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Abstract
We present time vectors, a simple tool to cus-
tomize language models to new time periods.
Time vectors are created by finetuning a lan-
guage model on data from a single time (e.g.,
a year or month), and then subtracting the
weights of the original pretrained model. This
vector specifies a direction in weight space
that, as our experiments show, improves perfor-
mance on text from that time period. Time vec-
tors specialized to adjacent time periods appear
to be positioned closer together in a manifold.
Using this structure, we interpolate between
time vectors to induce new models that perform
better on intervening and future time periods,
without any additional training. We demon-
strate the consistency of our findings across
different tasks, domains, model sizes, and time
scales. Our results suggest that time is encoded
in the weight space of finetuned models.

1 Introduction

Temporal variation is a fundamental characteris-
tic of language. As we show in §3, it manifests
in language model development as temporal mis-
alignment, where deviations in train and test data
lead to large performance degradation across dif-
ferent time periods (Luu et al., 2022; Lazaridou
et al., 2021, inter alia). This necessitates adapta-
tion techniques for customizing models to specific
time periods. Designing such techniques is difficult,
however, due to the multitude of time scales and
the possibility that data from a target time period
might be unavailable.

Recent work has shown that the behavior of neu-
ral networks can be edited through closed-form
interpolation between parameters of finetuned mod-
els (Ilharco et al., 2023; Ortiz-Jiménez et al., 2023;
Li et al., 2022; Wortsman et al., 2021, inter alia).
In this work, we demonstrate that weight-space
interpolation can also be used to cheaply edit lan-
guage model behavior over time. To this end, we
introduce time vectors (§4), an extension of task

Figure 1: We present time vectors, a simple tool to cus-
tomize language models to new time periods. Time
vectors (τi) specify a direction in weight space that im-
proves performance on text from a time period i. They
are computed by subtracting the pretrained weights (θpre;
left panel) from those finetuned to a target time period
(θi). We can customize model behavior to new time
periods (e.g., intervening months or years) by interpo-
lating between time vectors and adding the result to the
pretrained model (middle panel). We can also gener-
alize to a future time period j with analogy arithmetic
(right panel). This involves combining a task-specific
time vector with analogous time vectors derived from
finetuned language models (τLM

j ).

vectors (Ilharco et al., 2023). We finetune a pre-
trained language model on text from a single time
period, and then subtract the pretrained weights.
This vector represents a direction of movement in
weight space that improves performance on text
from the target time period.

We analyze the structure of time vectors with
temporally organized datasets for language mod-
eling, classification, and summarization (§2). Our
results consistently suggest that time vectors are in-
tuitively organized on a manifold; years or months
that are closer together in time yield time vectors
that are also closer together in weight space. Simi-
larly, we show that temporal degradation in yearly
and monthly settings is strongly correlated with the
angles between time vectors (§4.2).

We use this structure of time vectors to induce
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Figure 2: Model performance degrades linearly year-to-year. We evaluate language model perplexity (WMT),
ROUGE-L (news summarization), and macro F1 (political affiliation classification). Each cell indicates the monthly
performance of T5-3B finetuned and evaluated on a single year from that task. We report the percentage difference
from the average performance for each year, and find linear degradation as finetuning and evaluation years become
more misaligned regardless of task. We display similar trends for T5-small and medium, as well as for other domains
and tasks, in §A.1. We measure the linearity of these degradations in Appendix Table 4.

models that generalize better to data from new time
periods. By interpolating between two time vectors,
we discover vectors that, when applied to the pre-
trained model, improve performance on intervening
months or years (§4.3). The structure can also be
used to generalize task-specific models across time
periods with analogous time vectors specialized to
unlabeled data (§4.4).

Our results show that temporal variation is to
some extent encoded in the weight space of fine-
tuned models, and that weight interpolation can
help customize language models to new time peri-
ods. We publicly release our code, data, and over
500 models finetuned on specific time periods.1

2 Data and Finetuning

In this section, we describe our datasets and fine-
tuning techniques, which serve as the basis for all
subsequent experiments. We finetune language
models on multiple time-stratified datasets, which
we use to analyze temporal misalignment and build
time vectors. Then, we explore different ways of
interpolating between time vectors to generalize
to new times. See §4.3-4.5 for more details on
interpolation strategies.

2.1 Datasets

Language Modeling We create two new time-
specific language modeling datasets from unla-
beled text in news and Twitter domains. For these

1https://github.com/KaiNylund/
lm-weights-encode-time

datasets, we measure perplexity of the model on
the test set:

• WMT Language Modeling: We randomly
sample 67K ± 5K articles (47M BPE tokens)
of training articles and 3K ± 0.3K test arti-
cles (2.3–2.4M tokens) from each year 2012–
2021 in the English subset of the WMT news
dataset (Barrault et al., 2021), from 2012–
2016. From the same time range, we also
sample 7.1M tokens of training articles and
700–720K tokens of test articles from each
month. We are missing WMT train and test
splits for August 2012 and May 2016.

• Twitter Language Modeling: We randomly
sample 2M ± 105K training tweets (72–78M
tokens BPE tokens) and 100K ± 5.4K test
tweets (3.6-3.9M BPE tokens) from each year
in the Internet Archive Twitter Stream Grab,2

from 2015–2020. We only use this dataset to
study the domain-specificity of time vectors
in §4.4.

To understand the level of contamination in our
datasets, we measure the overlap between yearly
train and test splits in both tasks using a Bloom fil-
ter.3 We find that less than two percent and 0.1 per-
cent of examples in the Twitter and WMT LM test
sets, respectively, contain contaminated n-grams.

2https://archive.org/details/
twitterstream

3https://github.com/allenai/bff
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We do not own any text in these corpora, and pub-
licly release our splits under the CC0 license.

Downstream Tasks For downstream tasks, we
draw from Luu et al. (2022). We measure each
model’s performance on the test set in ROUGE-L
for NewsSum and macro F1 for PoliAff.

• NewsSum: We use Luu et al. (2022) postpro-
cessing of Grusky et al. (2018) news summa-
rization task. To align with out WMT dataset,
we do not bin adjacent years together, creat-
ing uniformly sized splits for each year, 2012–
2016.

• PoliAff: We use the Political Affiliation task
from Luu et al. (2022), with uniformly sized
datasets for each year from 2015 to 2020.

2.2 Finetuning

To compare the same weight space across tasks,
we use pretrained T5 (Raffel et al., 2023) check-
points for all our experiments. We finetune T5-
small, T5-large, and T5-3b on each of our time-
stratified datsets. For language modeling, we use
the “LM adaptation” objective (Lester et al., 2021).

To reduce the computational cost, we finetune
T5-large and T5-3B with Low-Rank Adaptation
(LoRA; Hu et al., 2021) and default hyperparame-
ters (q and v attention target modules, r = 8, α =
32, dropout = 0.1). When creating time vectors,
we merge LoRA weights back into the base model
before subtracting the pretrained model.

Across all settings, we use a batch size of 2 with
8 gradient accumulation steps. We finetune for
a single epoch on LM splits and three epochs on
downstream task splits. Our learning rates across
all tasks are 8 × 10−4 for T5-small and T5-large,
and 2 × 10−4 for T5-3b. We finetuned models
concurrently with a single GPU each; we used 8
2080ti, 4 Titan, and 8 A40 GPUs. We use only a
single seed for finetuning (42) due to computational
constraints. In experiments in §4.4 and §4.5, we
ran evaluations in parallel using available Titan,
A40, and A100 GPUs.

3 Temporal Misalignment at Multiple
Time Scales

We begin with an analysis of temporal misalign-
ment using the new set of models and tasks that we
consider in this work (§2). These findings set the
stage for our creation of time vectors in §4.

Figure 3: Monthly temporal degradation has sea-
sonal patterns. Each cell indicates the monthly perfor-
mance of T5-small finetuned and evaluated on a single
month of the WMT dataset. We report the percentage
difference in test perplexity from the average on the eval-
uation month over all finetuned T5-small models (darker
is better). The diagonal indicates that each model does
best on its finetuning month. Models also do relatively
better on the same month in other years, visible as the
stripes radiating out from the diagonal every 12 months.

3.1 Yearly Degradation is Linear

Consistent with past work (Lazaridou et al., 2021;
Luu et al., 2022; Longpre et al., 2023), we observe
linear patterns of year-to-year degradation (Figure
2). We finetune T5-small, T5-large, and T5-3b on
each yearly split from every dataset, then evaluate
each of these year-finetuned models on every other
time split of the test data. Like Luu et al. (2022)
show, some tasks, like political affiliation classifi-
cation, exhibit clearer degradation than others. We
quantify these variations in §A.2.

3.2 Monthly Degradation is Seasonal

Next, we turn to month-by-month temporal mis-
alignment. We train T5-small on each WMT LM
month split from 2012–2016, resulting in 58 month-
finetuned models. We then test every 2012–2016
month model on each month test split for a total of
3,364 evaluations.

Finetuning and evaluating models on specific
months in the WMT dataset reveals non-linear pat-
terns in temporal misalignment, which correspond
to the cycle of months in each year. This pattern
is captured by the stripes that occur parallel to the
diagonal every 12 months in Figure 3, which indi-
cate that the model for a particular month tends to
do better on the same month in other years. We
quantify these differences in perplexity in appendix
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Figure 4: Time vectors are organized in a mani-
fold that reflects temporal variation. Each point is a
UMAP projection (with default parameters) of the last
feedforward layer of a T5-small time vector finetuned
on single month of WMT. Points and edges between
adjacent months are colored by year. Distances between
the weights of time vectors correlate with temporal mis-
alignment (§4.2).

Figure 12. We also report degradation patterns in
online training settings in §A.4.

3.3 Summary

We measure temporal misalignment across a va-
riety of domains, tasks and time scales. While
performance decays linearly on a yearly scale, we
discover seasonal trends in month-to-month mis-
alignment. Next, we analyze how these phenomena
relate to the weights of time-specific models, and
then use that relationship to present techniques for
adapting LMs to new times.

4 Temporal Adaptation with Time
Vectors

The collection of year and month-finetuned mod-
els from §3 presents a new source of data to study
temporal misalignment: model weights. In this
section, we analyze these weights through the lens
of time vectors, formed by taking the difference of
a model finetuned on a specific time and the pre-
trained model. First, we show that the weights of
two time vectors become less similar as the times
they were finetuned on become more misaligned
(§4.2). Then, we attempt to use the reverse relation-
ship to update models to unseen times: reducing
misalignment on intervening (§4.3), future (§4.4),
and multiple time periods (§4.5) by interpolating
time vectors.

Pearson r

Correlated Metric T5 size WMT LM NewsSum PoliAff

small -0.867 0.663 0.654
Time Vec. Similarity large -0.737 0.628 0.672

3b -0.795 0.626 0.668

small -0.962 0.770 0.887
Vocab. Overlap large -0.950 0.758 0.878

3b -0.944 0.750 0.862

Table 1: The similarity between time vectors corre-
lates with temporal degradation, although less than
semantic drift. Pearson correlation between cosine sim-
ilarity of yearly time vectors, top-10k vocabulary over-
lap between splits, and % degradation from the mean
performance of all yearly models on each evaluation
time period. All p-values are < 9× 10−4.

4.1 Background and Definition

Task vectors (Ilharco et al., 2023) are the differ-
ence of the weights of a pretrained model from
the weights of the same model after finetuning on
a task. Adding and subtracting task vectors from
finetuned models is a simple and effective way to
improve performance on other settings, or reduce
unwanted behavior without further training. Like
word embeddings, if there are tasks with the anal-
ogous relationship “A is to B as C is to D,” then
task vectors can be used to improve performance
on D with the approximation D ≈ C + (B −A).

Time vectors are an extension of task vectors
to the time domain. Given the weights of the pre-
trained model, θpre and those of the model fine-
tuned on data from only a single time period t, θt,
a time vector τt = θt − θpre . Like their task-based
counterparts, we add back the pretrained weights at
inference time and evaluate θpre + τt (Ilharco et al.,
2023). We call time vectors from models finetuned
on individual years and months “year-vectors” and
“month-vectors.”

4.2 Correlation of Time Vector Similarity and
Temporal Degradation

We visualize time vectors with a UMAP in Figure
4, which suggests that time vectors closer together
in weight space are also closer together in time.
To verify this hypothesis, we measure the cosine
similarity between model weights from each pair
of time vectors trained on different time periods
(visualized in §A.1). As a measure of sematic drift,
we also calculate the percentage overlap between
the top-10k most frequent white-space separated
tokens in each train and test split.

We find that time vector similarity and perfor-
mance (Figure 11) decay similarly over time. Table
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1 shows that the correlation between cosine simi-
larity and relative performance change on different
years is highest in WMT language modeling. Cor-
relations are generally similar across T5 sizes, with
a higher score for T5-small in the WMT LM setting
than T5-large and T5-3b, and no absolute values
less than 0.6.

Mirroring these findings, vocabulary overlap be-
tween splits is an even better predictor of degrada-
tion between misaligned times, with correlations
consistently 0.1–0.2 higher than time vector sim-
ilarity. Because explicit dates (e.g. “2014”, “de-
cember”, “7/2/2013”) likely make up a miniscule
percentage of the top-10k tokens in each split, we
expect that semantic shift has a larger impact on
temporal degradation.

These correlations extend to the monthly scale.
Seasonal stripes are visible in the cosine similarities
between each pair of monthly WMT time vectors
(visualized in Appendix Figure 9). The monthly
performance degradation from the mean (Figure
3) has a negative correlation with both month vec-
tor similarity (Pearson r = −0.667; p < 10−16)
and month-to-month vocabulary overlap (Pearson
r = −0.886; p < 10−16). We analyze cosine
similarities to single-year time vectors throughout
online training in Appendix §A.5.

These results indicate that time vectors are orga-
nized in way that is predictive of their performance
on corresponding time periods. Next, we explore
how we can use this structure to improve on new
time periods by interpolating between time vectors.

4.3 Generalizing to Intervening Time Periods
Archiving issues or a low sampling rate can lead
to gaps in datasets between the oldest and newest
examples. Without data, we expect models to per-
form worse on these “gap” times due to tempo-
ral misalignment. In this section, we find that we
can generalize better to these intervening time peri-
ods by mixing models finetuned on the oldest and
newest times with intuitive coefficients.

Method For two time vectors τj , τk, we compute
their interpolation α · τj + (1 − α) · τk with α ∈
[0, 1]. In this section, we interpolate between the
earliest year time vector τ0 and latest year time
vector τn and evaluate on times t0, ..., tn for each
α ∈ [0.1, 0.2, ..., 1.0].

Results Figure 5 shows that interpolating be-
tween start and end-year finetuned models im-
proves performance on intervening years in both

Perplexity (↓) Rouge (↑) F1 (↑)

Method WMT LM NewsSum PoliAff

Start-year finetuned (τ0) 13.92 38.56 0.6886
End-year finetuned (τn) 13.84 35.09 0.6967
1
2(τ0 + τn) 13.77 38.86 0.7765
Best interpolations 13.75 40.11 0.7941
Eval-year finetuned (τi) 13.65 42.36 0.8341

Table 2: Interpolation between start and end-year
finetuned models reduces temporal misalignment
on intervening years. T5-3b average performance on
each year between start and end (non-inclusive). “Best
interpolations" use the best performing α values for
each year.

WMT LM and PoliAff tasks. Improvement is gen-
erally greatest on the exact middle years (2014
for WMT LM, 2017 for PoliAff) and decreases
on years closer to start and end times. Patterns of
improvement also vary depending on setting, with
flatter changes in performance near α = 1.0, 0.0
in PoliAff compared to WMT LM, and minimal
improvements in NewsSum across αs compared
to the difference in performance between evalua-
tion years. Table 2 quantifies these changes, show-
ing that interpolation closes the gap on intervening
years between temporally aligned and misaligned
models. Improvements are particularly large for
PoliAff, nearly eight macro-F1 points just by aver-
aging the start and end-year time vectors.

Figure 6 shows that these results extend to the
monthly scale for WMT LM; we can interpolate
between time vectors finetuned on January and
December in a year to improve performance on
the months between them. The best interpolations
for each month follow an intuitive pattern, with
a higher percentage of the January model leading
to better performance on earlier months and vice
versa.

4.4 Generalizing to the Future

The creation of labeled datasets lags behind corpera
of raw text, which can be scraped automatically. As
a result, language models that rely on supervision
for finetuning are quickly outdated. Updating these
models can be expensive, involving extra finetuning
and creating labeled datasets from more recent ex-
amples. In this section, we present a new technique
for updating task models finetuned on a source time
period j to a target time period k with only unla-
beled data from j, using task analogies (Ilharco
et al., 2023).

2575



Figure 5: Interpolating between two year vectors improves performance on the years between them. T5-3b
performance improvements follow an intuitive structure, e.g. when interpolating between 2012 and 2016, the best
result on 2013 occurs with a higher percentage of 2012 and vice versa for 2015. Improvement from interpolation
varies across settings.

Figure 6: Interpolating between two month vectors improves performance on the months between them. We
interpolate between WMT January and December month vectors and evaluate on all other months within the same
finetuning year. Like at the yearly scale, early months do better with a higher percentage of the January model and
vice versa while middle months do best with a 50% split between the models. The lower row of plots show the best
alpha value for each evaluation month, represented with stars in the top row.

Method Given language models with weights
θLM
j , θLM

k finetuned on unlabeled text from times
j, k, and a task-specific model with weights θj fine-
tuned on labeled data from time j, we perform the
following arithmetic on the vectors:

τj = θj − θpre

τLM
j = θLM

j − θpre

τLM
k = θLM

k − θpre

τk ≈ α1 · τj + (α2 · τLM
k − α3 · τLM

j )

θk = τk + θpre

We evaluate our estimated θk on each target
time tk, sweeping over all combinations of α1 ∈

[0.6, 0.8, . . . 2.2], α2, α3 ∈ [0.1, . . . 0.6] and re-
porting the best result compared to the original
model θj . In this section, we update a 2012 News-
Sum model to 2013–2016, and a 2015 PoliAff
model to 2016–2020 using WMT LM and Twit-
ter LM time vectors respectively.

Results Task analogies improve performance on
future years in both PoliAff and NewsSum tasks.
Figure 7 shows that improvement compared to fine-
tuning on the start year increases as the target and
start years become more misaligned. Model size
also affects performance, with T5-large and T5-3b
showing greater improvements. In PoliAff, T5-
small has no improvement over the baseline and
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Figure 7: Task analogies can offset downstream tem-
poral misalignment without labeled data from the
target time. We report the performance of NewsSum
and PoliAff T5 models updated using WMT LM and
Twitter LM vectors for each target evaluation time. We
report the percent improvement of the best updated
model over 2012 NewsSum and 2015 PoliAff models
on each target time for all model sizes.

T5-large task analogies perform worse than the
baseline on 2016 and 2017 before improving on
2019 and 2020. We observe mostly similar results
on these tasks, although there are task-specific in-
consistencies.

Strangely, we find that only scaling α1 can
also improve performance on future years. This
phenomenon could be a proxy for up or down-
weighting the data of the source time. When the
pretraining data is closer to the target time than the
source data, for instance, we can improve solely by
down-weighting the source time vector by choosing
α1 < 1.0 and vice versa. We report ablations on α
values and our results on two other classification
tasks in Appendix §A.6.

4.5 Generalizing to Multiple Time Periods
Because interpolations prove useful for generaliz-
ing to intervening and future time periods, we next
test if we can build models that perform well on
multiple time periods by interpolating between all
time vectors for a task.

Method We approach this problem with the
model soup technique (Wortsman et al., 2022). One
of the key practical advantages of soups is that con-
stituent time-specific models can be trained inde-

pendently (on smaller compute budgets) and com-
bined at any time. Furthermore, the multi-year
model does not need to be retrained to include new
time periods; new time periods can be incorporated
by merely growing the soup with additional fine-
tuned models.

We attempt to create a multi-year model by
following the recipe outlined by Wortsman et al.
(2022). They introduce two soup variants: the uni-
form soup and greedy soup. The uniform soup
applies a uniform weight among all constituent
models in the interpolation, while the greedy soup
is an iterative procedure that only includes models
in the soup that improves validation performance.
We assess both variants here.

Our “uniform time soup” is θpre +
1
|T |

∑
t∈T τt

where T is the set of all years for a given task. For
our “greedy time soup,” we implement a similar
algorithm to Wortsman et al. (2022) which samples
time vectors (with replacement) from each year in
order of decreasing performance and adds them
to the average model soup if they improve perfor-
mance.

To evaluate our ability to build models that gen-
eralize to multiple time periods, we measure the
average performance across all evaluation years for
each task. We compare our model soups against
two baselines: 1) a model trained on all shuffled
available data at once and 2) the best-performing
model finetuned on only a single year of data. The
all-year model is the most compute-intensive ap-
proach.

Results Overwhelmingly, time soups perform
worse than the model finetuned on all shuffled avail-
able data. For WMT LM and NewsSum, the uni-
form time soup performs worse than even the best
single year model, despite having access to five
times the amount of finetuning data. The greedy
time soup only improves over the best single-year
model on PoliAff with a single macro F1 point
gain. These findings suggest that a model which
generalizes to multiple time periods does not lie
in a region of weight space bounded by models
finetuned on single years of data. Future work may
explore more sophisticated methods of merging to
induce better performing multi-year models.

4.6 Summary

We propose methods for updating models to in-
tervening, future, and multiple time periods using
time vector arithmetic. We find that interpolating

2577



Perplexity (↓) Rouge (↑) F1 (↑)

Method WMT LM NewsSum PoliAff

Best single-year model 34.45 38.95 0.7101

Uniform time soup 34.70 33.05 0.6078
Greedy time soup 34.45 38.95 0.7202
Training on all years 29.17 40.07 0.7853

Table 3: Interpolation does not enable generalization
to multiple time periods simultaneously. Here, we
measure the average performance of models on all years.
We compare multiple ways of building multi-year mod-
els; T5-small models finetuned to individual years or all
years, and “time soups” created by averaging together
all year time vectors for a task.

between two time vectors improves performance
on unseen intervening times at both yearly and
monthly scales. Similarly, we can improve per-
formance on the future with unlabeled data from
target times using time vector analogies. Building
a multi-year model with a “soup” of time vectors,
however, does not approach the performance of a
model finetuned on all times at once. These results
suggest that task arithmetic can be a simple way to
update models to new times, but it does not help to
improve generalization across the board within a
single model.

5 Related Work

Semantic Drift Although changes in the full
weight spaces of models over time have not been
previously explored, semantic changes in word em-
beddings over time are well-documented (Hamil-
ton et al., 2016). Temporal misalignment (Bamler
and Mandt, 2017; Gonen et al., 2021) and word
analogies over time (Szymanski, 2017) have also
been studied in embeddings. Our work extends
these analyses to the full set of language model
parameters.

Temporal Misalignment The phenomenon of
temporal misalignment in language models has
gained attention in the last three years. Moving
from semantic drift to model misalignment, tem-
poral degradation has been studied in a variety
of tasks including gender and age classification
(Jaidka et al., 2018), named entity recognition (Ri-
jhwani and Preoţiuc-Pietro, 2020; Liu and Ritter,
2022), summarization (Cheang et al., 2023), lan-
guage modeling (Loureiro et al., 2022), and many
others (Yao et al., 2022). Lazaridou et al. (2021)
additionally show that increasing model size does
not help mitigate temporal misalignment, and Luu

et al. (2022) find that degradation varies greatly
over both domain and task. Longpre et al. (2023)
report similar decay over time in pretraining.

Updating LMs Recent attempts at updating lan-
guage models to new time periods have used a
range of techniques. Röttger and Pierrehumbert
(2021) and Luu et al. (2022) find limited down-
stream improvement with continued pretraining on
target times. Yao et al. (2022) find similar nega-
tive results with invariant, continual, and ensemble
learning approaches on their dataset of in-the-wild
downstream tasks. Similar to the sequential updat-
ing setting, however, Lazaridou et al. (2021) show
that dynamic evaluation (Gururangan et al., 2020)
can improve language modeling performance on
new times, but results in forgetting the past. Other
techniques have been proposed for keeping mod-
els up to date in the QA domain by adding flags
with the year for each example (Dhingra et al.,
2022) or by discarding outdated facts (Zhang and
Choi, 2023). Similarly, Su et al. (2022) improve
on language modeling and classification tasks by
masking out tokens subject to semantic drift dur-
ing finetuning. Unlike these methods, we consider
the problem of updating models to new time pe-
riods without data in the target time and without
additional training.

Interpolation Our work draws heavily on recent
techniques for editing models directly with inter-
polation and task analogies. Time vectors are an
application of task vectors (Ilharco et al., 2023)
to the time domain, our interpolation experiments
are inspired by previous work on patching mod-
els for multiple tasks (Ilharco et al., 2022), and
our time soups are an application of models soups
(averaging multiple models trained with different
initializations; Wortsman et al., 2022).

6 Conclusion

We connect studies of temporal misalignment and
weight arithmetic with time vectors, formed by
finetuning a model on a specific time period and
then subtracting its pretrained weights. We show
that the weights of time vectors are more similar if
their corresponding times are closer and vice versa.
These similarities are highly correlated to temporal
misalignment at both yearly and monthly scales
(which exhibit seasonal patterns). Leveraging this
temporal structure in weight space, we induce new
models that perform better on intervening years by
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interpolating between adjacent time vectors. Simi-
larly, we use task analogies to improve downstream
performance on future time periods using only un-
labeled data from those times. These results show
that task arithmetic can be a simple tool for updat-
ing models to new time periods.

7 Limitations

Our analyses are restricted to three sizes of T5,
with the largest containing three billion parameters.
Because we use LoRA when finetuning T5-large
and T5-3b, our total number of trainable parame-
ters never exceeded those of base T5-small (∼60
million). Although similar patterns of temporal
misalignment have been observed in larger autore-
gressive models (e.g., Luu et al., 2022, Longpre
et al., 2023), improvements from time vector arith-
metic are not guaranteed to scale with mutli-billion
parameter LMs.

Because we only finetune and evaluate at the
monthly scale with WMT news articles, season-
ality may not occur, or occur differently, in other
domains. News may be particularly suited to sea-
sonal trends in perplexity compared to, e.g., fiction
novels, because of reporting on events like holidays
and weather.

In time vector analogies, unlabeled text may still
be difficult to gather for isolated source and target
times due to a lack of metadata. Furthermore, find-
ing ideal α values for each vector in the analogy
arithmetic requires searching over a large number
of combinations (324 in our experiments). In the
best case, we find that time vector analogies can
improve performance 5–15% on a target year over
a model finetuned on only the earliest year. These
improvements vary by task, however, and analogies
can even hurt performance in some cases, as we
show in Appendix §A.6.

In practice, models are trained on text from many
time periods at once, which likely yields better re-
sults than a single time-specific model. Our experi-
ments with time vectors are therefore focused on
analyzing the relationship between time-specific
models in weight space, and the potential of weight
arithmetic for adapting models to new times, rather
than improving the state of the art.

8 Ethical Considerations

For further study of temporal misalignment and
replication of our experiments, we publicly release
our models finetuned on text from the monolingual

WMT news dataset and Twitter stream grab. Fol-
lowing guidelines from both sources, all models
are under a CC0 license and should be used solely
for research.

Corpora and tasks used in this dataset do not
identify authors of examples, but include informa-
tion about other individuals, including which user
a post is retweeting in the Twitter splits. Although
frequently mentioned names are important features
for studying temporal variation, we realize that our
models may reproduce this identifying information
in their outputs alongside falsehoods or hallucina-
tions. Because we do not filter out examples con-
taining toxic or offensive language in our datasets,
we acknowledge that the models we release are sus-
ceptible to generating text which perpetuates social
harms (Gehman et al., 2020).

Although we aim to cover a range of downstream
tasks for each year and monthly domain shift, our
datasets are not equally representative of different
languages and demographic groups. We filter out
documents that are not classified as English, and
note that the majority of news articles and tweets
are sourced from the U.S., where the majority of
journalists are white and between the ages of 30–
64 (Tomasik and Gottfried, 2023). As a result,
our models finetuned on NewsSum and WMT are
likely harmfully skewed towards white-aligned En-
glish, reproducing the view that other registers are
linguistically inadequate (Rosa and Flores, 2017).

Finally, we are cognizant that finetuning year and
month-specific models incurs a significant energy
cost. We estimate that it took on average three
hours to train each T5-small and T5-large model
on yearly WMT splits, and nine hours for T5-3b.
Training on NewsSum splits took around a third of
the time as WMT LM. For PoliAff, the train time
for year-finetuned models was lower at around 5
minutes for T5-small and T5-large, and 15 minutes
for T5-3b. Finetuning T5-small on a single monthly
WMT split took 15 minutes on average. Evaluating
on each split took roughly a tenth of the time as
training. Using these heuristics, we estimate the
main paper experiments took a total of 1200 GPU
hours. We did not track GPU usage on preliminary
or Appendix experiments, but we estimate they
used an equivalent 1200 GPU hours.
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A Appendix

A.1 Yearly Misalignment with Other Tasks
and T5 Sizes

In this section, we report raw performance degra-
dation over time on four downstream and three
language modeling tasks with three sizes of T5.
We evaluate on all tasks in the main paper plus
Newsroom Source Classification (NewsCls) and AI
Venue Classification (AIC) from Luu et al. (2022).
We also create a third science domain language
modeling task from abstracts in the Kaggle arXiv
dataset4. For each group of three years from 2006-
2008 to 2018-2020 we randomly sample 26-38M
and 2.6-3.9M BPE tokens (150MB and 15MB) of
arXiv paper abstracts for train and test splits respec-
tively.

Figures 8 and 11 are yearly degradation
heatmaps for each model size and task. These
results show that normalizing performance by the
average on each evaluation time helps account for
variations in test splits. ArXiv language modeling
and NewsSum, for example, have large differences
in performance on evaluation years regardless of
finetuning year.

A.2 Task Variations in Linear Yearly
Degradation

Like Luu et al. (2022), we find differences across
domain and task in the rate and linearity of year-to-
year decay. TD scores measure the average rate of
performance degredation for each year of misalign-
ment between train and test time periods (Luu et al.,
2022). We find the rate of decay using a linear least
squares regression and average rates for each task
over all evaluations. Table 4 shows TD scores (Luu
et al., 2022) for all tasks and T5-sizes. We also com-
pare TD scores calculated from raw performance to
TD scores calculated from performance normalized
by the average on each evaluation year. In general,
percent performance difference from the mean on
an evaluation year decays more linearly than raw
performance.

A.3 Yearly and Monthly Cosine Similarities

In this section, we report cosine similarity between
each pair of yearly and monthly time vectors. Fig-
ure 10 shows cosine similarity between every pair
of year vectors for each T5-size and task. Figure 9

4https://www.kaggle.com/datasets/
Cornell-University/arxiv/data
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Figure 8: Yearly downstream performance degradation on four tasks and three T5 sizes.

Normalized? T5 Size WMT LM NewsSum NewsCls Twitter LM PoliAff ArXiv LM AIC

small -0.67 (0.81) 2.21 (0.51) 0.05 (0.67) -0.35 (0.97) 0.08 (0.98) -0.59 (0.65) 0.03 (0.55)
No large -0.10 (0.34) 2.07 (0.53) 0.04 (0.61) -0.20 (0.97) 0.07 (0.97) -0.20 (0.67) 0.03 (0.50)

3b -0.07 (0.34) 2.12 (0.53) 0.04 (0.67) -0.20 (0.97) 0.07 (0.95) -0.13 (0.66) 0.03 (0.40)

small -1.70 (0.90) 6.99 (0.87) 6.43 (0.74) -4.52 (0.89) 10.47 (0.95) -2.61 (0.94) 2.93 (0.57)
Yes large -0.56 (0.92) 6.27 (0.89) 5.33 (0.84) -2.64 (0.91) 9.57 (0.94) -1.24 (0.93) 2.53 (0.51)

3b -0.52 (0.93) 6.44 (0.88) 4.72 (0.84) -2.90 (0.91) 7.66 (0.91) -0.96 (0.94) 3.12 (0.61)

Table 4: TD scores for all tasks and T5 sizes for raw performance and performance divide by the average on each
eval. year. Variance explained by the TD score linear fit in parentheses. TD scores calculated with normalized
performance decay have generally higher R2 scores, except on Twitter LM and PoliAff, and are easier to compare.
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Figure 9: Cosine similarity between monthly time
vectors also exhibits seasonality. We observe simi-
lar "stripes" every 12 months when measuring the co-
sine similarity between each pair of T5-small WMT
month vectors. The correlation between this heatmap
(including the diagonal) and Figure 3 is −0.667 with
p < 1× 10−16.

shows cosine similarity between each pair of T5-
small monthly WMT LM time vectors. Similar to
performance, year-to-year degradation in cosine
similarity between task vectors appears to be linear
regardless of setting. Like Figure 3, we observe sea-
sonal "stripes" every 12 months from the diagonal
9.

A.4 Temporal Degradation in Online Settings
Our work so far illustrates temporal misalignment
on static time splits. However, in practice, we
usually deploy language models in online settings,
meaning that they are continually updated with the
latest data, and we do not have access to data from
all training years simultaneously.

To show how temporal misalignment manifests
in these settings, we first sort all the training data
from the PoliAff and WMT tasks by month, and
finetune T5-small on each task separately. We dis-
play the performance of the LM on every year
throughout training in Figure 13. As expected, for
PoliAff, we see that the performance of models on
a particular year peak at the final month of that year,
and then gradually degrade as the model continues
training.

For language modeling on WMT data, perfor-
mance consistently improves during training, re-
gardless of the evaluation year. However, perplex-
ity reduces more slowly in earlier years as we con-
tinue training. These results suggest that temporal
misalignment may manifest differently in online
settings based on the training setup and task.

A.5 Online Cosine Similarities

We study the relationship between performance
degradation and cosine similarity during online
training. Recall that in the online setting, we per-
form a single finetuning run on the Poliaff and
WMT tasks (after ordering their training data by
month), and measure performance on each year
throughout training. To study how time vectors
move throughout space in this setting, we measure
the cosine similarity between the time vector of the
model trained up to month m and each yearly time
vector for the PoliAff and WMT tasks.

We find that the cosine similarity to each time
vector decreases as the online model is updated
past the first 12 months of data. This means that
online models’ peak similarity to earlier years tends
to be higher than those to later years since the they
make up a smaller part of its total finetuning set.
Like our experiments with soups of time vectors in
section §4.5, this indicates that models trained on
multiple years of data lay outside a region defined
by single-year models.

To account for these decreases, we normalize the
similarity to each year time vector by its average
after updating on all months in Figure 13. Our
results reveal that the vector for our online model
is relatively most similar to each year vector after
finetuning on the months in that year.

A.6 Time Vector Analogy Ablations

In this section, we ablate our time vector analogy
experiment to determine the effects of only adding
the LM vector from the target time, and only scal-
ing the weights of the initial time vector. For τk ≈
α1 · τj +(α2 · τLM

k −α3 · τLM
j ), we define our "task

addition" ablation for α3 = 0, α1, α2 ̸= 0, and our
"scaling only" ablation for α1 ̸= 0, α2, α3 = 0

We report the best results after sweeping over
the same α ranges from §4.4 with the added con-
straints in figure 15. While task analogies generally
perform best across tasks and T5-sizes (especially
as τj and τk become more misaligned), we find that
ablating τLM

k and τLM
j can still improve over the

base τj model. Surprisingly, only scaling τj also
improves over the initial model on many tasks.

A.7 Temporal Misalignment Affects Some
Parameters More than Others

In this section, we explore whether we can re-
duce temporal misalignment by swapping parame-
ter weights from a model trained on a misaligned
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Figure 10: Cosine similarities between all pairs of year time vectors for all tasks and model sizes.

Figure 11: Yearly language modeling perplexity decay on three tasks and three T5 sizes.
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Figure 12: Seasonality makes a small, but noticeable
impact on monthly misalignment. Distribution of per-
plexity change from the mean for aligned finetuning and
evaluation months (left, mean=-4.36), seasonal "stripes"
(middle, mean=0.04), and all finetuning and evaluation
combinations which share neither the same month nor
year (right, mean=0.77).

year with those of the model trained on the target
year. For example, we substitute the QKV attention
layers from a model finetuned on 2015 PoliAff with
those finetuned on 2020 PoliAff and evaluate on
2020 data. In table 5 we evaluate the start-year fine-
tuned models for each task on the end times (e.g.
start = 2012 for WMT LM, end = 2016) with vari-
ous parameter weights swapped with the end-year
finetuned model.

From these experiments, we find that we can
improve performance on a target time by swapping
out weights with a time vector finetuned on
that time. Surprisingly, swapping embeddings
with the target time vector makes very little
difference, except in language modeling tasks,
and swapping all non-embedding weights with a
target time almost reaches the performance the
target time-specific models for downstream tasks.
Swapping only feed-forward or attention layers
also improves performance on the target time,
suggesting temporal misalignment is somewhat
isolated to those model regions in downstream
tasks.
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Figure 13: In online settings, language model performance degrades on earlier time periods. We show macro
F1 and perplexity on each year split of PoliAff and WMT LM respectively after sequentially finetuning T5-small on
each new month of task data. PoliAff performance over all years plateaus after finetuning on months up to 2018.
WMT performance continues to improve with more data, but perplexity decrease slows on earlier years. Starred
points are where performance on a year is best relative to the average performance on all years.

Figure 14: Cosine similarity between an online time vector and a year vector peaks relative to other years
after updating on data for that year. We show cosine similarity between each monthly checkpoint of online
T5-small time vectors and yearly vectors for PoliAff and WMT LM. To account for overall decreases in similarity
as online time vectors are updated, we normalize similarities to each year vector by the mean similarity to that year
over all checkpoints. We star the point for each year vector where its cosine similarity to the online model is largest
relative to the average on all years.

Swapped Params WMT LM NewsSum NewsCls Twitter LM PoliAff ArXiv LM AIC

None 35.72 35.11 0.7232 6.69 0.5903 18.18 0.8224
Feed Forward 35.31 35.17 0.8162 13.25 0.6174 18.21 0.8500
Attention 36.23 34.49 0.7986 14.95 0.6095 19.24 0.8644
Embeddings 36.13 34.30 0.7232 16.65 0.5902 19.29 0.8192
Non-Embedding 34.57 37.24 0.8760 13.46 0.7991 17.37 0.8845
All 33.51 38.89 0.8759 5.79 0.7999 15.75 0.8845

Table 5: We can improve performance on a target time by swapping out weights with a time vector finetuned
on that time. T5-small start-year finetuned model performance on the end-year split for each task (e.g. finetuning
on 2015 for PoliAff and evaluating on 2020). We compare the baseline start-year model (none swapped) to versions
with various parameter weights from the target-year model, and the target-year model itself (all swapped).
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Figure 15: Time vector analogy ablations for three sizes of T5. Given the time vector analogy τk ≈ α1 · τj + (α2 ·
τLM
k − α3 · τLM

j ), α1, α2, α3 ̸= 0, we define "task addition" to be only adding the language modeling vector (i.e
α1, α2 ̸= 0, α3 = 0), and "scaling only" to be only scaling the base τj model (i.e α1 ̸= 0, α2, α3 = 0). We sweep
over the same α combinations as in §4.4 and report the best results for each target year, task, and T5-size.

Figure 16: Year-to-year, T5-small feed forward layers change the most across all tasks and domains, and attention
changes more in the language modeling setting. For our T5-large and T5-3b models trained with LoRA, the V
attention layers change more than the Q layers, with most of the changes (regardless of model size) concentrated
in the last layers. Like our param swapping experiment, this suggests that some parameters play a larger role in
temporal misalignment than others.
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