@inproceedings{karakkaparambil-james-etal-2024-evaluating,
title = "Evaluating Dynamic Topic Models",
author = "Karakkaparambil James, Charu and
Nagda, Mayank and
Haji Ghassemi, Nooshin and
Kloft, Marius and
Fellenz, Sophie",
editor = "Ku, Lun-Wei and
Martins, Andre and
Srikumar, Vivek",
booktitle = "Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.acl-long.11",
doi = "10.18653/v1/2024.acl-long.11",
pages = "160--176",
abstract = "There is a lack of quantitative measures to evaluate the progression of topics through time in dynamic topic models (DTMs). Filling this gap, we propose a novel evaluation measure for DTMs that analyzes the changes in the quality of each topic over time. Additionally, we propose an extension combining topic quality with the model{'}s temporal consistency. We demonstrate the utility of the proposed measure by applying it to synthetic data and data from existing DTMs, including DTMs from large language models (LLMs). We also show that the proposed measure correlates well with human judgment. Our findings may help in identifying changing topics, evaluating different DTMs and LLMs, and guiding future research in this area.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="karakkaparambil-james-etal-2024-evaluating">
<titleInfo>
<title>Evaluating Dynamic Topic Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Charu</namePart>
<namePart type="family">Karakkaparambil James</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mayank</namePart>
<namePart type="family">Nagda</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nooshin</namePart>
<namePart type="family">Haji Ghassemi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marius</namePart>
<namePart type="family">Kloft</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sophie</namePart>
<namePart type="family">Fellenz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lun-Wei</namePart>
<namePart type="family">Ku</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andre</namePart>
<namePart type="family">Martins</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vivek</namePart>
<namePart type="family">Srikumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>There is a lack of quantitative measures to evaluate the progression of topics through time in dynamic topic models (DTMs). Filling this gap, we propose a novel evaluation measure for DTMs that analyzes the changes in the quality of each topic over time. Additionally, we propose an extension combining topic quality with the model’s temporal consistency. We demonstrate the utility of the proposed measure by applying it to synthetic data and data from existing DTMs, including DTMs from large language models (LLMs). We also show that the proposed measure correlates well with human judgment. Our findings may help in identifying changing topics, evaluating different DTMs and LLMs, and guiding future research in this area.</abstract>
<identifier type="citekey">karakkaparambil-james-etal-2024-evaluating</identifier>
<identifier type="doi">10.18653/v1/2024.acl-long.11</identifier>
<location>
<url>https://aclanthology.org/2024.acl-long.11</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>160</start>
<end>176</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Evaluating Dynamic Topic Models
%A Karakkaparambil James, Charu
%A Nagda, Mayank
%A Haji Ghassemi, Nooshin
%A Kloft, Marius
%A Fellenz, Sophie
%Y Ku, Lun-Wei
%Y Martins, Andre
%Y Srikumar, Vivek
%S Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F karakkaparambil-james-etal-2024-evaluating
%X There is a lack of quantitative measures to evaluate the progression of topics through time in dynamic topic models (DTMs). Filling this gap, we propose a novel evaluation measure for DTMs that analyzes the changes in the quality of each topic over time. Additionally, we propose an extension combining topic quality with the model’s temporal consistency. We demonstrate the utility of the proposed measure by applying it to synthetic data and data from existing DTMs, including DTMs from large language models (LLMs). We also show that the proposed measure correlates well with human judgment. Our findings may help in identifying changing topics, evaluating different DTMs and LLMs, and guiding future research in this area.
%R 10.18653/v1/2024.acl-long.11
%U https://aclanthology.org/2024.acl-long.11
%U https://doi.org/10.18653/v1/2024.acl-long.11
%P 160-176
Markdown (Informal)
[Evaluating Dynamic Topic Models](https://aclanthology.org/2024.acl-long.11) (Karakkaparambil James et al., ACL 2024)
ACL
- Charu Karakkaparambil James, Mayank Nagda, Nooshin Haji Ghassemi, Marius Kloft, and Sophie Fellenz. 2024. Evaluating Dynamic Topic Models. In Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 160–176, Bangkok, Thailand. Association for Computational Linguistics.