, fair compar-
isons, and flexible extensions of diverse cutting-
edge topic models. These improvements po-
sition TOPMOST as a valuable resource to
accelerate the research and applications of
topic models. Our code, tutorials, and docu-
mentation are available at https://github.
com/bobxwu/topmost. Our demo video
is at https://youtu.be/9bN-rs4Gu3E?si=
LunquCRhBZwyd1Xg.

1 Introduction

Topic models have been a fundamental and preva-
lent research area for decades. They aim to un-
derstand documents in an unsupervised fashion
by discovering latent topics from them and infer-
ring their topic distributions (Churchill and Singh,
2022b). Besides the basic topic modeling sce-
nario (Blei et al., 2003), various other scenarios
have been explored, e.g., hierarchical, dynamic,
and cross-lingual topic modeling (Griffiths et al.,
2003; Blei and Lafferty, 2006; Mimno et al., 2009).
Current topic models can be categorized into two
types. The first type is conventional topic models
which follow either non-negative matrix factoriza-
tion (Lee and Seung, 2000; Kim et al., 2015; Shi

Topic Modeling Scenario OCTIS TOPMOST

Basic topic modeling
Datasets ✓ ✓

Models ✓ ✓

Evaluations ✓ ✓

Hierarchical topic modeling
Datasets ✓ ✓

Models ✓ ✓

Evaluations ✗ ✓

Dynamic topic modeling
Datasets ✗ ✓

Models ✗ ✓

Evaluations ✗ ✓

Cross-lingual topic modeling
Datasets ✗ ✓

Models ✗ ✓

Evaluations ✗ ✓

Table 1: Comparison between the latest OCTIS (Ter-
ragni et al., 2021) and TOPMOST. Our TOPMOST cov-
ers more topic modeling scenarios and their correspond-
ing datasets, models, and evaluations.

et al., 2018) or probabilistic graphical models via
Markov Chain Monte Carlo (Steyvers and Grif-
fiths, 2007) or Variational Inference (Blei et al.,
2017). The second type is recently popular neu-
ral topic models, learned through gradient back-
propagation (Zhao et al., 2021a; Wu et al., 2024b).
Thus they can avoid the laborious model-specific
derivations of conventional models, attracting more
research attention. Due to the effectiveness and in-
terpretability of topic models, they have inspired
various downstream tasks and applications, e.g.,
text analysis and content recommendation (Boyd-
Graber et al., 2017). Despite these significant
achievements, quick utilization and fair compar-
isons of various topic models remain a formidable
challenge. The reason lies in their unsystematic
model implementations as well as inconsistent
dataset and evaluation settings across papers, even
within a paper (Hoyle et al., 2021).

Several topic modeling toolkits emerge in re-
sponse to this challenge by integrating different
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Figure 1: Comparison of neural topic models in OCTIS
and our TOPMOST. Our TOPMOST covers more latest
neural topic models than OCTIS.

topic models and evaluations. However, they fail
to fully meet practical requirements due to lacking
certain essential features. Early toolkits (McCal-
lum, 2002; Rehurek and Sojka, 2011; Qiang et al.,
2020; Lisena et al., 2020) often lack the support
for neural topic models or necessary steps in the
topic modeling lifecycle, e.g., data preprocessing
and evaluations. The latest toolkit OCTIS (Ter-
ragni et al., 2021) is more comprehensive, but as
shown in Table 1 and Figure 1, it solely consid-
ers basic and hierarchical topic modeling scenarios
and overlooks the latest advancements of neural
topic models, offering only two neural topic mod-
els introduced after 2018. As a consequence, these
issues pose hurdles to the comparisons, develop-
ments, and applications of topic models.

To resolve these issues, we in this pa-
per introduce Topic Modeling System Toolkit
(TOPMOST), which supports extensive features.
In contrast to existing toolkits, TOPMOST thor-
oughly incorporates the most prevalent topic model-
ing scenarios: basic, hierarchical, dynamic, and
cross-lingual topic modeling, as well as the lat-
est neural topic models as detailed in Table 1 and
Figure 1. It covers the entire lifecycles of these sce-
narios, including datasets, preprocessing, models,
training, and evaluations. More importantly, TOP-
MOST adheres to an object-oriented paradigm with
a highly cohesive and decoupled modular design.
This enhances the readability and extensibility of
TOPMOST, enabling users to flexibly customize
their own datasets, models, and evaluations for
their diverse research or application purposes. As a
result, TOPMOST excels in fulfilling the practical
requirements of topic modeling. We conclude the
advantages of our TOPMOST as follows:
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Figure 2: Overall architecture of TOPMOST. It covers
the most common topic modeling scenarios and decou-
ples data loading, model constructions, model training
and evaluations in topic modeling lifecycles.

• TOPMOST provides handy and complete cutting-
edge topic models for various scenarios;

• TOPMOST allows users to effortlessly and fairly
compare topic models through comprehensive
evaluation metrics;

• TOPMOST with better readability and extensi-
bility facilitates the smooth development of new
topic models and downstream applications.

2 Related Work

Throughout the long history of topic model-
ing, numerous toolkits have emerged and gained
widespread adoption. The earliest among those
include Mallet (McCallum, 2002) 1 and gensim
(Rehurek and Sojka, 2011) 2. While these funda-
mental frameworks sufficiently embrace conven-
tional topic models, they generally overlook the re-
cent advancements in neural topic models. STTM
(Qiang et al., 2018) particularly focuses on prob-
abilistic short text topic models, like BTM (Yan
et al., 2013) and DMM (Yin and Wang, 2014). A
more recent entrant, OCTIS (Terragni et al., 2021),
integrates both conventional and neural topic mod-
els. Nevertheless, it merely covers basic and hi-
erarchical topic modeling scenarios and neglects
the latest neural topic models developed after 2018.
Moreover, OCTIS couples the implementations of
model construction and training, exacerbating the
challenges of toolkit maintenance. Different from
these existing work, our TOPMOST extensively
incorporates a spectrum of popular topic model-
ing scenarios and the latest developments in neural
topic models. In addition, our TOPMOST clearly

1https://mimno.github.io/Mallet/topics.html
2https://radimrehurek.com/gensim/
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Topic Modeling Scenarios Topic Models Evaluation Metrics Datasets

Basic topic modeling

LDA (Blei et al., 2003)
NMF (Lee and Seung, 2000)
NeuralLDA (Srivastava and Sutton, 2017)
ProdLDA (Srivastava and Sutton, 2017)
ETM (Dieng et al., 2020)
DecTM (Wu et al., 2021)
NSTM (Zhao et al., 2021b)
CombinedTM (Bianchi et al., 2021)
BERTopic (Grootendorst, 2022)
TSCTM (Wu et al., 2022)
ECRTM (Wu et al., 2023b)
FASTopic (Wu et al., 2024c)

TC
TD
Classification
Clustering

20NG
IMDB
Wikitext-103
NeurIPS
ACL
NYT

Hierarchical topic modeling

HDP (Teh et al., 2006)
SawETM (Duan et al., 2021)
HyperMiner (Xu et al., 2022)
ProGBN (Duan et al., 2023)
TraCo (Wu et al., 2024d)

TC over levels
TD over levels
Classification over levels
Clustering over levels

Dynamic topic modeling
DTM (Blei and Lafferty, 2006)
DETM (Dieng et al., 2019)
CFDTM (Wu et al., 2024a)

TC over time slices
TD over time slices
Classification
Clustering

NeurIPS
ACL
NYT

Cross-lingual topic modeling NMTM (Wu et al., 2020a)
InfoCTM (Wu et al., 2023a)

TC (CNPMI)
TD over languages
Classification
Clustering

ECNews
Amazon
Review Rakuten

Table 2: Summary of topic modeling scenarios, topic models, evaluation metrics, and datasets covered by TOPMOST.

decouples each step (data, models, and training)
in the topic modeling lifecycles, resulting in neat
code structures and simplified maintenance.

3 Overview of Toolkit Design and
Architecture

In this section, we delineate the overview of our
toolkit design and architecture. We build TOP-
MOST with Python and use PyTorch (Paszke et al.,
2019) as the neural network framework for neu-
ral topic models. Figure 2 illustrates the overall
architecture of TOPMOST.

3.1 Topic Modeling Scenarios and Topic
Models

As summarized in Table 2, TOPMOST reaches a
wider coverage by involving the 4 most popular
topic modeling scenarios and their corresponding
conventional or neural topic models.

Basic Topic Modeling discovers a number of
latent topics from normal documents like news
articles and web snippets, as the most common
scenario (Blei et al., 2003). For basic topic mod-
els, TOPMOST supports conventional LDA (Blei
et al., 2003), NMF (Lee and Seung, 2000), and
most of the mainstream neural models such as

ProdLDA (Srivastava and Sutton, 2017), ETM (Di-
eng et al., 2020), CombinedTM (Bianchi et al.,
2021), BERTopic (Grootendorst, 2022), TSCTM
(Wu et al., 2022), ECRTM (Wu et al., 2023b), and
FASTopic (Wu et al., 2024c).

Hierarchical Topic Modeling organizes topics
into a tree structure instead of flat topics in the ba-
sic topic modeling (Griffiths et al., 2003; Isonuma
et al., 2020). Topics at each level of the structure
involve different semantic granularity: child topics
are more specific to their parent topics. This pro-
vides more desirable granularity for downstream
applications. Hierarchical topic models in TOP-
MOST include conventional HDP (Teh et al., 2006)
and recently popular neural hierarchical topic mod-
els, e.g., HyperMiner (Xu et al., 2022), ProGBN
(Duan et al., 2023), and TraCo (Wu et al., 2024d).

Dynamic Topic Modeling discovers the evolu-
tion of topics in sequential documents, such as the
conference papers published by year (Blei and Laf-
ferty, 2006). This discloses how topics emerge,
grow, and decline over time due to real-world
trends and events, which has derived applications
like trend analysis and public opinion mining (Li
et al., 2020; Churchill and Singh, 2022a). For dy-
namic topic models, we provide the conventional
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DTM (Blei and Lafferty, 2006) and its neural vari-
ant, DETM (Dieng et al., 2019). We also cover
recent CFDTM (Wu et al., 2024a).

Cross-lingual Topic Modeling discovers aligned
cross-lingual topics from bilingual corpora (Mimno
et al., 2009). These reveal the commonalities and
differences across languages and cultures, enabling
cross-lingual text analysis without supervision
(Yuan et al., 2018; Yang et al., 2019). Cross-lingual
topic models in TOPMOST include NMTM (Wu
et al., 2020a) and InfoCTM (Wu et al., 2023a).

We carefully adapt the original implementations
of these topic models and unify their APIs of ini-
tialization, training, and testing, ensuring that our
toolkit remains user-friendly, readable, and extend-
able. Note that we will constantly update TOP-
MOST to include more newly released models.

3.2 Datasets and Preprocessing

TOPMOST contains extensive benchmark datasets
for the involved topic modeling scenarios, as re-
ported in Table 2. We summarize the statistics of
these datasets in Tables 3 to 5.

For basic and hierarchical topic modeling, we
have the following datasets: (i) 20NG (20 News
Groups, Lang, 1995) is one of the most widely
used datasets for evaluating topic models, includ-
ing news articles with 20 labels. (ii) IMDB 3 (Maas
et al., 2011) is the movie reviews from the IMDB
website, containing two sentimental labels, pos-
itive and negative. (iii) Wikitext-103 4 (Merity
et al., 2016) includes Wikipedia articles (Nguyen
and Luu, 2021).

For dynamic topic modeling, TOPMOST pro-
vides the datasets as (i) NeurIPS 5 includes the
published papers at the NeurIPS conference from
1987 to 2017. (ii) ACL (Bird et al., 2008) is an ar-
ticle collection between 1973 and 2006 from ACL
Anthology 6. (iii) NYT 7 contains the news articles
in the New York Times, from 2012 to 2022, with 12
categories, like “Arts”, “Business”, and “Health”.

For cross-lingual topic modeling, we offer the

3http://ai.stanford.edu/~amaas/data/sentiment/
aclImdb_v1.tar.gz

4https://www.salesforce.com/
products/einstein/ai-research/
the-wikitext-dependency-language-modeling-dataset/

5https://www.kaggle.com/datasets/benhamner/
nips-papers

6https://aclanthology.org/
7https://huggingface.co/datasets/Matthewww/

nyt_news

following bilingual datasets: (i) ECNews 8 (Wu
et al., 2020a) is a collection of English and Chinese
news with 6 categories like business, education,
and entertainment. (ii) Amazon Review (Wu et al.,
2020a) includes English and Chinese reviews from
the Amazon website, where each review has a rat-
ing from one to five. We simplify it as a binary
classification task by labeling reviews with ratings
of five as “1” and the rest as “0” following Yuan
et al. (2018). (iii) Rakuten Amazon (Wu et al.,
2023a) contains Japanese reviews from Rakuten
(a Japanese online shopping website, Zhang and
LeCun, 2017), and English reviews from Amazon
(Yuan et al., 2018). Similarly, it is also simplified
as a binary classification task according to the rat-
ings. Note that basic topic models can employ the
datasets for dynamic topic modeling as well.

We preprocess these datasets with standard
steps, such as removing stop words and punctu-
ation, removing short tokens, and filtering low-
frequency words (Card et al., 2018; Wu et al.,
2020b). Users can directly download these off-the-
shelf datasets for experiments through TOPMOST

from our GitHub repository. See Appendix A for
more details of these datasets. We also provide con-
figurable preprocessing implementations, allowing
users to flexibly customize their datasets.

3.3 Evaluation Metrics

TOPMOST provides sufficient evaluation metrics to
evaluate topic models. We first evaluate the quality
of discovered topics in terms of topic coherence
(TC, Newman et al., 2010) and topic diversity
(TD, Dieng et al., 2020). TC refers to the coher-
ence between the top words of discovered topics,
and TD measures the differences between topics.
We consider different implementations of TC and
TD, for example, NPMI (Lau et al., 2014), CV

(Röder et al., 2015), and TU (Nan et al., 2019), for
extensive comparisons.

Then, we evaluate the quality of inferred doc-
topic distributions via extrinsic tasks: text classi-
fication and clustering (Wu and Li, 2019; Zhao
et al., 2021b; Nguyen et al., 2024). For classifi-
cation, we train an ordinary classifier (e.g., SVM)
with doc-topic distributions as document features
and predict the labels of others. For clustering, we
use the most significant topics in doc-topic distri-
butions as clustering assignments.

Apart from these fundamental ones, we addition-

8https://github.com/bobxwu/NMTM
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ally include metrics for special scenarios. For cross-
lingual topic modeling, we measure the average TD
over all languages and evaluate the alignment be-
tween cross-lingual topics with cross-lingual NPMI
(CNPMI, Hao and Paul, 2018). For hierarchical
topic modeling, we evaluate the quality of discov-
ered topic hierarchies, concerning the coherence
and diversity between parent and child topics, the
diversity between parent and non-child topics, and
the diversity between sibling topics (Chen et al.,
2021b,a; Wu et al., 2024d).

4 Comparison to Existing Toolkit

To highlight our significant strengths, we compare
our TOPMOST with the latest counterpart, OCTIS
(Terragni et al., 2021), which integrates more fea-
tures than earlier toolkits. Our TOPMOST outper-
forms OCTIS in three key aspects:

(i) As detailed in Table 1, TOPMOST offers a
broader coverage of topic modeling scenarios, ac-
companied by corresponding datasets, models, and
evaluation metrics. This better fulfills the various
requirements of researchers and developers.

(ii) TOPMOST provides a more extensive array
of topic models compared to OCTIS. As reported
in Figure 1 while OCTIS merely includes 4 neu-
ral topic models, TOPMOST incorporates 16 ones,
including the latest NSTM (Zhao et al., 2021b),
HyperMiner (Xu et al., 2022), and ECRTM (Wu
et al., 2023b). These advanced models empower
users with cutting-edge topic modeling techniques
and simplify their comparisons and applications.

(iii) TOPMOST entirely decouples the implemen-
tations of data loading, model construction, model
training, and evaluations, as illustrated in Figure 2.
This design streamlines the code structure for high
reusability and facilitates fair comparisons among
diverse topic models. It aligns with prominent li-
braries such as Huggingface Transformers and Py-
Torch Lightning. See the code examples in Sec. 5.

5 Toolkit Usage

We showcase the simplicity and user-friendly de-
sign of our TOPMOST toolkit with code examples.
Users can directly install our TOPMOST through
pip 9: pip install topmost.

Figure 3 shows how to quickly utilize TOPMOST

to discovers topics from documents with a few

9https://pypi.org/project/topmost

handy steps: dataset preprocessing, model con-
struction (here ProdLDA (Srivastava and Sutton,
2017)), and training. We emphasize that our TOP-
MOST supports other languages besides English.
We can simply employ different tokenizers in the
preprocessing for other languages, for example,
jieba 10 for Chinese and nagisa 11 for Japanese.
Other preprocessing settings are also configurable,
including maximum vocabulary size, stop words,
and maximum or minimum document frequency.
This allows users to flexibly apply our toolkit.

from topmost.data import RawDatasetHandler
from topmost.models import ProdLDA
from topmost.trainers import BasicTrainer

docs = [ "A document about space , satellite ,
launch , orbit.", # more example documents ...

]
# build a dataset
dataset = RawDatasetHandler(docs)
# create a topic model
model = ProdLDA(dataset.vocab_size)
# create a trainer
trainer = BasicTrainer(model)
topic_top_words , doc_topic_dist = trainer.

fit_transform(dataset)

Figure 3: A code example for quick start.

Figure 4 exemplifies how to train a topic model
with preprocessed datasets. The training of other
topic models follows similar steps.

from topmost.data import download_dataset ,
BasicDatasetHandler

from topmost.models import ProdLDA
from topmost.trainers import BasicTrainer

#download a dataset
download_dataset('20NG', cache_path='./ datasets ')
# load a dataset
dataset = BasicDatasetHandler("./ datasets /20NG")

# create a topic model
model = ProdLDA(dataset.vocab_size)
# create a trainer
trainer = BasicTrainer(model)
# train the topic model
trainer.train(dataset)

Figure 4: A code example for training a topic model
(ProdLDA (Srivastava and Sutton, 2017)).

Figure 5 shows how to fully evaluate the trained
topic model with diverse metrics including topic
coherence, topic diversity, text classification, and
text clustering.

10https://github.com/fxsjy/jieba
11https://github.com/taishi-i/nagisa
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Figure 6: Demonstration of testing new documents. It plots the inferred topic distribution of an input document
from a trained topic model.

from topmost.evaluations import
compute_topic_diversity ,
compute_topic_coherence , evaluate_clustering
, evaluate_classification

# doc -topic distributions
train_theta , test_theta = trainer.export_theta(

dataset)
# top words of topics
topic_top_words = trainer.export_top_words(

dataset.vocab)
# topic coherence
compute_topic_coherence(topic_top_words , dataset.

train_texts)
# topic diversity
compute_topic_diversity(topic_top_words)
# text clustering
evaluate_clustering(test_theta , dataset.

test_labels)
# text classification
evaluate_classification(train_theta , test_theta ,

dataset.train_labels , dataset.test_labels)

Figure 5: A code example for evaluating a topic model,
including topic coherence, topic diversity, text classifi-
cation, and clustering.

The above examples illustrate that TOPMOST

clearly decouples the APIs of data, models, and
training, so TOPMOST becomes more accessible,
easy-to-use, and extendable to users. Due to limited
page space, see more examples and tutorials on our
GitHub project page, like data preprocessing and
other topic modeling scenarios.

Figure 7: Visualization of discovered topics. It plots the
top related words of each topic and the modeled word
distributions.

6 Visualization Interfaces

TOPMOST furthermore provides visualization in-
terfaces for topic models. We create a web demo
system with Flask 12 as the server framework fol-
lowing Material design to visualize and test topic
models. It is designed to be intuitive and user-
friendly, enabling users to easily understand and
leverage topic models.

Figure 7 shows the visualization of topics. We
plot the top related words of discovered topics and
the modeled probability of each word. For example,

12https://flask.palletsprojects.com/
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Topic#15 in Figure 7 mostly relates to words like
“matlab”, “plot”, and “vectors”. By selecting the
index or clicking the Previous and Next buttons, we
can view the details of any topic.

Figure 6 demonstrates the interactive utilization
of a trained topic model. Upon inputting a docu-
ment, we can click the upload button to obtain the
inferred topic distribution of the document. The
horizontal bar chart in Figure 6 plots the distribu-
tion over all topics of the input How to plot lines
between all points in vector in Matlab?. We see
that the topic distribution mainly lies on Topic#15,
which refers to Matlab.

7 Conclusion and Future Work

In this paper, we present TOPMOST, an open-
source, comprehensive, and up-to-date topic mod-
eling system toolkit. TOPMOST provides complete
lifecycles of various topic modeling scenarios, in-
cluding datasets, preprocessing, models, training,
and evaluations, which outperforms existing coun-
terparts. TOPMOST allows users to smoothly ex-
plore topic models, verify their new ideas, and de-
velop novel topic modeling applications. This bene-
fits both the communities in academia and industry.
In the future, we plan to keep TOPMOST updated
to incorporate more latest topic models and sup-
port more features to facilitate the research and
application of topic modeling.

Limitations

We consider the following limitations of TOP-
MOST. First, TOPMOST only includes the main-
stream evaluation metrics. Some less popular ones
like perplexity are ignored. Second, TOPMOST

does not cover the topic models based on prompt-
ing large language models (Pan et al., 2023; Wu
et al., 2024e; Pham et al., 2023). Different from
LDA-like models, they define a topic as a textual
description, so we cannot assess them through ex-
isting evaluation metrics.
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Dataset Language #docs Vocabulary
Size

Average
length #labels

ECNews English 46,870 5,000 12.0 6Chinese 50,000 5,000 10.6

Amazon Review English 25,000 5,000 30.6 2Chinese 25,000 5,000 43.2

Rakuten Amazon English 25,000 5,000 30.6 2Japanese 25,000 5,000 22.5

Table 3: Statistics of pre-processed datasets for cross-lingual topic modeling.

Dataset #docs
Vocabulary

Size
Average
Length

#labels

20NG 18,846 5,000 110.5 20
IMDB 50,000 5,000 95.0 2
Wikitext-103 28,532 10,000 1,355.4 /

Table 4: Statistics of pre-processed datasets for basic
and hierarchical topic modeling.

Dataset #docs
Vocabulary

Size
Average
Length

#labels
#time
slices

NeurIPS 7,237 10,000 2,085.9 / 31
ACL 10,560 10,000 2,023.0 / 31
NYT 9,172 10,000 175.4 12 11

Table 5: Statistics of pre-processed datasets for dynamic
topic modeling.

A Datasets

Tables 3 to 5 report the statistics of datasets for dif-
ferent topic modeling scenarios after preprocessing.
Users can directly download all these datasets via
TOPMOST from our GitHub repository.
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