
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations), pages 72–81
August 11-16, 2024 ©2024 Association for Computational Linguistics

OpenWebAgent: An Open Toolkit to Enable Web Agents on
Large Language Models

Iat Long Iong1*† Xiao Liu1* Yuxuan Chen1† Hanyu Lai1† Shuntian Yao2†

Pengbo Shen3† Hao Yu1† Yuxiao Dong1‡ Jie Tang1‡

1Tsinghua University 2Beijing University of Posts and Telecommunications
3University of the Chinese Academy of Sciences

rongyl20@mails.tsinghua.edu.cn, shawliu9@gmail.com

Abstract
We introduce OpenWebAgent, an open toolkit
designed to optimize web automation by in-
tegrating both large language models (LLMs)
and large multimodal models (LMMs). This
toolkit focuses on enhancing human-computer
interactions on the web, simplifying complex
tasks through an advanced HTML parser, a
rapid action generation module, and an intu-
itive user interface. At the core of OpenWe-
bAgent is an innovative web agent framework
that uses a modular design to allow develop-
ers to seamlessly integrate a variety of mod-
els and tools to process web information and
automate tasks on the web. This enables the
development of powerful, task-oriented web
agents, significantly enhancing user experi-
ence and operational efficiency on the web.
The OpenWebAgent framework, Chrome plu-
gin, and demo video are available at https:
//github.com/THUDM/OpenWebAgent/.

1 Introduction

As the Internet becomes an integral part of ev-
eryday life, the complexity of tasks that users
want to automate on web platforms continues to
grow (Van der Aalst et al., 2018). Modern web
users expect interfaces that are not only intuitive
and visually appealing but also capable of intelli-
gent (Davenport and Kirby, 2016), predictive inter-
actions that streamline complex tasks.

Traditional web automation tools, such as
Robotic Process Automation (RPA) tools, have
been instrumental in reducing manual effort (Syed
et al., 2020), but fall short in areas such as contex-
tual understanding, flexibility (Hallikainen et al.,
2018), and user accessibility. These tools often
require complex setups and significant technical
expertise, limiting their usefulness to a narrow au-
dience. In addition, the lack of a unified system

*Equal contribution.
†Work done while these authors interned at Zhipu AI.
‡Corresponding Authors: YD and JT.

architecture among existing tools poses significant
challenges for developers seeking to integrate or
innovate on top of these platforms, hindering the
advancement of web automation technologies.

Nevertheless, the field has advanced signif-
icantly with deep learning technologies, espe-
cially after Google introduced the Transformer
model (Vaswani et al., 2017). The capabilities of
large-scale pre-trained models, like OpenAI’s GPT
series (Achiam et al., 2023; OpenAI, 2024a), have
improved text generation, semantic understanding,
and logical reasoning (Brown et al., 2020; Chan
et al., 2022). This has made web automation tools
using LLMs and LMMs more feasible. Recent
work such as AutoWebGLM (Lai et al., 2024),
shows LLMs can handle various web tasks but the
lack of multimodal inputs limits their capabilities,
highlighting the need for multimodal web agents.

Presented System. We present OpenWebAgent, a
toolkit for advanced web interactions with innova-
tive modules that allow developers to integrate any
language or multimodal model for web automa-
tion. Figure 1 shows the task execution results
of OpenWebAgent System with GPT-4 (Achiam
et al., 2023) and AutoWebGLM (Lai et al., 2024)
as the action generation models. OpenWebAgent
includes an interactive web plugin and a modularly
designed server, allowing it to execute tasks directly
and autonomously on webpages while providing
real-time feedback. It stands out for its efficiency
and user accessibility compared to other web au-
tomation tools, thanks to these features:

• High-Performance HTML Parser. This parser
optimizes performance by simplifying com-
plex HTML into a more straightforward format
(§3.1), enabling OpenWebAgent to process web
content with enhanced accuracy and speed. It
reduces HTML length by 99% and the number
of elements by 97% (§5.1), ensuring efficient
operation on any website. (§5.2)

72

https://github.com/THUDM/OpenWebAgent/
https://github.com/THUDM/OpenWebAgent/


(e) Find the BibTeX of a paper. (f) Get Driving Directions. (g) Follow the qualifying account.

(b) Find pictures of Arctic. (c) Give PS5 game recommendations. (d) Discover info about black holes.

(a) Follow Bill Gates on X (Twitter).

Figure 1: Examples of OpenWebAgent performing daily tasks. In these examples, GPT-4 is employed as the action
generation model in (a) – (d), while AutoWebGLM is used in (e) – (g).

• Modular System Design. OpenWebAgent inte-
grates multimodal inputs such as action history,
parsed HTML and screenshots for LLMs and
LMMs to create coherent action plans that match
user intent. Users can modify, pause, or reset
tasks at any time (§4.2), offering flexibility and
ease of use. The modular design (§3.2) allows
easy model integration and module replacement
by developers.

• Streamlined User Interface. The plugin re-
quires no complex setup and is ready to use
immediately after download. Its simple and at-
tractive interface (§4.1) lets users track the pro-
cess and sequence of operations easily, with task
execution controlled by a few simple buttons,
ensuring efficiency and ease of use.

These innovations place OpenWebAgent at the
forefront of web automation technology. Through

its advanced capabilities, OpenWebAgent is not
just a tool but a paradigm shift in how humans
interact with and harness the power of the web for
automated tasks.

Contributions. (1) We implement a powerful
HTML parser engine that simplifies complex web-
pages into a more accessible format. (2) We de-
sign a ready-to-use web plugin automation tool
that enables users to perform any desired action
on any webpage. (3) We create a versatile web
agent framework, allowing developers to easily in-
tegrate any LLM or LMM for web automation.
This framework offers unprecedented ease in de-
veloping robust, task-oriented web agents. In sum-
mary, OpenWebAgent contributes both technically
and conceptually to the understanding of the bound-
aries of human-machine collaboration and giving
an attempt to develop the future of web automation.

73



Tasks &
Prev. Actions

Simplified
HTML

ActionValidator

Plugin (Frontend) Server (Backend)

Source 
HTML

Screenshot

User
Instruction

Instruction

Process Ctrl. Module
FSM

Information

HTML 
Parser

Element
Filter

Web Processing Module

User

Webpages AgentExec. Module

Marked 
Screenshot

OCR
Module

Figure 2: System Design. Our system has two main components: the frontend plugin and the backend server. The
frontend plugin collects page information, performs webpage actions, and controls operations using a finite state
machine (FSM). The backend server processes data and organizes prompts for the agent to predict actions.

2 Related Work

Developing an efficient toolkit for web browsing
agents is challenging, especially in integrating de-
cision language models with diverse modules for
processing webpage information. This section pro-
vides an overview of related research.

Language Models (LMs). Since Google proposed
Transformer (Vaswani et al., 2017), Large Lan-
guage Models (LLMs) have evolved rapidly. No-
table models include OpenAI’s GPT-4 (Achiam
et al., 2023), Google’s Gemini (Google, 2023),
PaLM-2 (Chowdhery et al., 2023), and Go-
pher (Rae et al., 2021), Anthropic’s Claude-2 (An-
thropic, 2023), Meta’s LLaMA series (Touvron
et al., 2023a,b) and OPT (Zhang et al., 2022), as
well as Mistral’s Mixture of Experts models (Jiang
et al., 2024). Other notable contributions include
GLM-130B (Zeng et al., 2022) and BLOOM (Scao
et al., 2022). These models, pre-trained on vast
datasets, excel in various NLP tasks.

Large Multimodal Models (LMMs) have be-
come the primary focus of research to address
a wider range of tasks. OpenAI led the way by
launching high-performance models such as GPT-
4-Turbo (OpenAI, 2024b) and GPT-4o (OpenAI,
2024a). The open-source community has also intro-
duced multimodal models like LLaVA (Liu et al.,
2023a), CogVLM (Wang et al., 2023), and Qwen-
VL (Bai et al., 2023). These LMMs have inspired
new approaches in Agent research.

Smaller, cost-effective models are preferred due
to the high deployment costs of large models, with
users prioritizing task-specific effectiveness. Open-
source projects like LLaMA3-8B (Meta, 2024),
Vicuna-7B (Chiang et al., 2023), and ChatGLM4-
9B (GLM et al., 2024) show comparable capabili-
ties to larger models in some areas.

Web Automation Systems. Previous projects,
such as WebGPT (Nakano et al., 2021) and We-
bGLM (Liu et al., 2023b), have effectively inte-
grated language models with web environments,
mainly for question-answering tasks using internet
data. These models are excellent at information
retrieval for QA (Rajpurkar et al., 2016; Nguyen
et al., 2016; Berant et al., 2013; Kwiatkowski et al.,
2019), but they cannot perform complex or interac-
tive web-based tasks.

Recent projects like AutoGPT1 use multiple
ChatGPT agents for self-prompting and web op-
erations through a plan-execute-reflect cycle. The
GPT-4V-ACT framework2 uses the Set-of-Mark
method (Yang et al., 2023) to mark screenshots and
then employs GPT-4V (OpenAI, 2024b) to gener-
ate operations, but it struggles with real web pages
due to insufficient operation instructions. AutoWe-
bGLM (Lai et al., 2024) is based on the fine-tuned
ChatGLM3-6B (GLM et al., 2024) model. How-
ever, it lacks image input data, limiting its perfor-
mance in real-world web scenarios.

Other initiatives such as MindAct (Deng et al.,
2023) involve extensive interactions to select web-
page elements, suggesting a need for more effi-
cient processes. CC-Net (Mishra et al., 2019) lever-
ages a vast visual data set and learning techniques
to manipulate web components effectively. Con-
versely, CogAgent (Hong et al., 2023) focuses
on using visual input to generate web operation
methods, while WebAgent (Gur et al., 2024) uti-
lizes HTML-T5 and the large-scale Flan-U-Plam
model (Chung et al., 2022) to control webpages,
though the model’s size limits its deployment.

1https://github.com/Significant-Gravitas
2https://github.com/ddupont808/GPT-4V-Act

74

https://github.com/Significant-Gravitas
https://github.com/ddupont808/GPT-4V-Act


3 The OpenWebAgent System

OpenWebAgent is rooted in principles of intuitive
design, flexibility, and comprehensive functionality,
aiming to provide a user-centric approach to web
automation. The system is inherently adaptable,
and designed to allow users to easily customize it
for a range of complex automation tasks. Its main
objective is to develop a toolkit that is more respon-
sive and goes beyond the limitations of traditional
web agents. This toolkit does more than execute
user tasks with simple pre-defined commands; it
is engineered to fully analyze, decompose, and
process each task to ensure thorough and efficient
automation.

3.1 HTML Parsing Techniques

The content of HTML webpages is intricate and
complex. Therefore, it should be effectively sim-
plified before being fed into the parsing model.

Simplification aims to distill the most important
information while eliminating excessive or disrup-
tive elements that could make it difficult for the
model to understand. It is crucial to maintain the
basic structure of HTML and its essential content
information during this process. This ensures that
the model can understand and use these details for
efficient webpage parsing.

Using algorithm 1 can effectively transform the
element tree into a more concise representation. We
can judge whether an element should be retained by
determining the clickability of the element, noting
that nodes near the retained element are generally
able to provide more useful information and there-
fore have a higher retention value. Therefore, we
can adopt a recursive approach to obtain the an-
cestor nodes, child nodes and sibling nodes of the
retained element part. Finally, pruning can be done
according to the information content starting from
the leaf nodes.

With the processing algorithm described above,
the complex HTML can be simplified into a format
that is easier for the model to interpret and manip-
ulate, thus improving the model’s performance in
web parsing tasks.

3.2 Interaction Workflow

OpenWebAgent’s design philosophy and objec-
tives aim to achieve a harmonious balance be-
tween advanced technological capabilities and
user-friendly interaction, redefining standards for
human-computer interaction in web automation. To

Algorithm 1: HTML Simplifier
Data: dom tree tree, neighbor coefficient n
Result: pruned tree tree, kept elements kp
nodes, kp← set(), list()
for e in tree.element do // selector

if not (onTop(e) and onScreen(e))
then continue

if isClickableTag(e.tagname) or
haveJSaction(e.attrib) or
e.cursor = pointer or
e.classes.include(button) then

kp.push(e)
nodes.push(e)
nodes.push(getNbr(e, n))

end
end
for e in reversed(tree) do // pruner

if not e in nodes or not (e has text or
attrib or e is root or
len(e.children) > 1) then

tree.remove(e)
end

end

improve the flexibility and usability of our toolkit,
we modularize it into several key components as
shown in Figure 2. The network processing module
and the action generation module are deployed as
unified services in the backend. Meanwhile, the
process control module and the execution module
are integrated into the plugin.

Web Processing Module. This module extracts
useful elements of HTML, simplifies HTML input,
performs OCR on screenshots, and adds element
labels to screenshots. See §3.1 for details of the
methods and processes.

Action Generation Module. The main purpose of
this module is to predict the next action based on
the user’s task and the current webpage context. At
this stage, we provide a prompt for the LLM that in-
cludes the current task, the simplified HTML of the
webpage, and previous command sequences, and
for the LMM, we also provide labeled screenshots
for the model to use. The model outputs the next
action in natural language, which we match against
a pre-defined action space, and returns the action
name and parameters if the match is successful.

In this module, models are accessed through in-
terfaces, which means that developers creating new
web agents can effortlessly integrate any model

75



into our toolkit by simply setting up an API inter-
face for accessing the model. It is important to
note that we have reserved an interface to a visual
processing module in the toolkit, located between
the web processing module and the action genera-
tion module, to serve better the needs of developers
working with multimodal agents.

To address the lack of image information in the
language-based agent, the module is pre-configured
with an OCR interface that takes a screenshot of a
webpage as input and returns the webpage informa-
tion contained in the screenshot. LMM agent devel-
opers have the option to replace the preconfigured
modules and integrate their own vision modules
into our toolkit, which simplifies the development
of multimodal web agents.

Execution Module. This module is used to execute
specific action instructions on a webpage. When
the module receives an action instruction from the
action generator module, it looks for the element
that actually needs to be operated on and then exe-
cutes the action on the webpage using a predefined
script. When the action is completed, it provides
a response feedback to ensure that the model is
aware of the execution of the action to adjust the
plan.

Process Control Module. As shown in Figure 3,
this module is implemented using a finite state ma-
chine. The main purpose of this is to coordinate
the execution of tasks and to facilitate the transfer
of information between the above modules.

This module serves as the primary interface for
user interaction. It receives various inputs, such as
user task commands and control commands (e.g.
start, pause, reset). The module also records user
input tasks and previous action history. When
the user issues a start command, the module first
fetches the HTML source and screenshot of the cur-
rent webpage, and information about the clickable
elements, and passes them to the web processing
module (including the visual processing module).
Additionally, the module sends the task and action
history to the action generation module.

The module sends task and action history to the
action generation module and waits for a response
from the action generation module. It then parses
the action into various parameters. If a valid web
action returns, its details are sent to the execution
module. Once a response arrives from the execu-
tion module, the action history updates and the
process of retrieving webpage information repeats.

Parse Execute

Pause

User: Start

Successful
Execution

Transfer 
Task, HTML 
& Screenshot

Action: 
Stop

Receiving Action
Transfer HTML & 
Update Action History

Pause

Stop

Init

User Action
Framework

Continue

Ignore 
current action

Clear Operation 
Context

Keep Operation 
Context

Datapath

Shutdown

Figure 3: FSM Design.

When the process is complete, the user is notified
by the module.

This workflow enables real-time user interaction,
users can send control commands such as pause,
reset, or update their task description at any time.
The process control module adapts accordingly,
ensuring flexible and efficient interaction.

4 Demonstration

4.1 System Interface
The plugin interface is simple and easy to use, as
shown in Figure 4. It consists of three main parts:
• Input Box: For entering tasks to be executed.
• Control Buttons: For managing task execution,

starting with “� run” and “⟳ reset” . During
execution, “ q pause” replaces “� run” , allow-
ing the user to control the process.

• Feedback Panel: Shows the executed actions
and the model’s responses.

Figure 4: The system interface of OpenWebAgent.

4.2 Usage Example
As shown in Figure 5, we illustrate the interaction
process and execution results of our toolkit by in-
tegrating GPT-4 into our toolkit and executing a
sample task “What is the weather like today?”.

Task Execution. The task begins with Google, a
standard browser homepage that does not provide
weather information. First, we can put the query

“What is the weather like today?” into the task box
and click the “� run” button to initiate the task. A

76



(a) Start of execution. (b) Change current task. (c) Get requested information.

Figure 5: Execution flow of OpenWebAgent. Initially (a) execute “What is the weather like today?”, then at (b)
modify the task to “What is the weather in (on) Sunday?”, and finally (c) get the answer for the task.

(a) Set the number of diners. (b) Select restaurant and dining time. (c) Ask user to enter verification code.

Figure 6: Example of using OpenWebAgent with AutoWebGLM. The task is “Make a dinner reservation for 4 at a
Chinese restaurant with the email a12345@ggmail.com.”. This example demonstrates that OpenWebAgent can
handle various types of elements.

loading icon will appear on the feedback box to
indicate that our plugin has initiated the retrieval of
information from the webpage. After a brief inter-
val, the plugin generates the instruction, “#Type#
5 weather today”. The webpage displays that

“weather today” has been entered into the input box,
thereby suggesting that the action has been exe-
cuted successfully.

Task Management. After several actions on the
webpage, the user is presented with a weather fore-
cast, as depicted in Figure 5(b). At this juncture,
the user has the option to pause the task by click-
ing the “ q pause” button. They can then update
the task instructions to “What is the weather on
Sunday?” before resuming execution by clicking
“� run” (which serves as “continue” here). The
plugin will adapt to the modified user task and
modify the execution flow accordingly.

Task Completion. Following a series of actions
on the webpage, the LLM (GPT-4) can complete
the user’s task based on the information available.
Our plugin then responds to the user’s query by
returning a message, “Answer: 57°F / 33°F”, in
the feedback box and completes the process.

Figure 6 shows how OpenWebAgent with Au-
toWebGLM handles a restaurant reservation task.
This demonstrates that our framework provides the
necessary information and actions to support the

model in performing complex tasks. In addition,
as shown in Figure 1, our plugin can also perform
various web tasks, such as shopping, socializing
and information seeking to satisfy users’ diverse
web browsing needs. This proves that our plugin
has the following characteristics:
• Flexibility: Users can use our plugin to accom-

plish various tasks on any webpage, in any state,
anytime, anywhere.

• Efficiency: Each module in our plugin is opti-
mized for performance, and the time taken for
each step of the action depends largely on the
time taken to call LLM. Therefore, our plugin
executes extremely efficiently.

• Robust Interactivity: Our plugin receives user
interaction at any moment during execution.
Users can receive feedback and take control in
real time.

5 Evaluation

5.1 HTML Parser Performance

Experimental setup. We selected six categories of
frequently visited websites from Similarweb3 and
randomly tested the effectiveness of the parser by
selecting dozens of pages from each website, and
the results are shown in Table 1.

3https://www.similarweb.com/top-websites

77

https://www.similarweb.com/top-websites


Length Elements Time

Website # before # after reduction (%) # before # after reduction (%) msec

E-commerce 725,948 2,174.5 99.62 2,580.2 56.34 96.38 5.52
- Amazon 1,103,437 2,643.3 99.71 4,329.8 59.87 97.99 8.30
- eBay 679,852 2,108.7 99.65 2,138.3 46.28 97.70 5.11
- Taobao 394,555 1,771.4 99.51 1,272.6 62.86 93.50 3.14

Entertainment 825,534 2,069.1 99.48 2,705.0 39.33 98.00 5.42
- Bilibili 1,669,682 2,217.6 99.62 3,144.2 53.00 97.12 7.19
- Spotify 317,223 1,947.6 99.39 1,756.4 23.14 98.60 3.75
- Fandom 489,698 2,042.3 99.43 3,217.3 41.85 98.29 5.32

Forum 762,945 2,846.3 99.61 2,983.3 50.88 97.98 5.68
- Reddit 872,041 3,258.9 99.63 2,838.8 47.25 98.00 5.60
- Quora 653,849 2,433.7 99.59 3,127.7 54.50 97.96 5.75

Knowledge 452,532 4,584.8 98.71 2,630.8 75.11 96.62 4.38
- Wikipedia 440,264 6,135.1 98.37 2,479.0 95.33 96.10 4.33
- Baidu-baike 464,801 3,034.5 99.05 2,782.6 54.89 97.15 4.42

News 763,077 3,731.0 98.58 1,821.4 50.91 96.49 4.53
- Yahoo 1,829,666 4,959.4 99.53 2,843.6 40.22 98.47 8.18
- Yahoo-JP 317,049 2,457.3 99.23 1,693.8 74.87 95.48 3.12
- QQ 142,515 3,776.4 97.01 926.7 37.85 95.54 2.27

Social Media 1,679,296 1,547.1 99.81 3,389.6 47.37 97.95 8.96
- Facebook 3,332,936 1,663.8 99.94 6,417.8 47.67 99.13 14.94
- Instrgram 1,176,319 768.6 99.93 1,172.2 25.43 97.77 6.76
- X 528,634 2,208.7 99.57 2,578.7 69.00 96.96 5.18

Overall 900,782 2,714.2 99.32 2,669.9 52.12 97.24 5.83

Table 1: HTML simplification results on various sites.

Results Analysis. The HTML simplifier effec-
tively reduces the complexity of web pages across
various websites. It significantly reduces the num-
ber of actionable elements and the length of HTML
text, with simplification rates exceeding 97% and
99% respectively. The tool operates quickly, even
in dense environments like Facebook, with an aver-
age processing time of just 5.83 milliseconds. This
rapid performance demonstrates the tool’s practi-
cality for real-world applications, enabling quicker
and more focused web interactions by emphasizing
essential content.

5.2 Efficiency

Experimental setup. Following the HTML Parser
Performance testing methodology, we selected 12
websites from SimilarWeb. The system was as-
signed 80 web navigation tasks across these di-
verse websites. Throughout these tasks, we metic-
ulously recorded the response times of different
components. The outcomes of this evaluation are
presented in Table 2.

Results Analysis. The results indicate that network
transmission time makes up 70% of the system’s
operational time, primarily due to connections to
remote servers. Additionally, the model’s predic-

Fetch Parse Predict Network Execute

Time (ms) 510.3 71.2 2,405.7 7,166.4 31.2
Percentage 5.0 0.7 23.6 70.3 0.3

Table 2: System Efficiency.

tion activities, particularly with the GPT-4-turbo
model, account for 23% of the runtime. To im-
prove efficiency, future enhancements should fo-
cus on optimizing web page transmission, such as
by locally simplifying web pages to reduce data
volume by 99%, thus saving time and enhancing
performance.

6 Conclusion

OpenWebAgent represents a paradigm shift in web-
based human-computer interaction. It promises
to improve user experience and productivity by
automating a variety of web tasks efficiently and
intuitively. It provides a convenient framework
for the development of web agents based on large
language models (LLMs) and large multimodal
models (LMMs) through advanced HTML pars-
ing capabilities, a modularly designed system, a
friendly user interface, and the visualization of the
task execution process.

78



Limitations

While OpenWebAgent boasts remarkable capabili-
ties, it also has its limitations:
• Its performance may falter on complex or un-

conventional webpages, as it depends on under-
standing web structures.

• The tool is intended for general purposes and
might not perform optimally for tasks that re-
quire specialized knowledge.

• The capacity of OpenWebAgent to execute web
page operations is substantially influenced by the
capabilities of the underlying model, including
the ability to comprehend web page elements
and perform image recognition.

• Although OpenWebAgent is currently efficient,
its backend design needs to be improved to meet
the needs of large-scale applications and faster
web operations response.
Future developments will address these limi-

tations and improve its applicability and perfor-
mance.

Ethics Statement

Intended Use. OpenWebAgent is designed to as-
sist users in automating web browsing tasks.

Potential Misuse. OpenWebAgent can perform
tasks on the World Wide Web, however, we can-
not prevent users from using this tool for network
attacks, such as social forum spamming, DDoS
attacks, or unauthorized data extraction.

Acknowledgements

This work is supported by Technology and Innova-
tion Major Project of the Ministry of Science and
Technology of China under Grant 2022ZD0118600,
Natural Science Foundation of China (NSFC)
62276148 and 62425601, the New Cornerstone Sci-
ence Foundation through the XPLORER PRIZE.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Anthropic. 2023. Model card and evaluations for claude
models. Technical report, Anthropic.

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang,
Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou,

and Jingren Zhou. 2023. Qwen-vl: A frontier large
vision-language model with versatile abilities. arXiv
preprint arXiv:2308.12966.

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy
Liang. 2013. Semantic parsing on freebase from
question-answer pairs. In Proceedings of the 2013
conference on empirical methods in natural language
processing, pages 1533–1544.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. In Advances in Neural Information Process-
ing Systems, volume 33, pages 1877–1901.

Stephanie CY Chan, Ishita Dasgupta, Junkyung Kim,
Dharshan Kumaran, Andrew K Lampinen, and Felix
Hill. 2022. Transformers generalize differently from
information stored in context vs in weights. NeurIPS
MemARI Workshop.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion
Stoica, and Eric P. Xing. 2023. Vicuna: An open-
source chatbot impressing gpt-4 with 90%* chatgpt
quality.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul
Barham, Hyung Won Chung, Charles Sutton, Sebas-
tian Gehrmann, et al. 2023. Palm: Scaling language
modeling with pathways. Journal of Machine Learn-
ing Research, 24(240):1–113.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al.
2022. Scaling instruction-finetuned language models.
arXiv preprint arXiv:2210.11416.

Thomas H Davenport and Julia Kirby. 2016. Only hu-
mans need apply: Winners and losers in the age of
smart machines. Harper Business New York.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Sam
Stevens, Boshi Wang, Huan Sun, and Yu Su. 2023.
Mind2web: Towards a generalist agent for the web.
In Advances in Neural Information Processing Sys-
tems, volume 36, pages 28091–28114.

Team GLM, Aohan Zeng, Bin Xu, Bowen Wang, Chen-
hui Zhang, Da Yin, Diego Rojas, Guanyu Feng, Han-
lin Zhao, Hanyu Lai, Hao Yu, Hongning Wang, Jiadai
Sun, Jiajie Zhang, Jiale Cheng, Jiayi Gui, Jie Tang,
Jing Zhang, Juanzi Li, Lei Zhao, Lindong Wu, Lucen
Zhong, Mingdao Liu, Minlie Huang, Peng Zhang,
Qinkai Zheng, Rui Lu, Shuaiqi Duan, Shudan Zhang,
Shulin Cao, Shuxun Yang, Weng Lam Tam, Wenyi
Zhao, Xiao Liu, Xiao Xia, Xiaohan Zhang, Xiao-
tao Gu, Xin Lv, Xinghan Liu, Xinyi Liu, Xinyue
Yang, Xixuan Song, Xunkai Zhang, Yifan An, Yifan
Xu, Yilin Niu, Yuantao Yang, Yueyan Li, Yushi Bai,
Yuxiao Dong, Zehan Qi, Zhaoyu Wang, Zhen Yang,

79

http://arxiv.org/abs/2303.08774
https://paperswithcode.com/paper/model-card-and-evaluations-for-claude-models
https://paperswithcode.com/paper/model-card-and-evaluations-for-claude-models
http://arxiv.org/abs/2308.12966
http://arxiv.org/abs/2308.12966
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
http://arxiv.org/abs/2210.11416


Zhengxiao Du, Zhenyu Hou, and Zihan Wang. 2024.
Chatglm: A family of large language models from
glm-130b to glm-4 all tools.

Gemini Team Google. 2023. Gemini: a family of
highly capable multimodal models. arXiv preprint
arXiv:2312.11805.

Izzeddin Gur, Hiroki Furuta, Austin Huang, Mustafa
Safdari, Yutaka Matsuo, Douglas Eck, and Aleksan-
dra Faust. 2024. A real-world webagent with plan-
ning, long context understanding, and program syn-
thesis. In The Twelfth International Conference on
Learning Representations.

Petri Hallikainen, Riitta Bekkhus, and Shan L Pan. 2018.
How opuscapita used internal rpa capabilities to offer
services to clients. MIS Quarterly Executive, 17(1).

Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng
Xu, Wenmeng Yu, Junhui Ji, Yan Wang, Zihan Wang,
Yuxiao Dong, Ming Ding, et al. 2023. Cogagent: A
visual language model for gui agents. arXiv preprint
arXiv:2312.08914.

Albert Q Jiang, Alexandre Sablayrolles, Antoine
Roux, Arthur Mensch, Blanche Savary, Chris Bam-
ford, Devendra Singh Chaplot, Diego de las Casas,
Emma Bou Hanna, Florian Bressand, et al. 2024.
Mixtral of experts. arXiv preprint arXiv:2401.04088.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken-
ton Lee, et al. 2019. Natural questions: a benchmark
for question answering research. Transactions of the
Association for Computational Linguistics, 7:452–
466.

Hanyu Lai, Xiao Liu, Iat Long Iong, Shuntian Yao, Yux-
uan Chen, Pengbo Shen, Yu Hao, Hanchen Zhang,
Xiaohan Zhang, Yuxiao Dong, and Jie Tang. 2024.
AutowebGLM: A large language model-based web
navigating agent. In Proceedings of the 30th ACM
SIGKDD Conference on Knowledge Discovery and
Data Mining, KDD ’24.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae
Lee. 2023a. Visual instruction tuning. In Advances
in neural information processing systems, volume 36,
pages 34892–34916.

Xiao Liu, Hanyu Lai, Hao Yu, Yifan Xu, Aohan Zeng,
Zhengxiao Du, Peng Zhang, Yuxiao Dong, and
Jie Tang. 2023b. Webglm: Towards an efficient
web-enhanced question answering system with hu-
man preferences. In Proceedings of the 29th ACM
SIGKDD Conference on Knowledge Discovery and
Data Mining, KDD ’23, page 4549–4560, New York,
NY, USA. Association for Computing Machinery.

Meta. 2024. Introducing meta llama 3: The most ca-
pable openly available llm to date. Technical report,
Meta.

Suraj Mishra, Peixian Liang, Adam Czajka, Danny Z
Chen, and X Sharon Hu. 2019. Cc-net: Image com-
plexity guided network compression for biomedi-
cal image segmentation. In 2019 IEEE 16th Inter-
national Symposium on Biomedical Imaging (ISBI
2019), pages 57–60. IEEE.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu,
Long Ouyang, Christina Kim, Christopher Hesse,
Shantanu Jain, Vineet Kosaraju, William Saunders,
et al. 2021. Webgpt: Browser-assisted question-
answering with human feedback. arXiv preprint
arXiv:2112.09332.

Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao,
Saurabh Tiwary, Rangan Majumder, and Li Deng.
2016. Ms marco: A human generated machine read-
ing comprehension dataset. choice, 2640:660.

OpenAI. 2024a. Hello gpt-4o. Technical report, Ope-
nAI.

OpenAI. 2024b. New models and developer products
announced at devday. Technical report, OpenAI.

Jack W Rae, Sebastian Borgeaud, Trevor Cai, Katie
Millican, Jordan Hoffmann, Francis Song, John
Aslanides, Sarah Henderson, Roman Ring, Susan-
nah Young, et al. 2021. Scaling language models:
Methods, analysis & insights from training gopher.
arXiv preprint arXiv:2112.11446.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392, Austin,
Texas. Association for Computational Linguistics.

Teven Le Scao, Angela Fan, Christopher Akiki, El-
lie Pavlick, Suzana Ilić, Daniel Hesslow, Roman
Castagné, Alexandra Sasha Luccioni, François Yvon,
Matthias Gallé, et al. 2022. Bloom: A 176b-
parameter open-access multilingual language model.
arXiv preprint arXiv:2211.05100.

Rehan Syed, Suriadi Suriadi, Michael Adams, Wasana
Bandara, Sander JJ Leemans, Chun Ouyang,
Arthur HM ter Hofstede, Inge van de Weerd,
Moe Thandar Wynn, and Hajo A Reijers. 2020.
Robotic process automation: contemporary themes
and challenges. Computers in Industry, 115:103162.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023a. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023b. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

80

http://arxiv.org/abs/2406.12793
http://arxiv.org/abs/2406.12793
http://arxiv.org/abs/2312.11805
http://arxiv.org/abs/2312.11805
http://arxiv.org/abs/2312.08914
http://arxiv.org/abs/2312.08914
http://arxiv.org/abs/2401.04088
https://ai.meta.com/blog/meta-llama-3/
https://ai.meta.com/blog/meta-llama-3/
http://arxiv.org/abs/2112.09332
http://arxiv.org/abs/2112.09332
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/new-models-and-developer-products-announced-at-devday/
https://openai.com/index/new-models-and-developer-products-announced-at-devday/
http://arxiv.org/abs/2112.11446
http://arxiv.org/abs/2112.11446
http://arxiv.org/abs/2211.05100
http://arxiv.org/abs/2211.05100
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288


Wil MP Van der Aalst, Martin Bichler, and Armin
Heinzl. 2018. Robotic process automation.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30, pages 5998–6008.

Weihan Wang, Qingsong Lv, Wenmeng Yu, Wenyi
Hong, Ji Qi, Yan Wang, Junhui Ji, Zhuoyi Yang, Lei
Zhao, Xixuan Song, et al. 2023. Cogvlm: Visual ex-
pert for pretrained language models. arXiv preprint
arXiv:2311.03079.

Jianwei Yang, Hao Zhang, Feng Li, Xueyan Zou, Chun-
yuan Li, and Jianfeng Gao. 2023. Set-of-mark
prompting unleashes extraordinary visual grounding
in gpt-4v. arXiv preprint arXiv:2310.11441.

Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang,
Hanyu Lai, Ming Ding, Zhuoyi Yang, Yifan Xu,
Wendi Zheng, Xiao Xia, et al. 2022. Glm-130b: An
open bilingual pre-trained model. In The Eleventh In-
ternational Conference on Learning Representations.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022.
Opt: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068.

81

http://arxiv.org/abs/2310.11441
http://arxiv.org/abs/2310.11441
http://arxiv.org/abs/2310.11441
http://arxiv.org/abs/2205.01068

