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Abstract

Open-Set Semi-Supervised Text Classification
(OSTC) aims to train a classification model on a
limited set of labeled texts, alongside plenty of
unlabeled texts that include both in-distribution
and out-of-distribution examples. In this paper,
we revisit the main challenge in OSTC, i.e.,
outlier detection, from a measurement disagree-
ment perspective and innovatively propose to
improve OSTC performance by directly maxi-
mizing the measurement disagreements. Based
on the properties of in-measurement and cross-
measurements, we design an Adversarial Dis-
agreement Maximization (ADM) model that
synergeticly optimizes the measurement dis-
agreements. In addition, we develop an ab-
normal example detection and measurement
calibration approach to guarantee the effective-
ness of ADM training. Experiment results and
comprehensive analysis of three benchmarks
demonstrate the effectiveness of our model.

1 Introduction

Text classification is a fundamental task in natu-
ral language processing. With the development of
modern deep learning techniques, text classifica-
tion has achieved significant advancement. How-
ever, deep learning models usually require substan-
tial labeled data, which is expensive in many real-
world applications. To tackle this problem, Semi-
supervised Text Classification (STC) has been pro-
posed, which only needs a small set of labeled
examples along with plenty of unlabeled examples
(Lee et al., 2013; Tarvainen and Valpola, 2017;
Meng et al., 2018; Gururangan et al., 2019; Chen
et al., 2020; Lee et al., 2021; Tsai et al., 2022;
Yang et al., 2023). By utilizing unlabeled texts
in training machine learning models, these ap-
proaches reduce the need to expensively annotate
abundant data. However, the STC assumption that
all unlabeled texts are sampled within the intended
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scope is impractical in real-world applications.
Therefore, researchers recently explored Open-set
Semi-supervised Text Classification (OSTC) (Chen
et al., 2023), which allows the inclusion of out-of-
distribution examples in the unlabeled text set.

The main challenge in OSTC is the commonly
known false positive inference problem (Chen et al.,
2023), which indicates a phenomenon that out-of-
distribution texts are prone to be recognized as
an in-distribution class, leading to unsatisfactory
OSTC outcomes. To address this issue, prior stud-
ies have integrated an STC model with different out-
lier detection techniques. For example, LMCL (Lin
and Xu, 2019) and Softmax (Yan et al., 2020) learn
discriminative embeddings and utilize local out-
lier factor (LOF) (Breunig et al., 2000) to identify
in-distribution (ID) and out-of-distribution (OOD)
examples. MSP (Hendrycks and Gimpel, 2017)
and LOS (Chen et al., 2023) respectively employ
maximum softmax probability and normalized en-
tropy function to identify ID and OOD examples.

We provide a general understanding of existing
OSTC models. Specifically, we revisit outlier de-
tection in existing methods from a measurement
disagreement perspective. It can be concluded that
existing approaches are fundamentally grounded
in the assumption that the differentiation between
ID and OOD examples hinges on the presence of
disagreement in specific measurements associated
with the examples. For instance, the density mea-
surement in LOF of LMCL and Softmax, and the
confidence and entropy measurements in MSP and
LOS. With this assumption, existing methods dis-
tinguish ID and OOD examples by setting certain
thresholds on the measurement.

The above discussion motivates us to answer a
question: Since ID and OOD examples can be more
easily distinguished when the measurement dis-
agreement is larger, can we improve outlier detec-
tion in OSTC by directly maximizing such measure-
ment disagreement between ID and OOD exam-
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ples? To answer this question, we make formal def-
initions and assumptions for measurement disagree-
ments and reveal several useful properties: (1) the
disagreement bounds can be increased by maximiz-
ing in-measurement disagreement between ID and
OOD examples. (2) the comparative consistency
assumption allows us to synergisticly optimize two
different measurements. (3) the in-example con-
sistency assumption enables us to detect abnormal
examples and calibrate measurements.

Based on the above motivations, we propose an
Adversarial Disagreement Maximization (ADM)
model for OSTC. Concretely, we treat the cross-
entropy loss of the ID softmax classifier and the out-
lier detection confidence as two different measure-
ments. To perform a synergistically measurement
optimization, we leverage an adversarial learning
approach to iteratively enlarge the disagreements of
the two measurements. In addition, to guarantee the
effectiveness of disagreement maximization, we de-
sign an abnormal-example detection approach to
correct the measurement optimization direction.

To summarize, we make the following contri-
butions: (1) We provide a general understanding
of outlier detection in OSTC and revisit it from
a measurement disagreement perspective. (2) We
propose an ADM model to directly maximize mea-
surement disagreements combined with measure-
ment calibration. (3) We evaluate our ADM model
on three benchmark datasets and demonstrate its
effectiveness by comprehensive analysis.

2 Related Works

Semi-supervised text classification (STC) trains
a model with a few labeled texts and many un-
labeled texts. Various regularization techniques,
consistency training approach are developed for
STC (Miyato et al., 2017; Gururangan et al., 2019;
Liu et al., 2021; Li et al., 2021; Xu et al., 2022).
Among these models, UDA (Xie et al., 2020) uti-
lizes substituting noising operations to construct
data augmentations combined with consistency
training. MixText (Chen et al., 2020) design a
novel text data augmentation method with Mixup
and used in consistency training. Some other works
leverage pseudo-labeling to annotate unlabeled
texts as additional training data (Lee et al., 2013;
Tarvainen and Valpola, 2017; Meng et al., 2018; Li
et al., 2021; Lee et al., 2021; Li et al., 2022b).

Open-set semi-supervised learning is understud-
ied task. The pipeline approaches first filters out

OOD examples and then conduct semi-supervised
training with filtered data. These methods often
design special outlier detectors (Saito et al., 2021;
Huang et al., 2021; Liu et al., 2022) or build new
optimization process (Yu et al., 2020; Zhu and Li,
2022; Li et al., 2022a). In recent work LOS (Chen
et al., 2023), the authors design a set of pipeline
methods utilizing different outlier detection ap-
proaches, including MSP (Hendrycks and Gimpel,
2017), DOC (Shu et al., 2017), LMCL (Lin and
Xu, 2019) and LSoftmax (Yan et al., 2020). LOS
unify semi-supervised training and outlier detec-
tion within probabilistic latent variable modeling.
We understand OSTC in a new measurement dis-
agreement perspective and leverages adversarial
learning (Goodfellow et al., 2014) to achieve dis-
agreement maximization.

3 Methodology

3.1 Prior Art

Task Definition. In open-set semi-supervised text
classification (OSTC), we expect to train a text clas-
sification model with a few labeled texts and many
unlabeled texts. The unlabeled texts contain both
in-distribution (ID) and out-of-distribution (OOD)
examples. We will use Y to denote the set of in-
distribution classes. We assume that we have access
to a labeled text set L = {(xl, yl)}Li=1 with each
class involving k examples, an unlabeled text set
U = (U+,U−) = {xi}ni=1, which consists of an in-
distribution text set U+ and an out-of-distribution
text set U−. The goal of the OSTC task is to iden-
tify whether a given text in the test set is an ID or
OOD example and predict the exact class type if
the given text is an ID example.
Outlier Detection in OSTC. Outlier detection is a
key component in OSTC. It contributes to model
training and evaluation of OSTC. As demonstrated
in previous work (Chen et al., 2023), the key chal-
lenge in OSTC is the false positive inference prob-
lem, which forces the OOD texts to be recognized
as an ID class when conducting semi-supervised
learning. An intuitive solution to this problem is
utilizing outlier detection to filter unlabeled OOD
examples during semi-supervised training. Second,
the outlier detector is required to identify whether a
given text is an ID or OOD example during evalua-
tion. Considering the vital role of outlier detection
in OSTC, in this work, we provide a general un-
derstanding of it and propose a novel optimization
framework to improve its performance.
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Table 1: Analysis for Existing Outlier Detection Methods in OSTC

Outlier Detection Model M(f ;x,Y) OOD Identification Condition

MSP (Hendrycks and Gimpel, 2017) max
y∈Y

f(x,y)∑
c∈Y f(x,c) M(f ;x,Y) < η1

DOC (Shu et al., 2017) max
y∈Y

fy(x) M(f ;x,Y) < η2

LMCL (Lin and Xu, 2019) ∑
x′∈Nk(x) f(x

′)

|Nk(x)|·f(x)
M(f ;x,Y) > 1

LSoftmax (Yan et al., 2020)
LOS (Chen et al., 2023) Hλ(f(x))

(log |Y|)λ M(f ;x,Y) > 0.5

3.2 Motivation
Revisit Outlier Detection from Measurement
Disagreement Perspective. To tackle the false
positive inference problem, existing works either
adopt a pipeline approach that first trains an out-
lier detector to filter the OOD examples and then
conducts semi-supervised training on the rest of un-
labeled data (Shu et al., 2017; Yan et al., 2020) or
integrate supervised training and outlier detection
as a unified framework (Chen et al., 2023) during
optimization. We provide a formal understand-
ing of these outlier detection methods and reveal
that all of these methods identify OOD examples
following a measurement disagreement assump-
tion. Formally, define a measurement M(f ;x,Y),
which involves an internal function f and two in-
puts: a text example x ∈ U and the in-distribution
class set Y . Based on the specified measurement
M, existing outlier detection methods introduce
a threshold to distinguish ID and OOD examples.
Concretely, we give the measurement formulation
and OOD identification condition for each outlier
detection method in Table 4 and explain as follows:

• MSP: M is the maximum softmax probability
and f is specified as a softmax classifier, with
a condition M < η1.

• DOC: M is the maximum 1-vs-rest probabil-
ity and each f is a 1-vs-rest sigmoid classifier,
with a condition M < η2.

• LMCL and LSoftmax: M is the Local Out-
lier Factor and f is the local reachability den-
sity (Breunig et al., 2000). Nk are the k-
nearest neighbors with a condition M > 1.

• LOS: M is the normalized entropy and f is a
softmax classifier, with a condition M > 0.5.
H is the entropy function.

The above analysis indicates that the OOD ex-
amples are detected under the assumption that the

measurements of an ID example x+ ∈ U+ and
an OOD example x− ∈ U− satisfy the following
disagreement with some specified threshold η:
{
M(f ;x+,Y)<η,

M(f ;x−,Y)⩾η.
or

{
M(f ;x+,Y)>η,

M(f ;x−,Y)⩽η
(1)

Formal Definitions for Measurement Disagree-
ment. For the convenience of formal analysis, we
make the following definitions:

Definition 1 Measurement Disagreement. For
any ID example x+ ∈ U+ and OOD example x− ∈
U−, given a specified measurement M(f ;x,Y),
we define the measurement disagreement of the two
examples x+ and x− as follows:

dM(x+, x−)= |M(f ;x+,Y)−M(f ;x−,Y)| (2)

We will also call dM(x+, x−) the in-measurement
disagreement of examples x+ and x−.

Definition 2 Cross-Measurement Disagreement.
For any example x ∈ U and two different speci-
fied measurements M1(f ;x,Y) and M2(f ;x,Y),
we define the cross-measurement disagreement of
example x under the two measurement as follows:

d(x,M1,M2)= |M1(f ;x,Y)−M2(f ;x,Y)|(3)

Definition 3 ϵ-Bounded Disagreement. For a
real number ϵ ⩾ 0 and a given measurement
M(f ;x,Y), we define that ID examples x+ ∈ U+

and OOD examples x− ∈ U− has a ϵ-bounded
disagreement, if the measurement disagreement for
each (x+, x−) pair satisfy:

dM(x+, x−)− ϵ ⩾ 0 (4)

Motivations from Measurement Disagreement.
From Definition 1, we know that the measurement
disagreement gives the amount of difference be-
tween the measurements of an ID and an OOD ex-
ample. Thus, when the disagreement dM(x+, x−)
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is larger, the model can distinguish x+ and x−
more easily. This motivates us to improve outlier
detection in OSTC by enlarging the measurement
disagreements. However, as existing outlier de-
tection methods are trained with softmax or sig-
moid classifiers and representation learning losses
for LOF in a pipeline or unified framework, their
training objectives are not developed to directly
increase the measurement disagreements. This de-
sign overlooks the potential advantage of enlarging
measurement disagreements over outlier detection.

Furthermore, based on Definition 3, if a measure-
ment disagreement dM(x+, x−) satisfy ϵ-bounded
disagreement, the worst case disagreement it can
reach is ϵ. Thus, if we want to increase the measure-
ment disagreements for (x+, x−) pairs, we may
correspondingly maximize disagreement bound ϵ.
From Formulation (1), we can easily derive that
existing outlier detection methods only satisfy the
0-bounded disagreement, which significantly lim-
its the models’ ability to distinguish ID and OOD
examples. The above observations inspire us to
ask: Can we increase the disagreement bounds
of outlier detection by directly maximizing the
measurement disagreements?

Another motivation is that we may unleash the
advantages of cross-measurement disagreement in
the outlier detection of OSTC. To formally under-
stand the potential of cross-measurement disagree-
ment, we make the following assumptions:

Assumption 1 Comparative Consistency. For
two examples x, x′ ∈ U and given two different
measurements M1(f ;x,Y) and M2(f ;x,Y), we
assume the two measurements are comparative con-
sistency. Namely, if M1(f ;x,Y) > M1(f ;x

′,Y),
then M2(f ;x,Y) > M2(f ;x

′,Y) is satisfied.

Under the above assumption, when comparing two
different examples, different measurements demon-
strate similar behavior. This property manifests
that when one measurement is optimized on a set
of examples, the other measurement may be accord-
ingly optimized. Thus, we may jointly optimize
two different measurements in a synergistic way
to mutually maximize the measurement disagree-
ments. However, existing methods only consider a
single measurement, which overlooks the mutual
enhancement between different measurements.

Assumption 2 In-Example Consistency. For any
example x ∈ U and given two different measure-
ments M1(f ;x,Y) and M2(f ;x,Y), we assume
the two measurements satisfy in-example consis-

tency. Namely, existing a small real value δ that
lets all x satisfy d(x,M1,M2) ⩽ δ.

Under the in-example consistency assumption,
we expect that different measurements are consis-
tent on each example. However, this consistency
may not be guaranteed when a misidentified ID or
OOD example is sent for optimization, we name
them abnormal examples. This motivates us to em-
ploy cross-measurement disagreements to detect
abnormal examples and calibrate the measurements
during training. However, existing OSTC methods
overlook such availability and lack reliable mecha-
nism to correct misidentified OOD examples during
training. This motivates us to consider: How can
we exploit the properties of cross-measurement
disagreements to promote disagreement maxi-
mization and rectify abnormal examples?

3.3 Adversarial Disagreement Maximization

In light of the formal discussion on measurement
disagreements, we present an Adversarial Disagree-
ment Maximization (ADM) model for OSTC that
effectively addresses the above questions. In ADM,
we first specify two measurements using a cross-
entropy loss on the in-distribution classifier and
confidence on the outlier detector. An adversarial
learning approach is then proposed to synergisti-
cally maximize disagreements of the two measure-
ments. To guarantee the optimization quality, we
present an abnormal-example detection method to
calibrate the disagreement maximization process.
The entire structure of our ADM and its implemen-
tation process is shown in Figure 1.

softmax sigmoid
Disagreement
Maximization

Measurement
Specification

Figure 1: The implementation process of our Adversar-
ial Disagreement Maximization (ADM) model.
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Specification of Measurements. To perform
OSTC, we build a softmax classifier on Y to clas-
sify ID examples and a sigmoid outlier detector
to identify OOD examples. Since OOD examples
may cause larger cross-entropy losses of the clas-
sifier and lower outlier detection confidence, we
naturally treat the cross-entropy loss and the confi-
dence as measurements. Specifically, a pre-trained
language model is first used to obtain text repre-
sentations. For later use, we formulate this text
representation process as function f . Then, we can
define the measurement of the cross-entropy loss

M1(f,Θ;x, ŷ) = − log
θTŷ f(x)∑
y∈Y θTy f(x)

, (5)

where Θ = {θy|y ∈ Y} is the parameter in the
softmax classifier on Y . The measurement of the
outlier-detection confidence is defined as

M2(f,Φ;x) = σ(ΦTf(x)), (6)

where Φ is the parameter of the outlier detector and
σ is the logistic function. Now the two measure-
ments M1 and M2 are specified.
Disagreement Maximization via Adversarial
Learning. To synergistically maximize disagree-
ments between the two measurements, we propose
an adversarial learning approach to iteratively en-
large the two disagreements. Concretely, we de-
fine the following adversarial training process for
OSTC

min
Θ

max
Φ

n∑

i=1

(−1)λiM2(f,Φ;xi)M1(f,Θ;xi, ŷi)

(7)

where λi is a binary indicator that satisfies

λi =

{
1,M2(f,Φ;xi) > 0.5,

0, otherwise.
(8)

The above objective adopts a min-max optimiza-
tion process. At the minimization step, the outlier
detection confidence M2 performs as a weight on
the cross-entropy loss M1 and λi performs as a
switcher to determine maximize or minimize M2.
Specifically, when λi = 1, xi is treated as an ID ex-
ample and the model minimizes its corresponding
loss M1(f,Θ;xi, ŷi). Otherwise, when λi = 0, xi
is treated as an OOD example and the model mini-
mizes the negative loss −M1(f,Θ;xi, ŷi), i.e., the

model maximizes M1. Similarly, At the maximiza-
tion step, M1 becomes a weight and the outlier de-
tection confidence M2 is accordingly maximized
or minimized according to λi. In this way, the
measurements M1 and M2 for ID examples and
OOD examples are updated in opposite directions,
thus maximize the in-measurement disagreements
dM1(x+, x−) and dM2(x+, x−) and therefore in-
crease the disagreement bounds.
Abnormal Example Detection and Measure-
ment Calibration. According to Equation (8), the
binary indicator λi rely on the value of the outlier
detector M2(f,Φ;xi). As in the adversarial train-
ing process, the outlier detector has no supervision
signals, it inevitably produces error indicators. An
incorrect indicator λi will reverse the optimization
direction and result in performance degradation.
However, no information guides us to distinguish
the examples that may lead to incorrect indicators.

Fortunately, the in-example consistency assump-
tion provides us with an opportunity to mitigate
the problem. Specifically, when an example is mis-
classified by the outlier detector, i.e., an abnormal
example, it is likely to fail to satisfy in-example
consistency. Thus, we use this property to detect
abnormal examples and reverse corresponding in-
dicator λi to maintain a correct optimization direc-
tion. To realize abnormal example detection, we
specify the cross-measurement disagreement as

d(xi,M1,M2) =

|M2(f,Φ;xi)−
M1(f,Θ;xi, ŷi)

maxjM1(f,Θ;xj , ŷj)
|

(9)

The measurement M1 is normalized with max-
normalization to keep consistent scope [0, 1] with
measurement M2. Under this specification, we
modify the adversarial learning objective to

min
Θ

max
Φ

n∑

i=1

(−1)αi(−1)λiM2(f,Φ;xi)

• M1(f,Θ;xi, ŷi)

(10)

where αi is a binary indicator that indicates whether
xi is an abnormal example and its value is deter-
mined by whether xi satisfies the in-example con-
sistency. Namely, αi is computed by

αi =

{
0, d(xi,M1,M2) > δ,

1, otherwise.
(11)

Note that as M1 and M2 are converse measure-
ments, i.e., larger M1 and smaller M2 indicate
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OOD examples, they are more consistent when a
larger margin between M1 and M2 is presented,
which is different from the isotropic measurements
defined in Assumption 2. Under this design, when
an example xi is detected as an abnormal example,
i.e., αi = 1, the model will reverse the optimization
direction in the learning objective (10) and calibrate
the measurements towards a correct optimization
direction, which guarantees the effectiveness of
adversarial disagreement maximization.
Optimization Process of ADM. We optimize
ADM with the following three training stages:
Pre-stage1: To provide an initialized model, we
pre-train the classifier using labeled texts in L with
cross-entropy loss and treat labeled texts as ID ex-
amples and unlabeled texts in U as OOD examples
to pre-train the outlier detector with BCE loss.
Pre-stage2: Assign pseudo labels for unlabeled
texts using the model trained in pre-stage1 and
use the pseudo-labeled texts to further refine the
classifier and outlier detector.
ADM: Perform adversarial disagreement maxi-
mization to iteratively optimize the two measure-
ments and further update the classifier and outlier
detector combined with measurement calibration.

4 Experiment

4.1 Datasets and Experiment Setting

Datasets. We use the 3 benchmark datasets created
from existing text classification datasets in the pre-
vious work to evaluate OSTC (Chen et al., 2023),
including AGNews (Radford et al., 2019), DBPe-
dia (?) and Yahoo (Chang et al., 2008). These
datasets are all widely used in text classification
and includes enough amounts of common classes
to evaluate OSTC models.

Table 2: The statistics of the datasets. # lab., #unl., #val.
and #test respectively denote the labeled, unlabeled,
validation and test texts for each class. #ID , #OOD
denote the number of ID and OOD classes, respectively.

Dataset #lab. #unl. #val. #test #ID #OOD

AGNews 10/50/100 5k 2k 1.9k 2 2
Yahoo 10/50/100 5k 2k 6k 6 4

DBPedia 10/50/100 5k 2k 5k 8 6

Dataset Construction and Experimental Set-
tings. We follow the same dataset splitting setting
in previous work (Chen et al., 2023). We use the
same ID and OOD class sets and data for training,

validation and test described in the previous work.
The statistics of these benchmarks are shown in Ta-
ble 2. We also follow the two metrics used in LOS
to evaluate the OSTC performance. We use Acc
and F1 to denote the overall accuracy and F1 value,
which jointly evaluates a model’s performance in
both ID classification and OOD detection.

4.2 Implementation and Baseline Models
Implementation. Our ADM model is imple-
mented with PyTorch. We leverage the BERT en-
coder to build the Θ component and introduce an
MLP with a sigmoid function to build the Φ com-
ponent. When optimizing, we execute 100 updates
for the first two pre-training stages respectively
and choose model parameters with the best Acc
on the validation set. During the ADM training
stage, we iteratively execute 100 updates at the
minimization step and 100 updates at the maxi-
mization step. The labeled training batch size is
set to 4 and the unlabeled training batch size is
set to 8. The learning rate of the model is set to
5e − 5. The hyper-parameter δ is set to 0.25 on
AGNews and Yahoo and is set to 0.15 on DBPedia.
All hyper-parameters are selected by grid search
on the validation set. We run each experiment 3
times and report the average result and standard
deviation. We run all experiments on two NVIDIA
Tesla A100 GPUs with 40GB memory.
Baseline Models ADM is compared with the fol-
lowing baselines:
UDA+MSP, MixText+MSP: Pipeline OSTC mod-
els combine UDA (Xie et al., 2020), MixText (Chen
et al., 2020) with maximum softmax probability to
implement OOD detection (Hendrycks and Gimpel,
2017).
UDA+LSoftmax, MixText+LSoftmax: Pipeline
OSTC models combine UDA, MixText that learn
discriminative text features with an uncomplicated
softmax and achieve OOD detection using Local
Outlier Factor (Yan et al., 2020).
UDA+DOC, MixText+DOC: Pipeline models
combine UDA, MixText with m 1-vs-rest sigmoid
classifiers for OOD detection (Shu et al., 2017).
UDA+LMCL, MixText+LMCL: Pipeline OSTC
models combine UDA, MixText using large margin
cosine loss for OOD detection (Lin and Xu, 2019).
UDA+LOS, MixText+LOS: OSTC models unify
semi-supervised training and outlier detection
within probabilistic latent variable modeling which
optimized with EM algorithm based on UDA and
Mixtext (Chen et al., 2023).
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Table 3: The open-set semi-supervised text classification results on AGNews, Yahoo and DBPedia.

Method
AGNews Yahoo DBPedia

k = 10 k = 50 k = 100 k = 10 k = 50 k = 100 k = 10 k = 50 k = 100

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

UDA+MSP 35.16 31.42 50.83 31.90 60.57 56.51 40.97 12.44 47.80 27.87 55.51 44.84 52.06 37.14 81.14 83.31 81.53 84.46
(0.19) (0.34) (1.25) (0.12) (1.49) (2.40) (0.28) (0.73) (0.89) (1.68) (0.86) (1.29) (1.90) (2.43) (1.44) (0.91) (0.93) (0.69)

UDA+LSoftmax 37.49 35.93 38.75 38.80 41.45 39.63 38.95 41.94 44.49 49.62 44.92 51.35 53.96 65.01 55.40 65.62 55.29 63.74
(0.91) (0.47) (0.29) (0.29) (1.79) (0.84) (3.28) (1.21) (0.96) (0.85) (0.08) (0.96) (1.40) (3.97) (0.63) (2.37) (0.53) (0.86)

UDA+DOC 33.26 30.89 49.95 26.39 60.59 55.16 39.93 9.87 40.01 8.21 47.98 28.39 42.84 6.73 48.89 18.79 82.88 82.30
(0.65) (1.11) (0.33) (0.73) (2.29) (2.04) (0.17) (0.40) (0.07) (0.02) (0.62) (1.27) (0.07) (0.05) (1.20) (2.96) (1.06) (1.36)

UDA+LMCL 35.20 31.48 44.66 28.03 48.26 41.98 41.92 37.06 46.62 54.05 47.65 55.26 53.13 59.46 56.16 69.94 56.34 69.79
(0.66) (0.50) (1.61) (7.69) (6.82) (5.77) (4.28) (20.49) (0.59) (1.10) (0.22) (0.49) (3.38) (12.82) (0.27) (0.47) (0.09) (0.80)

MixText+MSP 35.17 32.23 50.39 28.40 63.02 59.21 40.49 10.41 48.26 28.32 54.30 42.63 53.04 38.17 80.96 82.97 80.77 83.83
(0.89) (0.40) (0.49) (3.58) (0.41) (1.35) (0.37) (1.72) (0.68) (1.35) (1.13) (3.12) (0.65) (1.70) (0.57) (0.36) (0.83) (0.29)

MixText+LSoftmax 37.93 37.80 39.53 39.69 40.98 39.41 43.13 48.31 45.62 52.32 45.75 51.50 53.84 65.80 56.64 67.21 57.83 64.93
(1.15) (1.58) (0.53) (0.59) (3.16) (2.61) (2.12) (1.24) (0.62) (0.66) (0.58) (1.12) (2.32) (2.92) (1.71) (3.36) (2.03) (0.98)

MixText+DOC 38.17 36.54 50.10 22.56 58.41 51.58 40.12 9.13 40.03 8.26 47.38 26.61 42.85 7.27 47.65 16.93 81.74 82.55
(0.79) (1.89) (0.04) (0.13) (1.27) (4.02) (0.02) (0.07) (0.44) (1.00) (0.79) (1.89) (0.02) (0.58) (1.76) (3.50) (3.61) (2.23)

MixText+LMCL 34.20 27.41 40.55 38.44 51.27 47.66 43.89 49.35 47.04 53.77 48.42 55.70 55.40 69.79 56.05 70.24 56.24 72.08
(0.93) (3.78) (8.87) (11.91) (10.70) (7.06) (2.65) (2.56) (0.17) (0.79) (0.63) (1.12) (0.08) (0.23) (0.06) (0.13) (0.11) (1.93)

UDA+LOS 56.44 42.45 75.12 72.52 75.53 74.64 46.49 45.88 63.71 65.60 67.50 67.67 77.89 80.52 83.28 86.07 85.68 88.18
(0.84) (6.24) (3.48) (3.10) (1.72) (1.37) (1.00) (3.57) (1.65) (1.01) (2.38) (1.67) (3.99) (3.55) (1.57) (0.65) (3.24) (3.41)

MixText+LOS 52.89 31.80 69.11 62.04 76.60 73.33 57.19 51.07 66.57 66.18 68.09 66.99 76.67 79.23 91.92 92.91 88.31 90.33
(0.57) (1.54) (4.90) (7.82) (2.81) (3.83) (0.35) (0.41) (0.09) (0.54) (0.49) (0.94) (4.48) (4.23) (3.88) (3.05) (9.57) (7.39)

ADM 67.47 62.35 77.65 74.84 79.93 78.10 57.95 54.11 68.08 66.07 67.67 66.34 86.49 85.52 91.55 91.33 90.75 90.50
(5.21) (3.76) (0.92) (1.29) (1.09) (1.22) (1.26) (1.71) (0.20) (0.59) (0.59) (0.80) (2.87) (3.36) (1.60) (1.37) (1.23) (0.40)

Table 4: Ablation studies of ADM on the AGNews dataset.

Metric ADM pre-stage1 ADM pre-stage2 ADM 0-threshold ADM

k = 10 k = 50 k = 10 k = 50 k = 10 k = 50 k = 10 k = 50

Acc 53.97 56.22 54.07 69.14 50.52 68.67 67.47 77.65
F1 36.79 41.08 40.22 62.30 33.47 67.96 62.35 74.84
In 52.68 64.42 53.02 69.18 50.00 84.47 71.49 82.60

Out 58.88 60.51 60.21 76.50 55.78 74.64 79.70 85.32

4.3 Experiment Results

Main Results. The open-set semi-supervised text
classification results on benchmark datasets are
shown in Table 3. From the table, we observe that
ADM achieves the best performance in all settings
of the AGNews dataset and most of the settings on
Yahoo and DBPedia datasets and ADM achieves
more improvement when k is smaller. These re-
sults demonstrate that our adversarial disagreement
maximization approach is effective in OSTC and
it is more effective in a challenging setting. An-
other observation is that LOS combined with UDA
and MixText significantly improve the performance
over pipeline models and ADM further improves
LOS in most of the settings. These results manifest
that unified training of semi-supervised classifica-
tion and outlier detection can be better adapted to
OSTC than the pipeline approach and directly max-
imizing measurements disagreement is more effec-
tive than existing optimization methods in OSTC.

Ablation Study. To analyze the contributions of
each component and each training stage in ADM,
we make ablation studies. Specifically, we com-
pare 3 ablated models: ADM pre-stage1, pre-stage1
and ADM 0-threshold that disables the abnormal-
example detection module with a setting of δ = 0.
The ablated results show that pre-stage1 provides
an initialized model for ADM and the pre-stage2
further improves upon pre-stage1. However, when
training ADM without abnormal example detection,
ADM 0-threshold performs even worse than in pre-
stage2. When employing an appropriate abnormal-
example detection threshold, ADM significantly
improves OSTC results. This result demonstrates
that abnormal-example detection and measurement
calibration guarantees the effectiveness of ADM.
ID Classification and OOD Detection Results.
To analyze the models’ ability to classify ID exam-
ples and detect OOD examples, we report the ID
classification accuracy and OOD detection accu-
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Table 5: The evaluation results of accuracy on ID examples (In) and OOD detection accuracy on all examples (Out).

Method
AGNews Yahoo DBPedia

k = 10 k = 50 k = 100 k = 10 k = 50 k = 100 k = 10 k = 50 k = 100

In Out In Out In Out In Out In Out In Out In Out In Out In Out

UDA+MSP 70.33 49.99 82.90 51.67 86.10 62.97 63.70 41.54 76.23 48.44 78.46 56.75 96.98 52.17 98.42 81.40 98.55 81.82
UDA+LSoftmax 70.54 44.43 84.10 42.90 86.47 46.37 63.83 56.12 77.66 55.58 79.53 55.94 96.98 55.38 98.52 56.06 98.57 55.87

UDA+DOC 66.21 49.61 83.5 50.32 86.66 62.62 59.95 40.70 75.91 40.01 78.70 48.58 94.72 47.61 98.29 48.89 98.39 83.01
UDA+LMCL 70.40 50.33 83.55 47.19 86.07 51.10 65.92 52.90 77.41 59.21 79.49 59.67 96.78 54.38 98.45 57.02 98.49 57.20

MixText+MSP 70.35 49.93 83.32 50.81 86.88 65.08 66.82 40.75 77.54 48.91 79.48 55.72 95.79 53.23 98.10 81.30 98.35 81.11
MixText+LSoftmax 73.90 44.29 85.47 43.20 87.08 44.57 70.61 59.86 78.30 57.28 79.13 56.84 97.26 55.13 97.97 57.47 98.32 58.53

MixText+DOC 76.17 49.92 83.97 50.11 86.82 60.48 64.58 40.29 76.51 40.03 77.93 47.90 95.75 42.86 97.88 47.65 98.46 81.90
MixText+LMCL 69.35 45.17 83.54 44.71 86.97 55.01 67.86 55.15 78.50 59.88 79.96 60.33 96.96 57.32 98.12 57.11 98.28 57.22

UDA+LOS 59.18 60.34 84.23 77.78 86.23 78.94 60.63 59.73 76.27 70.66 78.12 73.96 93.49 79.53 96.06 84.40 97.55 86.40
MixText+LOS 61.97 53.59 83.50 70.48 87.27 77.97 69.34 61.29 78.03 70.30 79.73 71.77 92.15 79.17 97.75 92.61 98.33 88.83

ADM 71.49 79.70 82.60 85.32 84.62 87.06 63.03 72.86 74.17 78.21 76.82 77.71 95.16 88.20 97.78 92.54 97.71 91.90

racy in Table 5. Metrics In and Out are introduced
to denote the ID accuracy on only ID examples
and outlier-detection accuracy on all examples, re-
spectively. The results in the table show that our
ADM model outperforms existing OSTC models
with large margins on the outlier detection (Out)
accuracy results in most of the settings. These re-
sults demonstrate that the superiority of ADM is
dominated by its good performance on OOD detec-
tion although it sacrifices ID classification results
in some settings. These results suggest that ADM
is effective in alleviating false positive inference.
Comparison with Large Language Models. We
provide an empirical study using the large language
model (LLM) LLaMA2-7B and in-context learn-
ing for OSTC in Table 6. Concretely, we design
prompts that can guide the LLaMA2-7B model to
complete classification and outlier detection, and
we evaluate it in the 0-shot and 10-shot settings
on the AGNews dataset. From the results, we can
conclude that LLaMA2-7B can perform outlier de-
tection and the OSTC task. However, in the 0-shot
setting LLaMA2-7B, it performs poorly in both
outlier detection and OSTC and achieves worse
performance than baseline models. In the 10-shot
setting of LLaMA2-7B, it achieves a good outlier
detection result but a worse OSTC result than base-
line models. And ADM outperforms LLaMA2-7B
in both outlier detection and OSTC. These results
demonstrate that in the OSTC task, carefully de-
signed lightweight models may still be necessary
and useful with the background of LLMs.

4.4 Experimental Analysis
Analysis on the Adversarial Learning Process.
To study how our adversarial learning process
works, we make an analysis of the changes in the

Table 6: Comparison with Large Language Models.

Model Outlier Detection OSTC

LLaMA2-7B (0-shot) 49.6 25.4
LLaMA2-7B (10-shot) 71.6 45.3
UDA+LOS (k = 10) 60.3 56.4

Mixtext+LOS (k = 10) 53.4 52.9

ADM (k = 10) 79.7 67.4
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Figure 2: The smoothed loss values change trend in
min-max optimization during training.

losses during training. Specifically, we record the
loss values of the maximization and minimization
steps during training on the k = 10 and k = 50
settings of AGNews in Figure 2. From the figure,
we observe that the loss values of the maximization
and minimization steps respectively increase and
decrease as the training progresses. These results
demonstrate that our adversarial training approach
is effective. Since the losses of the maximization
and minimization steps can be respectively viewed
as weighted summed measurements, the results
demonstrate that the measurement disagreements
are synergistically maximized.
Analysis on the Abnormal-Example Detection
Approach. In order to investigate the effective-
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Table 7: Case study on four selected text examples from the AGNews dataset.

Id Text k True Label Pre-stage2 Initial M2 ADM M2

1
Jennifer Canada knew she was entering a boy’s club when she en-
olled in Southern Methodist University’s Guildhall school of vi-
deo game making.

10 Sci/Tech \ 0.0706 0.9771

2
AP - The smallest man on the court always seems to make the big-
gest plays for the Washington Huskies.

10 \ Business 0.8621 0.2369

3
The company said most cuts would come in its network operations
division, where work has become increasingly automated, and in
the customer service group.

50 Business \ 0.4134 0.9995

4

Myanmar’s Opposition National League for Democracy (NLD)
party accused the military regime of endangering party leader Aung
San Suu Kyi’s life by restricting her access to a doctor and non-junta
security.

50 \ Sci/Tech 0.9963 0.0174
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Figure 3: The percent of correctly identified normal and
abnormal examples accumulated in previous training
epochs in k = 10 and k = 50 settings of AGNews.

ness of our abnormal-example detection approach
during adversarial disagreement maximization, we
report the percent of correctly identified normal and
abnormal examples accumulated in previous train-
ing epochs in Figure 3. From the recording results,
we observe that the percentage of correctly iden-
tified abnormal examples increase as the training
progress. This result indicates that the abnormal-
example detection approach is effective. In k = 10
setting, although the model sacrifices normal ex-
ample identification performance, it significantly
increase abnormal-example detection performance.

Hyper-Parameter Analysis. To study how the
hyper-parameters affect the training process, we
make a hyper-parameter analysis. Specifically, we
report the OSTC evaluation results of k = 10 and
k = 50 settings on AGNews using different hyper-
parameter δ in Figure 4. From the results, we ob-
serve that the performance of ADM is sensitive to
the hyper-parameter δ and an inappropriate con-
figuration of δ may result in poor performance of
ADM. This phenomenon indicates that abnormal-
example detection and measurement calibration is
necessary to guarantee the effectiveness of ADM.
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Figure 4: Hyper-parameter analysis of δ on AGNews.

4.5 Case Study
We make a case study in Table 7 on selected text
examples to analyze the outlier detection ability of
ADM. As shown in case 1 and case 3, the ground-
true labels are respectively Sci/Tech and Business,
but the pre-stage2 model makes wrong predictions
(M2 < 0.5). After ADM training, the outlier de-
tector successfully reverses the wrong predictions
to the correct ones. Similarly, in case 2 and case
4, pre-stage2 incorrectly identifies the example as
OOD. Nevertheless, ADM successfully rectifies
the predictions, demonstrating its effectiveness.

5 Conclusion

We reveal the potential of measurement disagree-
ment in OSTC. To fully employ the advantage
of measurement disagreement in OSTC, we pro-
pose to directly maximize it and design a novel
adversarial disagreement maximization (ADM) ap-
proach combined with abnormal-example detection
to improve OSTC performance. Experiment results
demonstrate the effectiveness of ADM.
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6 Limitations

Although our measurement disagreement maxi-
mization model is demonstrated effective, it may
have two limitations. First, ADM relies on a two-
stage pre-training process to obtain an initialized ID
classifier and outlier detector, which guarantees the
effectiveness of the min-max optimization. Second,
ADM requires the proposed abnormal-example de-
tection and measurement calibration approach to
guarantee the correct optimization direction.
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