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Abstract
Large Language Models (LLMs) have demon-
strated great potential for assisting developers
in their daily development. However, most
research focuses on generating correct code,
how to use LLMs to generate personalized
code has seldom been investigated. To bridge
this gap, we proposed MPCODER (Multi-user
Personalized Code Generator) to generate per-
sonalized code for multiple users. To better
learn coding style features, we utilize explicit
coding style residual learning to capture the
syntax code style standards and implicit style
learning to capture the semantic code style con-
ventions. We train a multi-user style adapter
to better differentiate the implicit feature repre-
sentations of different users through contrastive
learning, ultimately enabling personalized code
generation for multiple users. We further pro-
pose a novel evaluation metric for estimating
similarities between codes of different cod-
ing styles. The experimental results show the
effectiveness of our approach for this novel
task. The code and dataset are available at
https://github.com/455849940/MPCoder.

1 Introduction

Nowadays, LLMs have been successfully used to
support developers’ daily development, such as
code generation, test generation, etc. However,
existing Code LLMs are usually general models
trained with large programming corpus (Zheng
et al., 2023; Chen et al., 2022), therefore the gener-
ated code is difficult to adapt to personalized and/or
customized requests. Consider the following prac-
tical scenarios: Alice is a software developer. To
improve programmers’ daily efficiency, her com-
pany provided the base LLMs that can be used for
code generation. Nonetheless, different develop-
ers/projects have their own coding standards and
specifications. If Alice needs to generate code satis-
fying specific conventions, the base LLMs may fail

*Co-corresponding authors.

import java.util.HashSet;
import java.util.List;
import java.util.Set;
import java.util.Scanner;

class Solution{

  public String findMax(List<String> words){
    int maxUniqueChar = 0;
    String maxWord = "";
    for (String word : words){
      int uniqueChar = getUniqueChars(word);
      if (uniqueChar > maxUniqueChar){
        maxWord = word;
        maxUniqueChar = uniqueChar;
      }else if (uniqueChar == maxUniqueChar){
        if (word.compareTo(maxWord) < 0){
          maxWord = word;
        }
      }
    }
    return maxWord;
  }

  private int getUniqueChars(String s){
    ......
    return uniqueChar.size();
  }
}
......

import java.util.*;

class util{
  public static int getUniqueChar(String s) {
    ......
    return uniqueChar.size();
  }

class solution {
    
  public String findMax(List<String> words) {
    int maxcount = 0;
    String maxWord = "";
    for (String word : words) {
      int uniqueChar 
= util.getUniqueChars(word);
      if (uniqueChar > maxcount) {
        maxWord = word;
        maxcount = uniqueChar;
      } else if (uniqueChar == maxUniqueChar) {
        if (word.compareTo(maxWord) < 0) {
          maxWord = word;
        }
      }
    }
    return maxWord;
 }
}

......

structure

     formatting

 naming

code generated by LLMpersonalized
requirements

Figure 1: Example of code generated by LLMs and
the corresponding personalized code that is expected,
with areas inconsistent with the expectations marked in
different colors within the model-generated code.

to capture these nuanced differences. As shown in
Fig. 1, Alice has to painstakingly revise and review
the generated code. If the custom style of the gen-
erated code conforms to the standard style of differ-
ent developers/projects and is correct, it can greatly
increase developer productivity (Kropp and Meier,
2013; Cheng et al., 2022; Song et al., 2023) and
reduce code maintenance costs (Alkhatib, 1992; Tu
et al., 2014).

Recent researchers have explored code genera-
tion task by using LLMs; however, most studies (Li
et al., 2023b, 2022a; Ahmad et al., 2021; Hu et al.,
2021) focus on generating “correct” code. There
is limited research investigating how to generate
“personalized” code, especially for multi-user per-
sonalization, with no research conducted yet. Auto-
matically generating code according to developers’
preferences or projects’ consistency is a challeng-
ing task: (i) Considering different programmers
have their own coding styles, it is too expensive
to fine-tune an LLM for each user (Guo et al.,
2021). Therefore, how to build an efficient model
to generate personalized code for multiple users
poses a significant challenge. (ii) Coding styles
are hard to learn and capture. Coding styles in-
clude different aspects of the code, such as code
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naming, formatting, and structures. How to dis-
tinguish coding style differences between different
users and obtain good style representations is an-
other challenge. (iii) Coding styles are hard to
evaluate. Unlike code correctness, which can be
evaluated by executing test cases, there is no evalu-
ation metric to estimate coding styles of different
code fragments. How to evaluate coding styles
quantitatively becomes another challenge for our
study (Husain et al., 2019; Lu et al., 2021).

To tackle the above challenges, we propose a
novel approach named MPCODER, which is de-
signed to generate personalized code for multiple
users according to their individual coding styles.
After training, our model can be easily queried with
the ID of the user and generate personalized code
consistent with his/her desired coding styles. To
better capture styles within the raw code, we en-
code the explicit style features and implicit style
features to obtain an effective coding style repre-
sentation. Regarding the explicit style features, we
apply the coding style checking tool (Checkstyle1

in our study) to detect different coding style at-
tributes explicitly, then the model learn and encode
these style attributes by residual learning, which
guides the model in identifying the coding style
attribute by contrasting two sets of coding style
attributes (Section 2.2). For the implicit style fea-
tures, to capture the subtle and unnoticed style
differences between different users, we design a
multi-user style adapter to further distinguish cod-
ing style differences among different users by using
contrastive learning (Section 2.3). Finally, by com-
bining the explicit coding style features and user-
specific implicit style features, we can generate the
user’s personalized code that both contain the syn-
tax and semantic styles of the code (Section 2.4).
Due to the limited prior work on exploring per-
sonalized code generation, there is currently no
effective way to estimate whether two pieces of
code have similar coding styles. In this paper, we
propose a novel evaluation metric, Coding Style
Score (CSS), to quantitatively estimate the coding
styles between two given codes.

In summary, our paper makes the following con-
tributions: Firstly, current research mainly focuses
on generating correct code, to the best of our knowl-
edge, no prior work explored how to generate per-
sonalized code for multiple users. Secondly, we
develop a novel model, named MPCODER, to learn

1http://checkstyle.sourceforge.net

multi-users’ coding style features and generate per-
sonalized code. Thirdly, we propose a novel evalu-
ation metric for estimating coding styles quantita-
tively, and additionally, we also release our dataset
which contains source code written by multiple
users. The experimental results show the effective-
ness of our model over a set of baselines, showing
its ability to generate personalized code while min-
imizing the degradation of code correctness. We
hope our study can lay the foundations for this re-
search topic and provide valuable insights into the
potential for personalized generation capabilities
of general LLMs.

2 Methodology

The coding style can be categorized into syntax
style and semantic style, according to the structure
and meaning of the code. Syntax style refers to the
formatting rules of the code (e.g., indentation, spac-
ing, capitalization of variables) which can be easily
defined (Allamanis et al., 2014; Markovtsev et al.,
2019). On the other hand, semantic style refers
to the use of language features and constructs to
convey intent (e.g., design patterns, and meaningful
names of code) which is hard to precisely define in
language (Parr and Vinju, 2016; Ogura et al., 2018).
Both syntax and semantic style are important for
making the code more readable and maintainable.
Details of the syntax and semantic coding style
differences can be found in Appendix B.3.

To capture these two types of coding styles, as
illustrated in Fig. 2, we propose a novel approach
MPCODER, which utilizes explicit coding style
learning (Section 2.2) to capture the syntax style
standards pre-defined by industry and implicit cod-
ing style learning (Section 2.3) to capture the se-
mantic style that is learned from the code itself.
Moreover, a multi-user style adapter (Section 2.3)
is trained to estimate the style probability distribu-
tion for multiple users. After two stages of training
, MPCODER can generate personalized code for
multiple users simultaneously(Section 2.4).

2.1 Task Definition

Given a specific programming question q, the task
of multi-user personalized code generation is to
generate the corresponding code c for a particu-
lar user u ∈ U based on his/her historical pro-
gramming records r, where the generated code c
should be consistent with the user’s historical cod-
ing styles. It is important to note that the model
should be able to generate personalized code for dif-
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Figure 3: Explicit coding style residual learning.
ferent users simultaneously. More formally, the ob-
jective of personalized code generation is to learn
the underlying conditional probability distribution
Pθ(c|r, q, u) parameterized by θ. In other words,
the goal is to train a model θ such that the proba-
bility Pθ(c|r, q, u) is maximized over the training
dataset in order to generate personalized responses.

2.2 Explicit Coding Style Learning

Coding Style Attribute Extraction. The syntax
style of code refers to a set of guidelines on how
code is organized, such as indentation, spacing, cap-
italization of variables. These coding styles can be
explicitly identified using a standard coding style
checking tool. In this study, we use the Checkstyle1

tool to explicitly examine 25 coding style attributes
(e.g., SeparatorWrap, NoLineWrap, etc.), with the
detailed information provided in Appendix A.3.

Specifically, a piece of code c is identified by
the Checkstyle tool to contain multiple coding
style attributes. These attributes are vectorized
as learnable representations, denoted as Ac =
{a1, a2, ..., ak}. Here, k is the number of attributes,
ai ∈ RH denotes the i-th attribute where each ai
belongs to the 25 coding style attributes defined
by Checkstyle, and H represents the dimension of

the representation which is the same as the word
embedding dimension of LLMs.
Coding Style Residual Learning. It is challeng-
ing for LLMs to directly acquire and distinguish
the representations of all coding style attributes
from the corresponding code. Inspired by previous
study (Alayrac et al., 2022), which suggests that
providing LLMs with two similar images along
with their differences simultaneously can enhance
their learning of image representations, we propose
a novel residual learning mechanism to aid in the
explicit recognition of each coding style attribute.
Given two code fragments with similar coding style
attributes, we guide the LLM in identifying the
residual attribute to learn more precise and dis-
tinguishable attribute representations, as shown in
Fig. 3.

Specifically, two pieces of code c1 and c2,
exhibit similar coding style attributes denoted
by Ac1 = {a1, a2, ..., ak−1} and Ac2 =
{a1, a2, ..., ak}, where ak represents the residual
attribute. Here we design attribute-residual prompt
R, which inspires LLMs to identify the residual
attribute ak by comparing the representations of
Ac1 and Ac2 as:

• Attribute-Residual Prompt. You are given two pieces of
code, <c1> and <c2>, along with their corresponding lists of
style conventions, Ac1 and Ac2 . Please identify and explain
the style conventions in Ac2 that are not present in Ac1 .
• Target Response. <text expression of ak> is present in Ac2

but not in Ac1 ; the style convention of <text expression of ak>
indicates <interpretation of ak>.

Here, <text expression of ak> represents the name
of attribute ak, and <interpretation of ak> denotes
the detailed explanation. Through residual training,
the learned coding style attribute representations
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are consistent with the corresponding syntax styles.
Training Objective. In this training stage, the
objective is to minimize the negative log-likelihood
by utilizing the attribute-residual prompt as:

Lexp = −
l∑

t=1

logP (xt|x<t;A), (1)

where l is the number of tokens in the attribute-
residual prompt and the target response, P ∈ R|V|

is the probability distribution on LLM’s vocabulary,
and A denotes the representations of coding style
attributes that are to be learned in this stage.

2.3 Implicit Coding Style Learning
Explicit coding style learning mainly focuses on
capturing the syntax style features that are pre-
defined by industry standards and are considered
to be user-independent. However, it is important
to note that there is another type of coding style
features that are more difficult to precisely define
using language. These features are user-specific
and may vary from one individual to another. We
define this feature as semantic style feature, which
refers to the use of language features and constructs
to convey intent. For example, some user prefer
to use i, k, j to denote variables, while others may
want to use more meaningful variable names.

To obtain semantic features of coding styles, we
utilize implicit coding style learning to learn each
user’s style features from their historical coding
records. Since detecting the coding styles of vari-
ous users can be intricate and challenging, we pro-
pose a multi-user style adapter to better differenti-
ate the implicit feature representations of different
users through contrastive learning. Subsequently,
the multi-user style adapter estimates the probabil-
ity distribution of styles over the entire vocabulary
for multiple users. Additionally, it incorporates
personalized fine-tuning based on implicit features,
thereby minimizing the necessity to fine-tune and
store multiple copies of LLM for different users.

Implicit Style Features. Inspired by personal-
ized lightweight fine-tuning (Lester et al., 2021; Li
et al., 2023a; Zlotchevski et al., 2022), we guide
the personalized generation of LLMs for each user
u ∈ U with a set of pre-trained continuous vec-
tor representations, namely implicit style features.
Specifically, we aim to learn implicit style features
pu = {p1, p2, ..., pm} for user u using their histori-
cal coding records. Here, pi ∈ RH is the i-th learn-
able representation for user u and m is the number

of learnable representations. We keep most of the
LLMs’ parameters fixed, and only tune the output
layer to accelerate convergence. Given a program-
ming question q and its corresponding code c, rep-
resented as a token sequence x = {x1, x2..., xn}
of length n, we obtain a sequence of token em-
beddings e through the embedding layer of LLMs.
User-specific semantic style features pu are then
concatenated with token embeddings as the input
of decoder layer in LLMs as:

e = EmbeddingLayer({x0, x1..., xn}), (2)

h = DecoderLayer([pu; e]), (3)

where e = {e1, e2, ..., en} and the hidden
states of the decoder layer are denoted as h =
{h1, h2, ..., hn+m}. Each token embedding ei and
implicit style feature pi share the same dimension
H . Implicit semantic style features pu are learned
based on the following prompt template:

• Prompt template. <pu> Give you a programming question
<q> and corresponding user coding style conventions <Au>,
please give the corresponding style of the answer in Java.
• Target Code. <c>

where Au denotes the learned coding style attribute
representations of user u in the first stage. After the
training process, these user-specific semantic style
features pu can be learned from the user-generated
code itself, allowing for the implicit expression of
the users’ coding style.

Multi-user Style Adapter. The generic nature
of the output layer in LLMs entails that it does
not take into account personalized generation re-
quirements. Therefore, even if LLMs receive user-
specific semantic style features, they are unable to
effectively translate these features into personal-
ized outputs. To tackle this issue, we propose a
multi-user style adapter aimed at bridging the gap
between generic outputs and user-specific person-
alized outputs, ultimately enabling personalized
generation for multiple users.

Specifically, as illustrated in Fig. 2(a), at each
decoding step t, the style hidden states are extracted
by a simple neural network consisting of two fully
connected layers as:

st = Wc(Whht + bh) + bc, (4)

where st represents the style hidden states at the
t-th step of the output sequence. W∗ and b∗ denote
the trainable parameters in this section. The ob-
tained style hidden states st are then passed through
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a feed-forward layer with Softmax function to es-
timate the style probability distribution over the
entire vocabulary V for user u as:

Ps(xt|x<t, Au; pu) = Softmax(Wsst + bs), (5)

where Au denotes the learned coding style attribute
representations of user u which appear in his code
records in the training data. For simplicity, we omit
the other trainable parameters. To merge the style
probability distribution and the generic probability
distribution of LLMs, we incorporate a dynamic
gate vector gt, which indicates the weight between
the two distributions. The gate vector gt is derived
by combining the hidden state of the decoder layer
ht with the style distribution Ps(xt|x<t, Au; pu) as:

s
′
t = Relu(WgPs(xt|x<t, Au; pu) + bg), (6)

h
′
t = Wkht + bk, (7)

gt = Sigmoid(Wr(s
′
t + h

′
t) + br), (8)

where gt ∈ R|V| represents the dynamic gating
vector for step t. The final probability distribution
P (xt|x<t, Au; pu) is then derived as:

P (xt|x<t, Au; pu) = gt · Ps(xt|x<t, Au; pu)

+(1− gt) · Po(xt|x<t, Au; pu),
(9)

where Po ∈ R|V| denotes the generic distribution
without the style adapter.
Contrastive Learning. In our approach, the use
of a shared style adapter by multiple users neces-
sitates a clear distinction in style hidden states
among users. Therefore, we incorporate a con-
trastive learning strategy into our model to aid in
learning style hidden states based on global style
features, which includes both syntax and semantic
style features. Specifically, we define the global
style features p̂ and global style hidden states ŝ
respectively as:

p̂ =
1

m

m∑

i=1

pi +
1

k

k∑

i=1

ai, (10)

ŝ =
1

m+ n

m+n∑

t=1

st. (11)

We aim to maximize the correlation between p̂ and
ŝ of the same user while minimize the correlation
with other non-matching pairs. Specifically, we
formulate the contrastive objective as:

LCL = − log
exp(corr(p̂u, ŝu)/τ)∑

u− exp(corr(p̂u, ŝu−)/τ)
, (12)

where τ is the temperature parameter. By min-
imizing this loss, the style hidden states can be
optimized to enhance personalized expressiveness.
Training Objective. In this training stage, the gen-
eration loss is defined as:

Limp = −
n∑

t=1

logP (xt|x<t, Au; pu). (13)

We train implicit style features, the output layer,
and the multi-user style adapter with the contrastive
loss jointly as:

L = Limp + αLCL, (14)

where α is a hyper-parameter.

2.4 Inference

During the inference stage, when presented with a
programming question q for a specific user u, we
are able to gather the coding style attributes Au

and implicit style features pu. We then utilize the
same prompt template as the second training stage
to generate personalized code c for user u.

3 Experiments

3.1 Experimental Setup

Dataset. Until now, no public dataset is available
for personalized code generation task. In this study,
we first build two datasets for this novel task. Our
datasets are collected from PTA2(Programming
Teaching Assistant), for enhancing students’ pro-
gramming skills and will be made public upon ac-
ceptance of this work. The platform has recorded
different users’ problem-solving histories for differ-
ent programming problems. For each user, we can
collect all his/her written code for solving different
problems. After our empirical exploration, most
platform users have a few problem-solving records,
while only a small subset have extensive records.
Thus we construct two datasets PCISparse (Per-
sonalized Code Interaction Sparse) and PCIDense
(Personalized Code Interaction Dense), based on
problem sets with average user interaction records
below and above 100. Overall statistics of the two
dataset are given in Table 1. After data collection,
we split the dataset into training, validation and
testing set by the ratio of 8:1:1. Further details can
be found in Appendix A.1.

2https://pintia.cn/
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Dataset records users records per user
max min avg

PCIDense 5794 50 178 101 115
PCISparse 34642 1121 113 17 31

Table 1: Dataset Statistics.

Baselines. We compare our model with state-
of-the-arts methods as follows: (1) CodeLlama:
CodeLlama-Instruct-7B (Roziere et al., 2023) can
be seen as a benchmark without personalization;
(2) DAPT: Domain Adaptive Pre-Training (Guru-
rangan et al., 2020); (3) L-LDB: Customization
for a specific software project (Zlotchevski et al.,
2022); (4) Adapter: Adapter is used to fine-tune
the LLM (Houlsby et al., 2019).Further details can
be found in Appendix A.2.

Implementation Details. We choose CodeL-
lama (Roziere et al., 2023) as the base LLM.
For training, the model is optimized with
AdamW (Loshchilov and Hutter, 2017) and Fully
Sharded Data Parallel (Ott et al., 2021). During
decoding, code is generated using greedy decoding.
Further details can be found in Appendix A.3.

3.2 Evaluation Metrics
CSS Evaluation Metrics. The personalized code
generation task is more concerned with generated
code styles, the traditional evaluation metrics such
as BLEU (Papineni et al., 2002) and Rouge (Lin
and Och, 2004) scores neglect important syntactic
and semantic features of code and are not suitable
for evaluating coding styles. Inspired by the em-
pirical research on coding styles (Zou et al., 2019),
we first propose an evaluation metric, namely Cod-
ing Style Score (CSS), for evaluating coding styles
between different codes.

Specifically, we characterized the coding style
with 24 style criteria (detail in Appendix B.2) for
Java programming language. These criteria are as-
sociated with three aspects of coding styles: code
structure, formatting, and naming. These style cri-
teria also comply with Google’s Java coding style3.
For a given Java code file, it can be parsed with a
24-dimensional coding style criteria vector. Each
dimension signifies the percentage of a specific
criteria violation.

More formally, the coding style criteria vector of
a Java file could be defined as c = ⟨c1, c2, ..., c24⟩,
where ci ∈ [0, 1] describes the extent of the i-th
coding style criteria has been violated. We define

3http://google.github.io/styleguide/javaguide.html

the CSS metric between the generated code cgen
and the reference code cref as follows:

css(cgen, cref) = 1−DJS(cgen, cref), (15)

where css ∈ [0, 1], and DJS is JS (Jensen-
Shannon) divergence: it measures the similarity
of two probability distributions as:

DJS(p, q) =
1

2
[Dkl(p∥

p+ q

2
) +Dkl(q∥

p+ q

2
)],

(16)

where Dkl is Kullback-Leibler Divergence as:

Dkl(p∥q) =
n∑

i=1

p(xi) log(
p(xi)

q(xi)
). (17)

With CSS evaluation metric, we can provide a quan-
titative way to measure the coding style between
different codes. The larger CSS metric is, the more
similar the coding styles of the generated code and
the reference code are.

Correctness Evaluation Metrics. Regarding our
task, we hope to not only generate personalized
code, but also maintaining the correctness of
the generated code at the same time. We used
HumanEval-X4 to evaluate the correctness of the
generated code. HumanEval-X contains 164 Java
programming problems and their corresponding
test cases, a code is considered as correct if it passes
all test cases for a specific programming problem.

3.3 Experimental Results
Coding Style Evaluation. Table 2 shows the re-
sults of different models on PCIDense and PCIS-
parse datasets respectively. It is obvious that: (1)
MPCODER outperforms all other baselines in terms
of the CSS evaluation metric, which verifies the ad-
vantage of our approach in learning code styles
from code. (2) We include three variants of MP-
CODER, namely MPCODEISF, MPCODEESF and
MPCODERIES, as baselines. The MPCODERISF
only uses the implicit style features as input; The
MPCODERESF only uses the explicit style features
as input; The MPCODERIES uses the implicit and
explicit style features without changing the struc-
ture of the CodeLlama (i.e., not adding Multi-user
Style Adapter and Contrastive Learning). The ex-
perimental results show that incorporating implicit
features can notably enhance CodeLlama’s perfor-
mance in terms of textual similarities (i.e., BLEU

4https://github.com/THUDM/CodeGeeX2
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Number of users Model
PCIDense PCISparse

CSS BLEU Rouge-1 Rouge-2 CSS BLEU Rouge-1 Rouge-2

Single

CodeLlama 48.73 48.09 39.23 25.11 46.29 50.28 37.49 24.20
DAPT 27.38 30.78 40.01 28.77 34.29 39.21 49.17 38.30
L-LDB 64.06 54.93 46.35 34.12 61.09 57.89 44.18 31.53
Adapter 49.44 49.72 43.95 31.12 39.78 42.16 25.16 13.84

Multiple

MPCODERISF 56.68 56.35 42.67 29.06 60.34 58.10 41.53 27.56
MPCODEREFS 57.22 56.17 41.63 27.02 62.52 55.71 40.50 26.73
MPCODERIES 63.26 55.72 42.73 29.17 65.61 56.67 40.91 27.26
MPCODER 64.50 55.73 41.56 28.25 66.18 57.50 41.74 28.11

Table 2: Evaluation results on the Java personalized code generation dataset PCIDense and PCISparse. All results
in the table are reported in percentage (%). “Single” represents the model can only be used for a single user. We
report the BLEU and Rouge scores for reference by calculating BLEU-4 and Rouge-1/2.

Model multi-user
Parameters

Total Trained
DAPT % 6.7B*N 100%*N
L-LDB % 6.7B*N 3.00%*N
Adapter % (6.7B+1.2M)*N 0.02%*N
MPCODERISF ✓ 20K*N+6.7B 3e−4% * N + 1.95%
MPCODERESF ✓ 96K+6.7B 1.95%
MPCODERIES ✓ 20K*N+96K+6.7B 3e−4% * N+1.95%
MPCODER ✓ 20K*N+96K+6.9B 3e−4% * N+4.82%

Table 3: Comparison of the total size and trainable
parameters. N denotes the number of users and ‘multi-
user’ indicates whether the model supports multi-user.
96K is the number of parameters for 25 explicit coding
style attributes.

and Rouge) and coding style similarities (i.e., CSS).
After adding explicit features (MPCODERIES), the
textual similarities almost stay the same while the
CSS has been further significantly improved. This
confirms the effectiveness of incorporating explicit
and implicit features learning in our study. (3) The
L-LDB is a customized baseline tailored to individ-
ual users, which has its advantage compared with
other baselines. However, as it is specifically de-
signed for single users, it requires the model to be
retrained for each user, making it cost-prohibitive
for multi-user code generation. Qualitative exam-
ples of our model and other models can be found
in Appendix B.4.
Cost Analysis. Table 3 shows the total size and
trainable parameters of each model. The results
show that MPCODER can greatly reduce training
and storage costs for multiple users. The cost of
adding new users to our model can be neglected
(3e-4% in parameters per user).

Residual and Contrastive Learning Analysis.
There are two key hyperparameters, which are the
number of attributes in residual learning and the
weight parameter α in the loss function. In this
section, we evaluate the the influence of these two
parameters. The number of attributes means the
maximum number of style attributes in the attribute-

1 2 3 4 5 6 7
The number of attributes
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Figure 4: Residual Learning (left) and Contrastive
Learning Hyperparameter (right) Effects on CSS.

(a) without contrastive learning (b) with contrastive learning

Figure 5: t-SNE visualization results: style hidden states
of user interaction records on PCIDense. Different col-
ors denote different users.

residual prompt. As shown in Fig. 4(a), when set-
ting the number of attributes to 1, it equals to not
utilizing residual learning. The experimental re-
sults show that employing residual learning with
5 attributes can effectively guide LLM to under-
stand code attributes. For hyperparameters α, as
shown in Fig. 4(b), we vary its value from 0 to 1.0
with a step size of 0.25. Then we further adjust
it from 0.50 to 0.75 with a step size of 0.05. The
experimental results show that setting α to 0.55 can
achieve optimal performance.

Furthermore, we visually represent the style hid-
den states of 50 users to demonstrate the effective-
ness of contrastive learning in Fig. 5. The hidden
states of records from the same user are clustered
together, while those from different users are effec-
tively separated.

Ablation Study. As illustrated in Table 4, we
performed an ablation study by removing key com-
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Model CSS
PCIDense PCISparse

MPCODER 64.64 66.18
w/o Coding Style Attributes 58.19 64.13
w/o Contrastive Learning 63.83 63.36
w/o Multi-user Style Adapter 63.26 65.61

Table 4: Ablation study.
Numbers of user Model PCIDense PCISparse

Single

CodeLlama 30.49% 30.49%
DAPT - -
L-LDB 28.62% 22.56%
Adapter 27.32% 29.73%

Multiple

MPCODERISF 29.57% 25.76%
MPCODERESF 30.24% 28.53%
MPCODERIES 27.88% 26.60%
MPCODER 31.25% 26.18%

Table 5: Correctness evaluation.

ponents (i.e., Coding Style Attributes, Contrastive
Learning and Muti-user Style Adapter) of MP-
CODER separately. The experimental results show
that: (1) No matter which component we drop, it
hurts the overall performance of our model, which
signals the importance and effectiveness of all three
components. (2) The CSS drops most significantly
on PCIDense and PCISparse datasets when the
Coding Style Attributes and Contrastive Learning
component are removed, showing these two com-
ponents can complement each other under different
situations, which justifies the importance and ne-
cessity of the above two components.

Correctness Evaluation. We aim to generate per-
sonalized code while still keeping the code correct.
We further evaluate the correctness of each baseline
method on HumanEval-X dataset. We report the
average accuracy of the generated code based on
three prompts. Further details can be found in Ap-
pendix B.1. As shown in Table 5, DAPT is unable
to generate compilable code due to an excessive
focus on word overlap, resulting in repeated in-
stances such as ‘doublee’ for data types. From the
table, we can observe that: (1) Although L-LDB
performs relatively well in personalized code gener-
ation, its code correctness has been greatly affected
compared with CodeLlama. (2) Adapter maintains
the generated code correctness with CodeLlama.
However, it is not suitable for generating person-
alized code. The code generated by MPCODER

achieves a good balance between correctness and
personalization compared to all baselines.

Human Study. To verify the effectiveness of our
CSS metric, we conduct a human study to compare
the results of CSS with human results. In particular,
we compare MPCODER with L-LDB and Adapter

Numbers of user Model
Rate of the best models

human evaluation CSS
Single L-LDB 37% 41%
Single Adapter 12% 13%

Multiple MPCODER 43% 46%
- Undecided 8% -

Table 6: Human study.

by conducting a user study on PCIDense. We asked
5 users to answer questionnaires of 60 compara-
tive questions, totaling 300 answers. All questions
present them with a choice between two options.
Users are asked to answer the question: “Which of
the two code copies is closer in coding style to the
reference code?”, and every user is provided with
three options (i.e., A is Better, B is Better, Can-
not Determine/Both Equally). Further detail can
be found in Appendix A.4. We calculate the CSS
values of the two codes and the reference code for
different models respectively. The model with the
highest CSS value is regarded as the best model.
Table 6 shows the results of the human study.

The results obtained by CSS are consistent
with human evaluation(MPCODER > L-LDB >
Adapter), which verifies the effectiveness of our
proposed CSS evaluation metric for estimating cod-
ing styles. By comparing the results of different
models, MPCODER outperforms the L-LDB and
Adapter significantly and consistently. The experi-
mental results show our model’s superiority in both
automatic evaluation (CSS) and human evaluation.

Adaptation For New Users. Introducing a new
user to our model can be categorized into two sce-
narios: (1) the new user’s historical coding records
are available; (2) the new user’s historical coding
records are unavailable. In Appendix A.5, we dis-
cuss in detail how MPCODER effectively adapts to
these two types of new users.

4 Related Work

Code Pre-trained Language Models. With the
latest developments in the Transformer-based
model (Vaswani et al., 2017), recent work has at-
tempted to apply LLM to code to advance soft-
ware engineering and code intelligence. Code-
BERT (Feng et al., 2020) pretrains the NL-PL data.
CodeT5 (Wang et al., 2021) leverages the T5 (Raf-
fel et al., 2020) architecture to leverage code se-
mantics through identifier tokens. LLM (Radford
et al., 2019; Brown et al., 2020) has made many
achievements in the field of natural language pro-
cessing. the OpenAI Codex (Chen et al., 2021)
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model with 12B parameters pioneered and demon-
strated the potential of large code generation mod-
els pre-trained on billions of lines of public code.
Subsequently, models dedicated to code generation
emerged, such as CodeLlama (Roziere et al., 2023)
and CodeGeex (Zheng et al., 2023).

Personalized Generation. Most of the exist-
ing work in personalized generation focuses on
attribute-based controlled text generation (Keskar
et al., 2019), such as emotions and topics (Dathathri
et al., 2019; Kong et al., 2021; Xu et al., 2022).
The text-description-based approach (Song et al.,
2021) focuses on promoting character consis-
tency through pre-trained language models. The
embedding-based utilizes user ID information (Al-
Rfou et al., 2016) or embedded user dialogue (Ma
et al., 2021) history as an implicit profile. Within
the domain of personalized code generation, exist-
ing approaches (Zlotchevski et al., 2022) involves
fine-tuning for specific software projects, providing
Java unit tests for a single coding style, while we
focus on providing coding styles for multiple users.

5 Conclusions

This research aims to generate personalized code
for multiple users to satisfy the coding styles of dif-
ferent developers or projects. To perform this novel
task, we propose an approach MPCODER which
utilizes explicit coding style residual learning to
capture the syntax style standards and implicit cod-
ing style learning to capture the semantic style of
each user. We propose a multi-user style adapter
to bridge the gap between the generic outputs and
user-specific personalized outputs. MPCODER can
ultimately generate personalized code for multi-
ple users simultaneously. The experimental results
show the effectiveness of our for this task. We
hope our study can lay the foundations for this new
research and provide valuable insights into the po-
tential for personalized generation capabilities of
general LLMs.

6 Limitations

Several limitations are concerned with our work.
Firstly, our study is based on Java, which is one
of the most popular programming languages used
by developers. However, our approach is language-
independent, we believe our approach can be easily
adapted to other programming languages such as
Python or Javascript. Secondly, the correctness
of the generated code has been affected when our

model was applied to the PCISparse dataset. Ex-
ploring effective ways to generate personalized
code while maintaining its correctness with a lim-
ited number of data samples is an interesting re-
search topic for our future work.

7 Ethics Statement

To prevent privacy leaks, we have removed per-
sonal and sensitive information from our dataset,
utilizing anonymous IDs as individual identifiers.
Specifically, the raw data underwent an initial pre-
processing step to transform it into structured data.
We manually identified labels that may pose pri-
vacy risks (e.g., ID, user name, email address, age,
gender), and then anonymized the corresponding in-
formation by either deleting it or mapping it to new
values. We explore the feasibility of using LLMs
to perform personalized code generation. However,
LLMs such as CodeLlama may have some ethical
biases, and these ethical concerns inevitably affect
our proposed approach Ethical guidelines and the
deployment of such techniques should be consid-
ered to mitigate potential negative consequences.
We hope our work will stimulate further investiga-
tion and advancement in this novel research area
of personalized code generation and the general
personalized generation abilities of LLMs.
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A Experimental setup details

A.1 Dataset Construction Details
PCIDense(Personalized Code Interaction Dense)
have 382 programming problems, PCISparse (Per-
sonalized Code Interaction Sparse) have 662 pro-
gramming problems. Since codeLlama mainly sup-
ports English, we use Chatgpt-3.55 to translate non-
English problems into English. We only keep the
record that the user can pass all test samples for

5https://chat.openai.com/
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the same problem no more than three times, and
choose one at random as the user’s answer to the
problem. We combined interaction records from
problem sets with average user interaction records
both below and above 100 to form the PCISparse
and PCIDense datasets, respectively. Then we con-
duct a random split of 8/1/1 by programming prob-
lem, validation, and test to avoid data leakage. To
prevent privacy disclosure, we have excluded per-
sonal and sensitive data such as user names and
email addresses, retaining only the unique student
IDs as individual identifiers.

A.2 Baseline Setup Details

We compare our model with mainstream models as
follows:(1)CodeLlama: CodeLlama Instruct 7B
version can be seen as a benchmark for code gener-
ation without personalization, we can observe the
degree to which each method succeeds in personal-
izing the LLM for the target task; (2)DAPT: We
perform domain Adaptive Pre-Training (Gururan-
gan et al., 2020) by finetuning on user-specific data;
(3)L-LDB: it personalizes to a specific software
project for personalized unit test generation of Java
methods (Zlotchevski et al., 2022). This is achieved
by freezing most parameters in the baseline model
and only performing lightweight fine-tuning on the
last decoder block; (4)Adapter: It is used to fine-
tune the LLM, and the parameters of the original
network remain unchanged, achieving a high de-
gree of parameter sharing (Houlsby et al., 2019).
We split the data in the dataset according to the user,
and train a corresponding single-user model with
each user’s data in turn. The result is calculated
by averaging the sum of all users’ metrics. For pa-
rameter Settings of Adapter, refer to llama-recipes6.
The llama-recipes repository provides fine-tuning
code for CodeLlama. In the training stage of base-
lines, the prompt template for baselines is shown
in Fig. 6.

• Prompt template. Give you a programming
problem <q>, please provide answers in Java.
• Target Response. <c>

Figure 6: The prompt template for baselines.

A.3 Training and Decoding Details

we set τ as 0.5 and α as 0.55. In the first training
stage, we set the batch size to 8. In the second

6https://github.com/facebookresearch/llama-recipes

training stage, we set the batch size to 4. In both
training stages, we used four A800 graphics cards
to train the model and truncate the total length of
the input statement and output target to a maximum
of 2048 tokens, the learning rate is set to 1e-4.

In the first training of explicit coding style at-
tributes, we choose 25 style attributes, of which
24 attributes are shown in Fig. 7. Some style at-
tributes for CheckStyle checking are shared by all
users. These feature differences of users cannot
be reflected in the evaluation of personalized code
generation. However, during the process of ac-
quiring coding style attributes, leveraging features
shared among all users’ code assists the LLM in
gaining a deeper understanding of these attributes.
Therefore, such features are preserved in the resid-
ual learning dataset to facilitate the acquisition of
coding style attributes. Consequently, we retain
“Indentation" as a fundamental style convention,
which means: “Control indentation between com-
ments and surrounding code.”. Since some seman-
tic coding style features can be explicitly defined
by CheckStyle, we also put them into the explic-
itly coding attributes. Therefore, explicit coding
style attributes focus more on learning syntax style,
while implicit style features are more concerned
with learning semantic style.

For coding style attributes training, we construct
a record with the number of style attributes less
than or equal to 5 and balance the attribute of each
style in the training. The number of records for
each style as a residual attribute does not exceed
600 pieces. No more than 75 pieces of data were
evaluated for each style attribute. In the experi-
ment for studying the number of attributes, setting
the number of attributes to 1 means without using
residual learning, we use prompt as shown in Fig. 7.
For implicit style features training, the number of
vector representations of implicit style features for
each user is set to 5.

• Attribute Prompt without Residual. You are
given one piece of code <c> along with their corre-
sponding style convention <Au>. Please identify
and explain the style convention.
• Target Response. <text expression of ak> is
present in code; the style convention of <text ex-
pression of ak> indicates <interpretation of ak>.

Figure 7: The prompt template without residual learn-
ing.
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aspect criteria Coding Style Description

Structure

NoLineWrap Syntax Do not put ‘}’ on its own line.
AvoidStarImport Syntax Do not break after ’,’ but before ’.’.
OneTopLevelClass Syntax break import and package lines.
EmptyLineSeparator Semantic import statements that use the * notation.

Formatting

RightCurly Syntax Do not put ‘}’ on its own line.
SeparatorWrap Syntax Do not break after ’,’ but before ’.’.
WhitespaceAround Syntax Do not use a space between a reserved word and its

follow-up bracket,e.g., if(.
GenericWhitespace Syntax Use a space before the definition of generic type, e.g.,

List <.
OperatorWrap Syntax Break after ’=’ but after other binary operators.
LineLength Semantic The line length exceeds 100 characters.
LeftCurly Syntax Do not put ’{’ on the same line of code.
EmptyBlock Syntax Have empty block for control statements.
NeedBraces Syntax Do not use braces for single control statements.
MultipleVariableDeclarations Syntax Not every variable declaration is in its own statement

and on its own line.
OneStatementPerLine Syntax there is not only one statement per line.
UpperEll Syntax long constants are defined with an upper ell. That is

’l’ and not ’L’.
ModifierOrder Syntax Do not follow the order: public, protected, private,

abstract, default, static, final, transient, volatile, syn-
chronized, native, strictfp.

FallThrough Semantic Do not put a fall-through comment in a switch If a
’case’ has no break, return, throw, or continue.

MissingSwitchDefault Semantic switch statement does not has a default clause.

Naming

TypeName Syntax Type name is not in UpperCamelCase.
MethodName Syntax Method name is not in lowerCamelCase.
MemberName Syntax Member name is not in lowerCamelCase.
ParameterName Syntax Parameter name is not in lowerCamelCase.
LocalVariableName Syntax Local variable name is not in lowerCamelCase.

Table 7: The 24 criteria for characterizing the coding style.

• Prompt template 1. Here is an incomplete code
<q>, you need to complete. Wrap your code an-
swer using ```, your code must include a complete
implementation of the ’Solution’ class with exactly
one function in the class.
• Prompt template 2. Give you a piece of Java
code, please continue to write the unfinished func-
tion <q>.
• Prompt template 3. Give you a programming
question <q>, please provide answers in Java.

Figure 8: The prompt templates for the correctness test.

A.4 Details of Human Study

We conduct a user study to verify the effective-
ness of our CSS metric for evaluating coding styles
compared with humans. In particular, we compare
MPCoder with L-LDB and Adapter by conducting
a user study on PCIDense dataset. We asked 5
users to answer questionnaires of 60 comparative
questions, totaling 300 answers. All of the users
are majored in Computer Science and/or Software

Engineering and with more than 4 years of Java
programming experience.

Prior to the study, users are informed in the defi-
nition of syntax and semantic coding style. Syntac-
tic style includes common formats and structures;
semantic style includes aspects such as data flow
and meaningful naming. Samples are randomly
selected from a pool of test data. To simplify the
decision-making process for users, all questions
present them with a choice between two options.
Users are asked to answer the question: “Which of
the two code copies is closer in coding style to the
reference code?”, and every user is provided with
three options (i.e., A is Better, B is Better, Cannot
Determine/Both Equally). It is worth mentioning
that the users do not know which code snippet is
generated by which method. we provide an exam-
ple of the question as shown in Fig 9.

A.5 Details for Adapting to New Users

Scenario 1. In this scenario, we can utilize both
full training and incremental training to update the
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Question: Which of the two code copies is closer in coding style to the reference code? 

import java.util.*;
public class Main {
    public static void main(String[] args){
        Scanner scanner = new Scanner(System.in);
        int n = scanner.nextInt();

q = scanner.nextInt();
        long a[] = new long[n+1];
          s[] = new long[n+1];//n+1
        for (int i = 1; i <= n; i++){
          a[i] = scanner.nextLong();
          s[i] = s[i - 1] + a[i];
        }
        while (q-- != 0){
          int l = scanner.nextInt();
             r = scanner.nextInt();
          System.out.println(s[r] - s[l - 1]);
        }
    }
}

import java.util.*;
public class Main{
    public static void main(String[] args){
        Scanner sc = new Scanner(System.in);
        int n = sc.nextInt();
        int q = sc.nextInt();
        long[] s = new long[n+1];
        for(int i = 1;i <= n; i++){
            s[i] = sc.nextInt();
        }
        for(int i = 1;i <= n; i++){
            s[i] += s[i-1];
        }
        while(q > 0){
            int l = sc.nextInt();
            int r = sc.nextInt();
            long v = s[r]- s[l-1];
            System.out.println(v);
            q--;
        }
    }
}

import java.util.Scanner;
public class Main {
    
    public static void main(String[] args){
    Scanner sc=new Scanner(System.in);
    int n=sc.nextInt();
    int q=sc.nextInt();
     long[] sum=new long[n+5];
     int [] arr=new int[n+5];
    for(int i=1;i<=n;i++)
     {
     arr[i]=sc.nextInt();
     sum[i]=sum[i-1]+arr[i];
    }
    for(int i=0;i<q;i++)
     {
     int l=sc.nextInt();
     int r=sc.nextInt();
     System.out.println(sum[r] - sum[l - 1]);
    }
    }
}

reference code A B

A is Better B is Better

Text

Options: Cannot Determine/Both Equally

Figure 9: An example of the human study.

model. For the incremental training approach, we
freeze the model parameters and only train the im-
plicit style features of the new user based on his
historical records. Due to time constraints, we have
conducted a preliminary verification comparing the
results of full training versus incremental training
for a single new user in Table 8. Although the
effectiveness of incremental training is slightly in-
ferior to that of full training, this approach avoids
the need to retrain the entire model, thus showcas-
ing the feasibility and efficiency of our proposed
approach for adding new users.

Method CSS BLUE Rouge-1 Rouge-2

Full training 60.92 63.39 52.21 39.25
Incremental training 58.21 63.35 51.65 38.28

Table 8: Incremental training on PCIDense.

Scenario 2. In this scenario, we can use
MPCODERESF which only utilizes explicit style
attributes for inference. Since explicit attributes
do not depend on specific user data, the user
only needs to specify the corresponding explicit
coding style attribute or opt for a default setting.
Consequently, the model can generate code that
aligns with the user’s syntax style. The experi-
mental results are shown in the table 2. Although
MPCODERESF may not be as efficient as MP-

CODER and is focused primarily on syntax style, it
does not require any training for new users.

B Evaluation Statement

B.1 Correctness Evaluation
Models trained on PCISparse and PCIDense are
evaluated on a dataset of human-x code correctness
tests. The correctness of the first reply code of the
model is tested by greedy decoding. On PCIDense
dataset, we fully test all problems in HumanEval-X
for each user and report the average values based
on three prompt templates. Because there are too
many users in PCISparse data, we randomly se-
lect 50 users as the object of correctness verifica-
tion. The prompt template for the correctness test
is shown in Fig. 8.

B.2 Java Style Criteria
As shown in Table 7, we select 24 code criteria that
can reflect the coding style of Java programming
problems from three aspects: structure, naming,
and formatting. It is important to note that the
proposed CSS metric incorporates 20 style crite-
ria for identifying syntax style and 4 style criteria
for identifying semantic style. For example, the
attributes “FallThrough” and “MissingSwitchDe-
fault” are utilized to detect differences in the code
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import java.util.Scanner;

public class Main 
{
    public static void main(String[] args) 
   {
        Scanner scanner = new Scanner(System.in);
        System.out.println("Enter a number (1-3):");
        int tmp = scanner.nextInt();

        switch (tmp) 
    {
            case 1:
                System.out.println("You entered One.");
                break;
            case 2:
                System.out.println("You entered Two.");
                break;
            case 3:
                System.out.println("You entered Three.");
                break;
            default:
                System.out.println("You did not enter a number
between 1 and 3.");
                break;
        }
    }
}

import java.util.Scanner;

public class Main {
    public static void main(String[] args) {
        Scanner scanner = new Scanner(System.in);
        System.out.println("Enter a number (1-3):");
        int number = scanner.nextInt();

        if (number < 1 || number > 3) {
            System.out.println("You did not enter a number
between 1 and 3.");
            return; // End the program early
        }

        switch (number) {
            case 1:
                System.out.println("You entered One.");
                break;
            case 2:
                System.out.println("You entered Two.");
                break;
            case 3:
                System.out.println("You entered Three.");
                break;
            // No default case needed due to initial check
        }
    }
}

 syntax style

 semantic style

Figure 10: Syntax and Semantic Coding Styles.

execution order. Both of which pertain to the se-
mantic style of control flow and data flow (Li et al.,
2022b). Specifically, “FallThrough” means “Do
not put a fall-through comment in a switch If a
’case’ has no break, return, throw, or continue”;
“MissingSwitchDefault” means “switch statement
does not have a default clause”. In other words, the
code style attributes checked by CheckStyle con-
tain both syntax features and semantic features, and
our CSS evaluation metric using these features can
estimate model performance from both syntactic
and semantic perspectives.

B.3 Syntax and Semantic Coding Styles

Fig. 10 shows an example of the syntax and seman-
tic differences in coding styles. Both copies of the
code solve the same problem, but the code reflects
different syntax and semantic styles.

Syntax style differences. The curly braket "{"
in the left code copy is placed on the same line as
the preceding statement, while the right code copy
places it on a separate new line, which reflects the
layout style difference in the format.

Semantic style differences. The left code copy
uses "tmp" as a temporary variable name, while

the right code copy uses "number" as a numerical
variable name, reflecting different semantic styles
in naming conventions. The left code copy uses
default in the Switch statement, while the right code
copy does not use default. Due to the different
code control flows, the order of actual program
execution may also be different. The left code may
run to the end of the default statement, and the
right code could output and terminate the program
at the beginning. The two pieces of code represent
different data flows, or design patterns, that reflect
the semantic coding styles of different developers.

B.4 Example of Model Performance
Figure 11 shows the personalized code generation
results of the same question for the same user re-
garding different models. Significant coding styles
are highlighted in blue, showing that the generation
result of our model aligns more closely with the
overall style (including syntax style and semantic
style) of the reference code than those of Adapter
and L-LDB.
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import java.util.*;
 
public class Main {
    public static void main(String[] args){
        Scanner scanner = new Scanner(System.in);
        int n = scanner.nextInt();

q = scanner.nextInt();

        long a[] = new long[n+1];
          s[] = new long[n+1];//n+1
        for (int i = 1; i <= n; i++){
          a[i] = scanner.nextLong();

          s[i] = s[i - 1] + a[i];

        }

 
        while (q-- != 0){
          int l = scanner.nextInt();
             r = scanner.nextInt();

          System.out.println(s[r] - s[l - 1]);

        }

 
    }

}

import java.util.*;
public class Main{
    public static void main(String[] args){
        Scanner sc = new Scanner(System.in);
        int n = sc.nextInt();
        int q = sc.nextInt();
        long[] s = new long[n+1];
        for(int i = 1;i <= n; i++){

            s[i] = sc.nextInt();

        }

        for(int i = 1;i <= n; i++){

            s[i] += s[i-1];

        }

        while(q > 0){

            int l = sc.nextInt();
            int r = sc.nextInt();
            long v = s[r]- s[l-1];
            System.out.println(v);

            q--;

        }

    }

}

reference code

MPCoder(Ours)

1

2

3

✅

❌

❌ import java.util.Scanner;
 
public class Main{
 
    public static void main(String[] args){
        
        Scanner Sc=new Scanner(System.in);
        int n=Sc.nextInt();
        int m=Sc.nextInt();
        long a[]=new long[n+1];
        long presum[]=new long[n+1];
        for (int i = 1; i <= n; i++){
            a[i]=Sc.nextInt();
            presum[i]=presum[i-1]+a[i];

        }

         
        for (int i = 0; i < m; i++){
            int l=Sc.nextInt();
            int s=Sc.nextInt();   
            long sum=presum[s]-presum[l-1];
            System.out.println(sum);

        }
    }

}

L-LDB

import java.util.Scanner;
 
public class Main {
    
    public static void main(String[] args){
    Scanner sc=new Scanner(System.in);
    int n=sc.nextInt();
    int q=sc.nextInt();
     long[] s=new long[n+5];
     int [] arr=new int[n+5];
    for(int i=1;i<=n;i++)
     {
     arr[i]=sc.nextInt();

     s[i]=s[i-1]+arr[i];

    }

    for(int i=0;i<q;i++)
     {
     int l=sc.nextInt();
     int r=sc.nextInt();
     System.out.println(s[r] - s[l - 1]);

    }

    }
}

Adapter

❌

✅

✅

❌

❌

✅

Figure 11: Syntax and Semantic Coding Styles.
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