
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 2611–2624
August 11-16, 2024 ©2024 Association for Computational Linguistics

SirLLM: Streaming Infinite Retentive LLM
Yao Yao1,2,3, Zuchao Li4,∗ and Hai Zhao1,2,3,*

1Department of Computer Science and Engineering, Shanghai Jiao Tong University
2Shanghai Key Laboratory of Trusted Data Circulation and Governance in Web3
3Key Laboratory of Shanghai Education Commission for Intelligent Interaction

and Cognitive Engineering, Shanghai Jiao Tong University
4National Engineering Research Center for Multimedia Software,

School of Computer Science, Wuhan University, Wuhan, 430072, P. R. China
yaoyao27@sjtu.edu.cn, zcli-charlie@whu.edu.cn,

zhaohai@cs.sjtu.edu.cn

Abstract

As Large Language Models (LLMs) become
increasingly prevalent in various domains, their
ability to process inputs of any length and main-
tain a degree of memory becomes essential.
However, the one-off input of overly long texts
is limited, as studies have shown that when in-
put lengths exceed the LLMs’ pre-trained text
length, there is a dramatic decline in text gener-
ation capabilities. Moreover, simply extending
the length of pre-training texts is impractical
due to the difficulty in obtaining long text data
and the substantial memory consumption costs
this would entail for LLMs. Recent efforts have
employed streaming inputs to alleviate the pres-
sure of excessively long text inputs, but this
approach can significantly impair the model’s
long-term memory capabilities.

Motivated by this challenge, we introduce
Streaming Infinite Retentive LLM (SirLLM),
which allows LLMs to maintain longer mem-
ory during infinite-length dialogues without
the need for fine-tuning. SirLLM utilizes the
Token Entropy metric and a memory decay
mechanism to filter key phrases, endowing
LLMs with both long-lasting and flexible mem-
ory. We designed three distinct tasks and con-
structed three datasets to measure the effec-
tiveness of SirLLM from various angles: (1)
DailyDialog; (2) Grocery Shopping; (3) Rock-
Paper-Scissors. Our experimental results ro-
bustly demonstrate that SirLLM can achieve
stable and significant improvements across dif-
ferent LLMs and tasks, compellingly prov-
ing its effectiveness. When having a coversa-
tion, "A sir could forget himself," but SirLLM
never does! Our code is publicly available at
https://github.com/Zoeyyao27/SirLLM

* Corresponding author. This research was supported by
the Joint Research Project of Yangtze River Delta Science and
Technology Innovation Community (No. 2022CSJGG1400),
the National Natural Science Foundation of China (No.
62306216), the Natural Science Foundation of Hubei Province
of China (No. 2023AFB816), the Fundamental Research
Funds for the Central Universities (No. 2042023kf0133).

1 Introduction

The proliferation of large language models (LLMs)
(Touvron et al., 2023a; Achiam et al., 2023; Jiang
et al., 2023) has spurred the development of var-
ious NLP applications(Zhang et al., 2023b; Yang
et al., 2024; Zhang et al., 2023a; Ma et al., 2024;
Wang et al., 2024), including widely-used tools
like chatbots (Bill and Eriksson, 2023; Pandya and
Holia, 2023), writing assistants (Bhat et al., 2023),
and programming assistants (Kazemitabaar et al.,
2024). These applications, aiming to enhance user
interaction and conversational experience, often re-
quire infinite input length and a certain degree of
memory capability. However, current LLMs are
usually pre-trained on texts of limited length, and
studies have shown that their text generation ca-
pabilities dramatically decline when input lengths
exceed those of the pre-training texts (Xiao et al.,
2023; Huang et al., 2023). Merely extending the
length of pre-training texts is impractical, as acquir-
ing infinitely long text data is exceedingly challeng-
ing, not to mention that it would result in substan-
tial memory consumption for LLMs. Therefore,
researching how to enable LLMs to handle infinite
input lengths while maintaining memory capability
is an urgent issue to be addressed.

With the emergence of this demand, researchers
have gradually shifted their focus towards explor-
ing ways to expand the input context length of
LLMs. A line of these studies has particularly fo-
cused on optimizing the attention mechanism of
LLMs. (Beltagy et al., 2020) first proposes the
Sliding-window attention, as shown in Figure 1 (a).
By restricting each token to only attend to a cer-
tain number of recent tokens, this method reduces
computational complexity. In deployment scenar-
ios, LLMs utilize a Key-Value (KV) cache to store
the key and value tensors of past tokens at each
generation step to effectively reduces the need to
recompute past key and value tensors, thereby sig-

2611

https://github.com/Zoeyyao27/SirLLM

Attention Sink

Current
Token

Previous
Token

Local

(a) Dense Attention (b) Sliding-window Attention (c) Attention Sink (StreamLLM)

Entropy

The darker the color, the
higher the initial token
entropy. (d) Token Entropy (SirLLM)

Figure 1: The visualization of SirLLM versus existing attention patterns.

Layer 26 Head 0 Layer 32 Head 0Layer 1 Head 0 Layer 6 Head 0

Figure 2: Attention sink phenomenon (Xiao et al., 2023). We visualize the average layer attention logits over 256
sentences, each with a length of 20, in Vicuna-7b-v1.3. We can see that in the shallow layers, a significant amount of
the attention score is dedicated to the first tokens and in the final layer, the model focuses more on the recent tokens.

nificantly lowering computational overhead. Con-
sequently, Sliding-window attention ensures a sta-
ble decoding speed even when the KV cache is full,
thereby allowing for longer texts during the pre-
training phase. However, Xiao et al. (2023) discov-
ered that this method does not truly achieve infinite
input length, as the model’s performance signifi-
cantly deteriorates once the input length exceeds
the size of the KV cache and intial tokens, how-
ever, receive a disproportionately higher amount of
attention, a phenomenon termed as ‘attention sink‘,
as shown in Figure 2. Therefore, they proposed
StreamLLM, as shown in Figure 1 (b). Stream-
LLM enhances the potential of window attention
by preserving the KV cache of the initial tokens,
thereby achieving infinite length input in stream-
ing conversations without finetuning. However,
while Sliding-window Attention and StreamLLM
ensure an expanded input length, each generated
token only attends to recent tokens (and initial at-
tention sink tokens), resulting in a loss of memory
for earlier parts of the conversation. This leads
to a significant forgetting issue in long-distance
dialogues. Furthermore, as observed in Figure 2,
the range of recent tokens that the model focuses
on is not very extensive. This observation leads
us to contemplate whether it’s possible for the
model to concentrate only on key terms during a
conversation, filtering out less important tokens.
By remembering only the crucial information, the

model might be able to maintain a longer memory
span in the context of infinitely long conversations.

In response to the aforementioned challenges,
we propose the Streaming Infinite Retentive LLM
(SirLLM) in this paper, as illustrated in Figure 1
(d). Initially, we employ an LLM to calculate the
token entropy metric for each input token, thereby
assessing their significance. Subsequently, tokens
with higher token entropy values, deemed as key
tokens, are preserved within the KV cache. This
method enhances the model’s memory capabilities
in the context of infinitely long streaming dialogues.
To validate the effectiveness of SirLLM, we con-
ducted experiments across three distinct tasks: (1)
DailyDialog: We created a multi-turn daily dia-
logue dataset based on the DailyDialog dataset (Li
et al., 2017a). (2) Grocery Shopping: We devel-
oped a grocery shopping dataset. Users first in-
form the LLM about the groceries they need to
purchase. Following this, users engage in multi-
turn dialogues with the LLM, culminating in the
users asking the LLM to recall the required gro-
ceries. (3) Rock-Paper-Scissors: We constructed
a rock-paper-scissors dataset featuring three types
of players, each with a preference for one of the
three moves (rock, paper, scissors). Players engage
in multiple rounds of rock-paper-scissors with the
LLM, which is tasked with analyzing the user’s
historical preferences to maximize its winning rate.
The results of these experiments effectively demon-

2612

strate the enhanced memory capabilities of SirLLM
in infinite conversation.

2 Related Work

Many works (Li et al., 2019a; Guo et al., 2022; Han
et al., 2023; Ainslie et al., 2020; Chen et al., 2023)
focused on expanding the input context length
of LLMs by optimizing the attention mechanism.
Beltagy et al. (2020) first proposes the sliding win-
dow attention, which let each token to only attend
to a certain number of recent tokens. When the
KV cache is full sliding window attention would
discard the earliest token to preserve a stable de-
coding speed and performance. Child et al. (2019)
proposed the fixed Sparse Transformer. Formally,
this method initially preserves the key and value
states of recent tokens as local context information.
Subsequently, it employs a column attention mech-
anism with a specified stride. This mechanism
summarizes information from previous locations
and propagates it to all future tokens, functioning
as a form of global attention. Li et al. (2019b)
proposed a LogSparse self-attention where each
element can only to attend to itself and its previ-
ous cells with an exponential step size. Xiao et al.
(2023) introduced the attention sink phenomenon
and proposed StreamLLM, a model specifically de-
signed to achieve true infinite input length. Stream-
LLM, during its attention calculation, maintains
the focus on both the initial tokens and the recent
tokens. This approach ensures stable performance
in the context of infinite streaming conversations.

However, the aforementioned approaches either
save tokens with given stride, randomly select, or
do not preserve the key-value (KV) cache of his-
tory tokens, leading to significant forgetting issues
in the model. SirLLM addresses this by utilizing
the LLM itself to calculate token entropy, selec-
tively preserving the KV cache of tokens with the
highest entropy. This method effectively conserves
memory space, ensuring that only the most crucial
information is retained.

Another line of related work is KV cache opti-
mization (Zhang et al., 2023c; Oren et al., 2024;
Ge et al., 2023). Ge et al. (2023) introduced Fast-
Gen, an adaptive KV cache compression method
for Large Language Models. FastGen begins by
analyzing the behavior of various attention heads to
select the most effective compression strategy for
each and optimizes KV cache management when
generating new tokens by applying the chosen com-

pression strategy to each token, instead of merely
appending new KV vectors. Zhang et al. (2023c)
proposed H2O , a KV cache eviction policy that dy-
namically balances recent tokens and heavy hitters.
The eviction policy is framed as a dynamic submod-
ular problem, using attention scores to retain the
most influential tokens in the KV cache. A greedy
algorithm provides theoretical guarantees for near-
optimal performance. However, these works focus
more on KV cache optimization rather than the
streaming scenarios of multi-turn dialogues and
enhancing the memory capabilities of LLMs.

Another category of work related to our research
is context compression. Li et al. (2023) com-
press the input context by selecting the lexical
units (tokens, phrases, sentences) with higher self-
information computed by a base language model.
Berchansky et al. (2023) proposed a token filtering
method for optimizing retrieved long documents
to speed up the decoding process. This method
involves using mean cross-attention scores com-
puted at a specific layer across all attention heads
to eliminate less critical tokens. Then, only the
top k% of input tokens with the highest scores
are retained and used in predicting subsequent to-
kens. Although retrieval-based methods can iden-
tify more accurate contexts based on input, they
typically require greater computational and time
resources. In contrast, SirLLM does not necessi-
tate maintaining an additional vector database and
does not disrupt the model’s end-to-end computa-
tional process. SirLLM can significantly enhance
the model’s memory capabilities efficiently with-
out modifying the model’s architecture or requiring
fine-tuning.

3 Method

3.1 Preliminaries
Xiao et al. (2023) proposed StreamLLM. They dis-
covered that the model disproportionately focuses
on initial tokens and break when removing initial
tokens’ KV cache. Therefore, based on the Sliding-
window attention, instead of throwing away all of
the previous KV cache except the recent token’s
KV cache, they keep the first initial tokens KV
cache as shown in Figure 1 (c). Figure 1 (c) il-
lustrates the StreamLLM process, which can be
formulated as follows. We define the indices of
the attention sink tokens and the recent tokens as
Idsink and Idrecent, respectively:

Idsink = {0, 1, ..., nsink}
2613

Idrecent = {L− nrecent + 1, ..., l − 1, l}
where, nsink and nrecent denotes the KV cache
size of the attention sink tokens and recent tokens
respectively. l denotes the total length of the past
key-value states.

Then the StreamLLM only keeps the selected
tokens’ past key and value states:

KVcache = Kcache[Idsink, Idrecent]

where X[Id] indicates the selection of vectors from
X using indices in using indices in Id.

However, StreamLLM primarily focuses on re-
cent tokens and the initial attention sink tokens.
This raises an intriguing question: Could we con-
serve cache space occupied by recent tokens by
only preserving the past key-value states of crit-
ical tokens? Such an approach would allow the
model to access information from tokens over a
longer time span, potentially enhancing its long-
term memory and reducing the problem of forget-
ting. To address this issue, our first step is to define
a metric that can accurately measure the importance
of each token.

3.2 Token Entropy
Recent work (Li et al., 2023) has focused on con-
text compression. This involves utilizing LLMs
to calculate the information contained in each to-
ken, thereby compressing the input context to en-
hance the model’s inference efficiency. Inspired
by this, we use the token entropy metric to assess
the significance of tokens. Given a input sequence
X = {x1, x2, ..., xn} , where xi denotes i-th token
and n denotes the total token number. We define
the token entropy of the i-th token as:

ei = −logP(xi|x0, x1, ..., xi−1)

A token with higher token entropy indicates that it
contains more information and is therefore more
critical. In our experiments, we utilize the LLM to
calculate the generation probability of each token.
This approach allows us to obtain the entropy of
each token concurrently with its generation, with-
out necessitating additional computational effort.

Does higher token entropy equate to increased
LLM focus? To investigate whether tokens with
higher entropy indeed carry more information and
consequently garner more attention from LLMs,
we extracted 256 sentences from the Wikitext cor-
pus (Merity et al., 2017), focusing on the first 40

Segment Mean
Weights
(Layer)

Mean
Rank

(Layer)

Mean 1st
proportion

(Layer)

1 0.01507 3.43 12.5

2 0.01581 2.91 9.38

3 0.01625 2.09 15.63

4 0.01701 1.66 62.50

4* 0.0897 1 100

Figure 3: Scatter Plot of the average attention weights
over 256 sentences at every layer. We divide the tokens
into four segments based on token entropy, with segment
1 having the lowest entropy and segment 4 the highest
(To mitigate the attention sink effect, we omitted the
first token in Segment 1 to 4 and Segment 4∗ stands for
segment 4 with the first token). Mean Weights stands
for the average attention weights across all layers. Mean
Rank denotes the average ranking of each segment at
every layer. Mean 1st proportion denotes the proportion
of times each segment ranked first across all layers. The
figure indicates that as token entropy increases, so does
the attention that the LLM allocates to that token.

tokens of each sentence. To mitigate the attention
sink effect, we omitted the first token, starting our
analysis from the second token, thus providing a
clearer view of the model’s attention distribution
across other tokens. The 40 tokens were divided
into four segments based on token entropy, with
segment 1 having the lowest entropy and segment
4 the highest. We calculated the average attention
weights for each segment at every layer and plotted
these values in a scatter plot, as shown in Figure 3.
For a more tangible understanding, we also com-
puted the average attention weights across all layers
for each segment. The results show that tokens in
segments with higher entropy have higher atten-
tion weights. This pattern reinforces the hypothesis
that higher entropy tokens, which are presumably
less predictable and therefore more informative,
are given priority by the LLM’s attention mech-
anism. This finding supports the validity of the
token entropy metric as an indicator of a token’s
significance.

3.3 Streaming Infinite Retentive LLM

Upon obtaining the entropy values for each token,
we enhance the model’s memory capability by se-
lectively preserving the key-value states of only
the key tokens and propose Streaming Infinite Re-
tentive LLM (SirLLM) as shown in Figure 4. To

2614

…

Figure 4: Framework overview of SirLLM. When the number of tokens stored in KV cache exceeds the pre-training
length L, SirLLM calculates the entropy of each token and selects the tokens with the higher token entropy, thereby
conserving space in the KV cache

elaborate further, we maintain both a key-value
(KV) cache KVcache and a token entropy cache
E in parallel. The token entropy cache stores the
entropy values of tokens present in the KV cache.
When the number of tokens stored in C exceeds
the pre-training length L, we utilize E to select
the tokens with the higher token entropy, thereby
conserving space in the KV cache:

E = {e1, e2, ..., el}; Identropy = Topk(E)

KVcache = KVcache[Idsink, Identropy]

E = E[Idsink, Identropy]

where Topk denotes the selection of the top k to-
kens with the highest token entropy. Higher token
entropy implies a lower probability of the model
generating the word, indicating such words carry
more information and are likely to be key tokens.

Following StreamLLM, SirLLM concentrates
on the token positions within the cache rather than
their original positions in the text when determining
relative distances and injecting positional informa-
tion. For instance, if the current cache holds tokens
[0, 1, 2, 3, 5, 7, 11, 12] and the model is in the
process of decoding the 13th token, it assigns posi-
tions as [0, 1, 2, 3, 4, 5, 6, 7] instead of using the
original text positions.

However, simply preserving tokens with the
highest token entropy, as previously described, can
lead to a limitation in the KV cache. After lengthy
multi-turn dialogues with users, the cache may
become restricted to a few tokens with very
high entropy, making it difficult for the cache to
adapt. This could result in a ’rigid memory’ within
the model, lacking flexibility. An effective dialogue
system should, like human memory, have a more

flexible mechanism for long and short-term mem-
ory: the more distant the memory, the easier it
is for the model to forget it. This approach en-
sures the freshness of the LLM’s memory, thereby
enhancing the user’s conversational experience. To
address this, we propose using a decay ratio ηdecay
less than 1. After each round of dialogue, the stored
entropy cache E is multiplied by this decay ratio
E = E × ηdecay, allowing the model to naturally
forget older key information and focus more on
recent critical information. The overall process of
SirLLM can be referred to in Algorithm 1.

Algorithm 1 Streaming Infinite Retentive LLM

Input: i-th turn’s user input Ii = {x1, x2, ..., xn}
Output: i-th turn’s system response Ri =
{r1, r2, ..., rm}
for turn t in range(i) do

if KV cache size >L then
Identropy = Topk(E)
KVcache ← KVcache[Idsink, Identropy]
E ← E[Idsink, Identropy]

end if
Rt,KVcache = LLM(KVcache, It)
Et = Entropy([It, Rt]) = {e1, e2,
..., en+m}
E ← E + Et

E = E × ηdecay
end for

4 Experiments

4.1 Experimental Setup
We tested SirLLM on two different categories of
large models: Vicuna-13b-v1.3, Vicuna-7b-v1.3
(Zheng et al., 2023), Yi-34B-Chat, Yi-6B-Chat 1.

1https://github.com/01-ai/Yi

2615

Following the evaluation methodologies used in
(Brown et al., 2020; Touvron et al., 2023b; Gao
et al., 2023), we evaluate the performance of Sir-
LLM on various datasets by appending different
option letters to the answers. We then calculate the
logits for each option and select the option with the
highest logits as the final answer. All experiments
were conducted on an NVIDIA A800 GPU.

4.1.1 Baslines
To comprehensively evaluate the effectiveness of
SirLLM, we utilized three baseline models:

StreamLLM: StreamLLM (Xiao et al., 2023)
preserves the key-value states of only the attention
sink tokens and recent tokens.

RandomLLM: RandomLLM maintains the key-
value states of the attention sink tokens as well as
a random selection of historical tokens.

IntervalLLM: Taking inspiration from (Child
et al., 2019), we developed IntervalLLM. This
model, in addition to preserving attention sink to-
kens, uniformly samples tokens from the histori-
cal token sequence at fixed intervals. These inter-
vals are adaptively determined, The size of these
intervals is adaptively determined, calculated as
interval = ⌊ history token length

cache size ⌋. This approach con-
tinues until the cache size is fully utilized

To ensure a fair comparison, in line with Stream-
LLM, all models preserve the KV cache states of
attention sink tokens with a uniform size of 4 and
we report the average accuracy for RandomLLM

4.2 Results

To thoroughly validate the effectiveness of the Sir-
LLM framework, we designed three distinct tasks,
each assessing SirLLM from a different perspec-
tive: (1) DailyDialog: This task evaluates Sir-
LLM’s conversational coherence and memory ca-
pabilities in everyday multi-turn dialogue scenar-
ios. (2) Grocery Shopping: In this task, we focus
on assessing SirLLM’s memory capabilities. Ini-
tially, the LLM is informed about the groceries
to be purchased. Subsequent rounds of common-
sense QA with the LLM are conducted, culminat-
ing in a query to ascertain if SirLLM remembers
the required groceries. (3) Rock-Paper-Scissors: In
this task, by engaging in multiple rounds of rock-
paper-scissors with users having distinct throwing
preferences, we test whether SirLLM can utilize
its enhanced memory ability to analyze historical

information, discern users’ throwing preferences,
and thereby maximize its winning probability.

4.2.1 DailyDialog
Dataset Construction To assess the performance
of SirLLM in everyday dialogue scenarios, we eval-
uate SirLLM using the DailyDialog dataset (Li
et al., 2017b). DailyDialog is a high-quality, multi-
turn, open-domain English dialogue dataset. To
measure SirLLM’s effectiveness more intuitively,
we have reformatted DailyDialog into a multiple-
choice question format, where SirLLM is tasked
with selecting the most appropriate response. We
have selected a sample from the constructed Dai-
lyDialog dataset, as illustrated in Figure 7 in Ap-
pendix C. For more detailed statistics and construc-
tion process about the modified dataset, please refer
to Table 5 in Appendix A. From the Table 5, we ob-
serve that the average number of tokens per turn in
the modified DailyDialog dataset is approximately
461.55. Therefore, we have set the cache size to
512. It was found that 199 dialogs in the dataset
have token counts exceeding 512. In such longer
dialog scenarios, SirLLM can be highly effective.
By enabling the LLM to remember only key tokens,
SirLLM is endowed with a longer memory span.
This capability allows it to engage more effectively
in extended dialogues.

Results In the table 1, to ensure a fair compari-
son, each model is configured with a unified KV
cache size of 512. Table 1 displays the performance
of various models on the DailyDialog dataset. It
is evident that SirLLM demonstrates a clear ad-
vantage over three baseline models across four
different LLMs. It is noteworthy that SirLLM’s
performance remains consistently stable, whereas
RandomLLM and IntervalLLM sometimes even
lead to performance degradation. When employ-
ing Yi-34b, SirLLM achieved the highest accuracy
of 90.35% on the modified DailyDialog dataset,
marking an impressive 5.00% increase in accuracy
compared to StreamLLM. These results robustly
demonstrate SirLLM’s capability to enhance the
memory ability of LLMs, providing them with a
longer retention span and thereby offering users a
smoother conversational experience.

4.2.2 Grocery Shopping
Dataset Construction To more vividly demon-
strate SirLLM’s superior memory capabilities, we
designed the second task, Grocery Shopping, based
on the CommonsenseQA (CSQA) (Talmor et al.,

2616

Entropy # Recent ηdecay ACC(%) ∆

Yi-6b Attention Sink Size: 4
Stream 0 508 1 76.90
Random 508 0 1 71.10 -5.80
Interval 508 0 1 65.20 -11.70

SirLLM 508 0 0.7 83.85 6.95

Yi-34b Attention Sink Size: 4
Stream 0 508 1 85.35
Random 508 0 1 82.17 -3.18
Interval 508 0 1 70.70 -14.65

SirLLM 508 0 0.7 90.35 5.00

Vicuna-7b Attention Sink Size: 4
Stream 0 508 1 57.55
Random 508 0 1 57.48 -0.13
Interval 508 0 1 54.45 -3.10

SirLLM 508 0 0.5 59.15 1.60

Vicuna-13b Attention Sink Size: 4
Stream 0 508 1 71.10
Random 508 0 1 69.27 -1.83
Interval 508 0 1 62.05 -9.05

SirLLM 508 0 0.6 71.40 0.30

Table 1: Results for the DailyDialog dataset are pre-
sented as follows: # Entropy and # Recent indicate the
cache sizes allocated for tokens with the highest entropy
and for recent tokens, respectively. ACC (%) represents
the accuracy. ∆ signifies the improvement of the model
relative to the baseline StreamLLM.

2019) dataset to create the Grocery Shopping
dataset. Specifically, in the first interaction, the
user informs the LLM of the groceries they wish
to purchase. This is followed by 20 rounds of com-
monsense QA sessions with the LLM, where the
questions are sourced from the train and develop-
ment splits of the CSQA dataset and formatted as
multiple-choice questions. After these 20 rounds,
the user then asks the LLM to recall and select
the required groceries from four options. This task
is designed to test the LLM’s long-term memory
through the grocery-related questions and its ability
to maintain excellent short-term memory and rea-
soning skills through the commonsense QA. The
detailed dataset statistics can be found in Table 6 in
Appendix A and dataset samples can be found in
Figure 8 in Appendix C. From the table, we can see
that the average token length per dialog is 1223.81
and all the 548 dialogs’ total token number exceeds
1024. Therefore, we set the cache size for Grocery
Shopping as 1024.

Result In the Grocery Shopping task, to enable
the model to maintain a longer memory, we uni-
formly set the decay ratio to 1. The overall results
can be found in Table 2.

Entropy # Recent ACCc ACCg ∆c ∆g

Yi-6b Attention Sink Size: 4; ηdecay = 1
Stream 0 1020 71.33 25.73
Random 1020 0 70.33 77.55 -1.00 51.82
Interval 1020 0 63.98 21.72 -7.20 -4.01

SirLLM 1020 0 72.44 99.27 1.11 73.54

Vicuna-7b Attention Sink Size: 4; ηdecay = 1
Stream 0 1020 50.84 28.65
Random 1020 0 50.97 85.04 0.13 56.39
Interval 1020 0 47.21 23.72 -3.63 -4.93

SirLLM 1020 0 51.04 96.17 0.20 67.52

Vicuna-13b Attention Sink Size: 4; ηdecay = 1
Stream 0 1020 60.10 24.45
SirLLM 1020 0 60.23 97.08 0.13 72.63

Yi-34b Attention Sink Size: 4; ηdecay = 1
Stream 0 1020 81.35 26.29
SirLLM 1020 0 81.44 89.60 0.09 63.31

Table 2: Results for the Grocery Shopping dataset: #
Entropy and # Recent indicate the cache sizes allocated
for tokens with the highest entropy and for recent tokens,
respectively. ACCc and ACCg represents the accuracy
for commonsense QA and Grocery Shopping, respec-
tively. ∆c and ∆g signify the improvement of the model
relative to the baseline StreamLLM.

Table 2 clearly indicates that SirLLM consis-
tently demonstrates an improvement in accuracy
across different models. Specifically, SirLLM
not only maintains its commonsense question-
answering abilities that require short-term mem-
ory but also shows a substantial enhancement in
memory capabilities for the Grocery Shopping task.
This outcome is attributed to SirLLM’s effective
utilization of larger cache space allocated for key
information, allowing it to maintain more contex-
tual information in extended dialogues. This un-
derscores SirLLM’s efficacy not only in specific
tasks but also in maintaining its memory advan-
tage across different types of tasks, which is crucial
for building a more adaptable and multifunctional
dialogue system.

4.2.3 Rock-Paper-Scissors
Dataset Construction To better observe the per-
formance of SirLLM in scenarios with infinitely
long streaming dialogue inputs, we constructed a
Rock-Paper-Scissors dataset. In this dataset, we
created three players with preferences for throw-
ing rock, paper, or scissors, respectively. In each
round, we inform the LLM of the previous round’s
user move and the outcome, and then we ask the
LLM to analyze the user’s throwing preferences to
maximize its own winning rate for the next round.
Detailed information about the dataset and the prob-
abilities of each player’s moves can be found in

2617

Entropy # Recent ηdecay
Paper Rock Scissors Average

win tie lose win tie lose win tie lose win

Yi-6b
Stream 0 1020 1 31.10 19.60 49.30 30.90 19.10 50.00 46.45 31.00 22.55 36.15
Random 1020 0 1 20.00 49.45 30.55 49.73 31.02 19.25 27.18 21.93 50.88 32.31
Interval 1020 0 1 19.45 50.15 30.40 50.00 30.90 19.10 27.35 20.8 51.85 32.27

SirLLM 1020 0 0.9 30.65 19.55 49.80 30.90 19.10 50.00 50.45 28.05 21.50 37.33
Yi-34b
Stream 0 1020 1 48.55 27.95 23.50 41.05 26.15 32.80 32.20 38.90 28.90 40.60
Random 1020 0 1 30.57 19.68 49.62 19.08 50.12 30.97 51.70 27.35 20.95 33.78
Interval 1020 0 1 45.40 26.05 28.55 35.45 24.30 40.25 26.20 46.15 27.65 35.68

SirLLM 1020 0 0.8 48.45 28.00 23.55 40.60 26.15 33.25 37.05 38.25 24.70 42.03
Vicuna-7b
Stream 0 1020 1 28.75 24.05 47.20 19.80 45.90 34.30 51.20 27.70 21.10 33.25
Random 1020 0 1 19.57 49.62 30.82 49.82 31.03 19.15 27.68 20.90 51.42 32.36
Interval 1020 0 1 29.15 37.95 32.90 24.40 45.80 29.80 28.25 35.05 36.70 27.27

SirLLM 1020 0 0.7 26.20 32.10 41.70 27.40 30.45 42.15 48.60 29.85 21.55 34.07
Vicuna-13b
Stream 0 1020 1 30.25 21.15 48.60 22.60 47.25 30.15 51.20 27.65 21.15 34.68
Random 1020 0 1 44.02 26.63 29.35 30.43 21.70 47.97 28.32 46.43 25.25 34.26
Interval 1020 0 1 29.80 22.65 47.55 21.80 45.65 32.50 50.25 27.80 21.90 33.95

SirLLM 1020 0 0.7 28.50 26.20 45.30 33.70 39.80 26.50 48.10 25.75 26.15 36.77

Table 3: Results for the Rock-Paper-Scissors dataset. # Entropy and # Recent denote the allocated cache sizes
for tokens with the highest entropy and for the most recent tokens, respectively. ’Rock,’ ’Paper,’ and ’Scissors’
correspond to players with a preference for each respective move. ’Win,’ ’Tie,’ and ’Lose’ represent the win rate
(%), tie rate (%), and loss rate (%), respectively.

Table 7 in Appendix A. A sample of the data is
illustrated in Figure 9 in Appendix C. Unlike the
DailyDialog and Grocery Shopping datasets, where
the KV cache is reset to zero after each round, the
Rock-Paper-Scissors task allows the LLM to en-
gage in 2000 rounds of play without resetting the
KV cache, achieving a truly infinite number of dia-
logue turns. This aims to observe whether SirLLM
can remember key information and more user his-
torical preferences to better maximize its win rate.

Result The results showcased in Table 3 for the
Rock-Paper-Scissors dataset reveal that SirLLM
consistently surpasses the baseline StreamLLM for
players with varied throwing preferences. Upon
closer examination of the data, it becomes appar-
ent that SirLLM delivers a steady enhancement in
win rates against players of different preferences,
maintaining this enhanced performance uniformly
across all the models evaluated. Furthermore, the
decay mechanism integrated within SirLLM plays
a crucial role in sustaining a balanced performance
over numerous rounds, as reflected by its uniformly
elevated win rates. This characteristic of SirLLM
proves especially advantageous in scenarios involv-
ing extended interactions, such as long-duration
Rock-Paper-Scissors games, where the model’s ca-

pacity to adapt and recall previous moves is imper-
ative for success.

5 Further Exploration

5.1 Few-shot

Brown et al. (2020) demonstrates that few-shot
learning can significantly aid models in reasoning
and answering questions. SirLLM, by eliminating
redundant KV cache, achieves enhanced memory
capabilities, which translates into improved perfor-
mance on the CSQA dataset. This improvement
could also be interpreted as SirLLM’s ability to in-
corporate more few-shot exemplars with less cache,
thereby attaining higher accuracy. On this premise,
we compared SirLLM with 1-shot, 2-shot, and 3-
shot learning approaches, with results as presented
in Table 4. In n-shot experiments, we prepend the
preceding n questions as few-shot exemplars before
each question, aiming to simulate an input format
similar to that of StreamLLM. As shown in the ta-
ble, SirLLM not only improves upon the baseline
StreamLLM in both the CSQA and Grocery Shop-
ping datasets, but it also maintains this enhanced
performance despite the increment in the number
of shots. This consistency underscores the model’s
ability to leverage the rich information contained

2618

Average logPPL

Figure 5: The perplexity of language modeling on 20K token text. The Sliding-window’s PPL escalates dramatically
once the token length exceeds the pre-trained length. In contrast, both SirLLM and StreamLLM, which incorporate
attention sink tokens, show stable performance. SirLLM and StreamLLM’s performances are almost identical,
effectively demonstrating that SirLLM’s memory mechanism does not impair the model’s answering performance
and can indeed reinforce the model’s memory capabilities.

ACCc ACCg ∆c ∆g

Yi-6b
Stream 71.33 25.73
1-shot 58.66 25.00 -12.67 -0.73
2-shot 63.95 25.36 -7.38 -0.37
3-shot 65.42 23.72 -5.91 -2.01

SirLLM 72.44 99.27 1.11 73.54

Yi-34b
Stream 81.35 26.29
1-shot 75.14 23.91 -6.21 -2.38
2-shot 78.50 24.64 -2.85 -1.65
3-shot 79.20 25.18 -2.15 -1.11

SirLLM 81.44 89.60 0.09 63.31

Vicuna-7b
Stream 50.84 28.65
1-shot 48.54 27.01 -2.30 -1.64
2-shot 49.11 27.19 -1.73 -1.46
3-shot 49.81 27.55 -1.03 -1.10

SirLLM 51.04 96.17 0.20 67.52

Vicuna-13b
Stream 60.10 24.45
1-shot 55.34 22.26 -4.76 -2.19
2-shot 58.94 26.46 -1.16 2.01
3-shot 60.44 27.01 0.34 2.56

SirLLM 60.23 97.08 0.13 72.63

Table 4: Few-shot results for Grocery Shopping dataset

within the few-shot examples without becoming
overwhelmed by the increased data.

5.2 PPL for long text

Following the approach of StreamLLM, we plotted
the log Perplexity (logPPL) of SirLLM, Stream-
LLM, and Sliding-window on texts spanning
20,000 tokens across various LLMs, as depicted
in the Figure 5. The Figure reveals that while the
Sliding-window model exhibits volatility in PPL,

particularly beyond the length it was trained on,
SirLLM maintains a consistent and stable PPL, sug-
gesting a robustness to input length. The average
logPPL values in the accompanying table further
corroborate this, with SirLLM matching Stream-
LLM’s performance closely across both Vicuna-7b
and Yi-6b models. This indicates that SirLLM
and StreamLLM have comparable short-term mem-
ory capabilities, with SirLLM not adversely affect-
ing the model’s ability to retain information over
shorter durations. This alignment of PPL between
SirLLM and StreamLLM, despite SirLLM’s en-
hanced memory function, underscores the efficacy
of SirLLM’s design in managing longer context
without compromising the language model’s flu-
ency or coherence.

6 Conclusion

Addressing the critical challenges of managing in-
finite input lengths and maintaining memory capa-
bility, SirLLM harmonizes long dialogue retention
without the necessity of model fine-tuning by selec-
tively fortifies the model’s focus on pivotal informa-
tion. Through experiments across three tailor-made
tasks: DailyDialog, Grocery Shopping, and Rock-
Paper-Scissors, SirLLM has demonstrated a consis-
tent and stable improvement over existing models,
irrespective of the complexity and length of the
dialogues. The experimental outcomes validate
the robustness and versatility of SirLLM, making
it an invaluable asset for future explorations and
applications in natural language processing.

Limitation

The limitations of SirLLM include: (1) Adaptation
to Various Scenarios: Currently, users may need

2619

to manually adjust the decay ratio to achieve de-
sired outcomes in different application scenarios.
Developing an adaptive mechanism that automat-
ically tunes the decay ratio based on specific con-
texts presents a viable direction for future work.
(2) Significance Discrepancy: What users consider
important information may not always align with
the model’s criteria, leading to potential omissions
in memory retention. Therefore, a more accurate
mechanism for cache retrieval and storage warrants
detailed exploration in future research endeavors.
This could ensure that the model better aligns with
user priorities and improves overall recall accuracy.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Joshua Ainslie, Santiago Ontañón, Chris Alberti, Va-
clav Cvicek, Zachary Fisher, Philip Pham, Anirudh
Ravula, Sumit Sanghai, Qifan Wang, and Li Yang.
2020. ETC: encoding long and structured inputs in
transformers. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing, EMNLP 2020, Online, November 16-20, 2020,
pages 268–284. Association for Computational Lin-
guistics.

Iz Beltagy, Matthew E Peters, and Arman Cohan. 2020.
Longformer: The long-document transformer. arXiv
preprint arXiv:2004.05150.

Moshe Berchansky, Peter Izsak, Avi Caciularu, Ido
Dagan, and Moshe Wasserblat. 2023. Optimizing
retrieval-augmented reader models via token elimi-
nation. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Process-
ing, EMNLP 2023, Singapore, December 6-10, 2023,
pages 1506–1524. Association for Computational
Linguistics.

Avinash Bhat, Disha Shrivastava, and Jin LC Guo.
2023. Approach intelligent writing assistants us-
ability with seven stages of action. arXiv preprint
arXiv:2304.02822.

Desirée Bill and Theodor Eriksson. 2023. Fine-tuning a
llm using reinforcement learning from human feed-
back for a therapy chatbot application.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric

Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Process-
ing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual.

Yukang Chen, Shengju Qian, Haotian Tang, Xin Lai,
Zhijian Liu, Song Han, and Jiaya Jia. 2023. Longlora:
Efficient fine-tuning of long-context large language
models. CoRR, abs/2309.12307.

Rewon Child, Scott Gray, Alec Radford, and Ilya
Sutskever. 2019. Generating long sequences with
sparse transformers. CoRR, abs/1904.10509.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman,
Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li,
Kyle McDonell, Niklas Muennighoff, Chris Ociepa,
Jason Phang, Laria Reynolds, Hailey Schoelkopf,
Aviya Skowron, Lintang Sutawika, Eric Tang, An-
ish Thite, Ben Wang, Kevin Wang, and Andy Zou.
2023. A framework for few-shot language model
evaluation.

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang,
Jiawei Han, and Jianfeng Gao. 2023. Model tells you
what to discard: Adaptive KV cache compression for
llms. CoRR, abs/2310.01801.

Mandy Guo, Joshua Ainslie, David C. Uthus, Santi-
ago Ontañón, Jianmo Ni, Yun-Hsuan Sung, and Yin-
fei Yang. 2022. Longt5: Efficient text-to-text trans-
former for long sequences. In Findings of the Associ-
ation for Computational Linguistics: NAACL 2022,
Seattle, WA, United States, July 10-15, 2022, pages
724–736. Association for Computational Linguistics.

Chi Han, Qifan Wang, Wenhan Xiong, Yu Chen, Heng
Ji, and Sinong Wang. 2023. Lm-infinite: Simple
on-the-fly length generalization for large language
models. CoRR, abs/2308.16137.

Yunpeng Huang, Jingwei Xu, Zixu Jiang, Junyu Lai,
Zenan Li, Yuan Yao, Taolue Chen, Lijuan Yang,
Zhou Xin, and Xiaoxing Ma. 2023. Advancing trans-
former architecture in long-context large language
models: A comprehensive survey. arXiv preprint
arXiv:2311.12351.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

Majeed Kazemitabaar, Runlong Ye, Xiaoning Wang,
Austin Z Henley, Paul Denny, Michelle Craig, and
Tovi Grossman. 2024. Codeaid: Evaluating a class-
room deployment of an llm-based programming assis-
tant that balances student and educator needs. arXiv
preprint arXiv:2401.11314.

2620

https://doi.org/10.18653/V1/2020.EMNLP-MAIN.19
https://doi.org/10.18653/V1/2020.EMNLP-MAIN.19
https://aclanthology.org/2023.emnlp-main.93
https://aclanthology.org/2023.emnlp-main.93
https://aclanthology.org/2023.emnlp-main.93
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.48550/ARXIV.2309.12307
https://doi.org/10.48550/ARXIV.2309.12307
https://doi.org/10.48550/ARXIV.2309.12307
http://arxiv.org/abs/1904.10509
http://arxiv.org/abs/1904.10509
https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.48550/ARXIV.2310.01801
https://doi.org/10.48550/ARXIV.2310.01801
https://doi.org/10.48550/ARXIV.2310.01801
https://doi.org/10.18653/V1/2022.FINDINGS-NAACL.55
https://doi.org/10.18653/V1/2022.FINDINGS-NAACL.55
https://doi.org/10.48550/ARXIV.2308.16137
https://doi.org/10.48550/ARXIV.2308.16137
https://doi.org/10.48550/ARXIV.2308.16137

Shiyang Li, Xiaoyong Jin, Yao Xuan, Xiyou Zhou,
Wenhu Chen, Yu-Xiang Wang, and Xifeng Yan.
2019a. Enhancing the locality and breaking the mem-
ory bottleneck of transformer on time series forecast-
ing. In Advances in Neural Information Processing
Systems 32: Annual Conference on Neural Informa-
tion Processing Systems 2019, NeurIPS 2019, De-
cember 8-14, 2019, Vancouver, BC, Canada, pages
5244–5254.

Shiyang Li, Xiaoyong Jin, Yao Xuan, Xiyou Zhou,
Wenhu Chen, Yu-Xiang Wang, and Xifeng Yan.
2019b. Enhancing the locality and breaking the mem-
ory bottleneck of transformer on time series fore-
casting. Advances in neural information processing
systems, 32.

Yanran Li, Hui Su, Xiaoyu Shen, Wenjie Li, Ziqiang
Cao, and Shuzi Niu. 2017a. DailyDialog: A manu-
ally labelled multi-turn dialogue dataset. In Proceed-
ings of the Eighth International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 986–995, Taipei, Taiwan. Asian Fed-
eration of Natural Language Processing.

Yanran Li, Hui Su, Xiaoyu Shen, Wenjie Li, Ziqiang
Cao, and Shuzi Niu. 2017b. Dailydialog: A manu-
ally labelled multi-turn dialogue dataset. In Proceed-
ings of the Eighth International Joint Conference on
Natural Language Processing, IJCNLP 2017, Taipei,
Taiwan, November 27 - December 1, 2017 - Volume
1: Long Papers, pages 986–995. Asian Federation of
Natural Language Processing.

Yucheng Li, Bo Dong, Frank Guerin, and Chenghua Lin.
2023. Compressing context to enhance inference ef-
ficiency of large language models. In Proceedings of
the 2023 Conference on Empirical Methods in Natu-
ral Language Processing, pages 6342–6353, Singa-
pore. Association for Computational Linguistics.

Xinbei Ma, Zhuosheng Zhang, and Hai Zhao. 2024.
Comprehensive cognitive llm agent for smartphone
gui automation. arXiv preprint arXiv:2402.11941.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2017. Pointer sentinel mixture mod-
els. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April
24-26, 2017, Conference Track Proceedings. Open-
Review.net.

Matanel Oren, Michael Hassid, Yossi Adi, and Roy
Schwartz. 2024. Transformers are multi-state rnns.
CoRR, abs/2401.06104.

Keivalya Pandya and Mehfuza Holia. 2023. Automating
customer service using langchain: Building custom
open-source gpt chatbot for organizations. arXiv
preprint arXiv:2310.05421.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and
Jonathan Berant. 2019. Commonsenseqa: A question
answering challenge targeting commonsense knowl-
edge. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for

Computational Linguistics: Human Language Tech-
nologies, NAACL-HLT 2019, Minneapolis, MN, USA,
June 2-7, 2019, Volume 1 (Long and Short Papers),
pages 4149–4158. Association for Computational
Linguistics.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023a. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton-
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurélien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023b. Llama 2: Open foundation and
fine-tuned chat models. CoRR, abs/2307.09288.

Kai Wang, Yuwei Xu, Zhiyong Wu, and Siqiang Luo.
2024. Llm as prompter: Low-resource inductive rea-
soning on arbitrary knowledge graphs. arXiv preprint
arXiv:2402.11804.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song
Han, and Mike Lewis. 2023. Efficient streaming
language models with attention sinks. arXiv preprint
arXiv:2309.17453.

Yifei Yang, Runhan Shi, Zuchao Li, Shu Jiang, Yang
Yang, Bao-Liang Lu, and Hai Zhao. 2024. Batgpt-
chem: A foundation large model for chemical engi-
neering.

An Zhang, Leheng Sheng, Yuxin Chen, Hao Li, Yang
Deng, Xiang Wang, and Tat-Seng Chua. 2023a. On
generative agents in recommendation. arXiv preprint
arXiv:2310.10108.

Shitou Zhang, Jingrui Hou, Siyuan Peng, Zuchao Li,
Qibiao Hu, and Ping Wang. 2023b. Arcgpt: A large
language model tailored for real-world archival ap-
plications. arXiv preprint arXiv:2307.14852.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong
Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark W. Barrett,

2621

https://proceedings.neurips.cc/paper/2019/hash/6775a0635c302542da2c32aa19d86be0-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/6775a0635c302542da2c32aa19d86be0-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/6775a0635c302542da2c32aa19d86be0-Abstract.html
https://aclanthology.org/I17-1099
https://aclanthology.org/I17-1099
https://aclanthology.org/I17-1099/
https://aclanthology.org/I17-1099/
https://doi.org/10.18653/v1/2023.emnlp-main.391
https://doi.org/10.18653/v1/2023.emnlp-main.391
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=Byj72udxe
https://doi.org/10.48550/ARXIV.2401.06104
https://doi.org/10.18653/V1/N19-1421
https://doi.org/10.18653/V1/N19-1421
https://doi.org/10.18653/V1/N19-1421
https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.48550/ARXIV.2307.09288

Zhangyang Wang, and Beidi Chen. 2023c. H2O:
heavy-hitter oracle for efficient generative inference
of large language models. In Advances in Neural
Information Processing Systems 36: Annual Confer-
ence on Neural Information Processing Systems 2023,
NeurIPS 2023, New Orleans, LA, USA, December 10
- 16, 2023.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang,
Joseph E. Gonzalez, and Ion Stoica. 2023. Judg-
ing llm-as-a-judge with mt-bench and chatbot arena.
CoRR, abs/2306.05685.

A Dataset Statistics

A.1 DailyDialog

DailyDialog Statistics

#dialogs 518
#average turn 3.85
#average token (dialog) 461.55
#average word (dialog) 309.92
dialogs (≥ 512) 199

Table 5: Detailed statistics of DailyDialog(modified)

We modified the test split of the DailyDialog
dataset to create a set of four-option multiple-
choice questions. This set includes one correct
option and three dummy choices, which are se-
lected from the validation split. Table 5 presents
the detailed statistics of the modified DailyDialog
dataset. In this table, #dialogs indicates the total
number of dialogs; #average turn refers to the av-
erage number of turns per dialog; #average token
(dialog) represents the average number of tokens
per dialog, calculated using the Vicuna-7b-v1.3 tok-
enizer; #average word (dialog) signifies the average
number of words per dialog; and #dialogs (≥ 512)
shows the count of dialogs where the total number
of tokens exceeds 512.

A.2 Grocery Shopping

Grocery Shopping Statistics

#dialogs 548
#groceries 53
#average turn 22
#average token (dialog) 1223.81
#average word (dialog) 631.60
dialogs (≥ 1024) 548

Table 6: Detailed statistics of Grocery Shopping

Table 6 presents the detailed statistics of the Gro-
cery Shopping dataset. In this table, #dialogs indi-
cates the total number of dialogs; #groceries rep-
resents the number of different types of groceries;
#average turn refers to the average number of turns
per dialog; #average token (dialog) represents the
average number of tokens per dialog, calculated
using the Vicuna-7b-v1.3 tokenizer; #average word
(dialog) signifies the average number of words per
dialog; and #dialogs (≥ 1024) shows the count of

2622

http://papers.nips.cc/paper_files/paper/2023/hash/6ceefa7b15572587b78ecfcebb2827f8-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/6ceefa7b15572587b78ecfcebb2827f8-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/6ceefa7b15572587b78ecfcebb2827f8-Abstract-Conference.html
https://doi.org/10.48550/ARXIV.2306.05685
https://doi.org/10.48550/ARXIV.2306.05685

dialogs where the total number of tokens exceeds
1024.

A.3 Rock-Paper-Scissors dataset

Rock-Paper-Scissors Statistics
#rounds 2000
#average token (rounds) 54
#average word (rounds) 35

Player 1
(Rock)

rock 0.5
paper 0.3
scissors 0.2

Player 2
(Paper)

rock 0.2
paper 0.5
scissors 0.3

Player 3
(Scissors)

rock 0.3
paper 0.2
scissors 0.5

Table 7: Detailed statistics of Grocery Shopping

Table 7 presents the detailed statistics of the
Rock-Paper-Scissors dataset. In this table, #rounds
indicates the total number of Rock-Paper-Scissors
rounds; #average token (rounds) represents the av-
erage number of tokens per rounds, calculated us-
ing the Vicuna-7b-v1.3 tokenizer; #average word
(rounds) signifies the average number of words
per round. In the table 7, the preferences for each
player’s moves and their corresponding probabil-
ities of throwing rock, paper, or scissors are also
listed.

0.6 0.8 1
20

40

60

80

100

Accuracy(%)

F1
sc

or
e

CSQA Grocery

Figure 6: Performance of different decay ratio in Gro-
cery Shopping dataset.

B The Impact of Decay Ratio on Memory
Retention

To more vividly illustrate the impact of the decay
ratio on the memory capabilities of LLMs, we con-

ducted experiments using various decay ratios in
the Grocery Shopping task. The results of these
experiments are presented in Figure 6. From the
Figure 6, we can observe that when the decay ratio
is set below one, the model completely forgets the
groceries desired by the user after 20 rounds of
commonsense question and answer sessions. How-
ever, adjusting the decay ratio does not significantly
impact the model’s performance on tasks requiring
short-term memory, such as commonsense ques-
tion answering. By fine-tuning the decay ratio, we
can flexibly adapt the memory capabilities of the
LLM to suit different scenarios. This effectively
demonstrates the stability and efficacy of SirLLM’s
memory mechanism.

C Dataset Samples

DailyDialog

Figure 7: A sample from the DailyDialog dataset

2623

Grocery Shopping

Grocery List

Figure 8: A sample from the Grocery Shopping dataset

Rock-Paper-Scissors

Figure 9: A sample from the Rock-Paper-Scissors
dataset

2624

