
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 4092–4114
August 11-16, 2024 ©2024 Association for Computational Linguistics

NPHardEval: Dynamic Benchmark on Reasoning Ability of Large
Language Models via Complexity Classes

Lizhou Fan1∗ Wenyue Hua2∗ Lingyao Li1 Haoyang Ling1 Yongfeng Zhang2

1School of Information, University of Michigan, Ann Arbor, MI 48103
2Department of Computer Science, Rutgers University, New Brunswick, NJ 08854

{lizhouf, lingyaol, hyfrankl}@umich.edu, {wenyue.hua, yongfeng.zhang}@rutgers.edu
∗Lizhou Fan and Wenyue Hua contribute equally.

Abstract

Complex reasoning ability is one of the most
important features of Large Language Models
(LLMs). Numerous benchmarks have been es-
tablished to assess the reasoning abilities of
LLMs. However, they are inadequate in offer-
ing a rigorous evaluation and prone to the risk
of overfitting and memorization, as these pub-
licly accessible and static benchmarks allow
models to potentially tailor their responses to
specific benchmark metrics, thereby inflating
their performance. Addressing these limita-
tions, we introduce a new benchmark NPHard-
Eval. It contains a broad spectrum of 900 al-
gorithmic questions belonging up to the NP-
Hard complexity class, offering a rigorous
measure of the reasoning ability of LLMs uti-
lizing computational complexity. Moreover,
this benchmark is designed with a dynamic
update mechanism, where the datapoints are
refreshed on a monthly basis. Such regu-
lar updates play a crucial role in mitigating
the risk of LLMs overfitting or memorizing
the benchmark, promoting a more accurate
and reliable assessment of their reasoning ca-
pabilities. The benchmark dataset and code
of NPHardEval are available at https://
github.com/casmlab/NPHardEval.

1 Introduction

The advancement of LLMs has ushered in a trans-
formative era in AI research (Fan et al., 2023b).
One major advantage of LLM is its strong reason-
ing capabilities (Zhao et al., 2023). A range of
benchmarks have been developed to assess the per-
formance of LLMs in reasoning tasks (Cobbe et al.,
2021; Valmeekam et al., 2022; Chen et al., 2023;
Hendrycks et al., 2020, 2021). Despite these efforts,
these benchmarks are not without their shortcom-
ings. Firstly, they often fail to accurately charac-
terize or classify the reasoning abilities of LLMs,
leaving a gap in understanding the full extent of
what LLMs can and cannot do. Secondly, there

Figure 1: Computational complexity classes P, NP-
complete, and NP-hard and corresponding tasks

is a pronounced risk of models becoming overly
specialized to these benchmarks, which may lead
to an overestimation of their capabilities (Schaeffer,
2023). Lastly, the reliance on manual evaluation
methods in some instances has proven to be inef-
ficient, ineffective, and lacking in standardization
(Frieder et al., 2023).

Addressing the identified limitations and queries
within the current benchmarking landscape, this
paper introduces a novel benchmark, NPHardE-
val, which surpasses existing benchmarks in three
critical aspects. Firstly, NPHardEval incorporates
the established principles of computational com-
plexity classes, offering a more rigorous and quan-
titative framework for assessing the reasoning ca-
pabilities of large language models. The bench-
mark is meticulously crafted, featuring nine rea-
soning tasks meticulously selected across three
complexity classes—Polynomial-time complexity,
NP-complete complexity, and NP-hard complex-
ity—as delineated in (Johnson, 1990). Each class
contains 100 instances, distributed over ten dis-
tinct levels of difficulty, enabling a comprehensive
and measurable evaluation of LLMs’ reasoning
abilities. Secondly, NPHardEval benefits from an

4092

https://github.com/casmlab/NPHardEval
https://github.com/casmlab/NPHardEval


end-to-end automated framework for both task gen-
eration and results verification. This automation
leverages mature algorithms for well-known tasks
within the benchmark, facilitating the periodic up-
date of data points on a monthly basis. Such a dy-
namic update mechanism significantly diminishes
the risk of model overfitting, thereby maintaining
the benchmark’s stringency and applicability over
time. Lastly, the benchmark’s reliance on auto-
matic verification for task solutions enhances the
accuracy and reliability of evaluations, obviating
the need for labor-intensive manual verification.
This approach not only streamlines the evaluation
process but also presents a theoretically intrigu-
ing opportunity to explore LLMs’ proficiency in
navigating the computational complexity hierar-
chy, with a particular focus on NP-hard and NP-
complete problems (Johnson, 1990).

1.1 Research Questions

To elucidate the efficacy and comprehensiveness
of the NPHardEval benchmark, our investigation
will pivot around two principal research questions,
which are as follows:
Model Benchmark Performance Our benchmark
evaluates 12 models including closed-source mod-
els (GPT 4 Turbo (Achiam et al., 2023), Claude
2 (Anthropic, 2023a), GPT 3.5 Turbo (OpenAI,
2024), Claude Instant (Anthropic, 2023b), and
PaLM 2 (Google, 2023)) and open-source mod-
els (Yi-34b (01-AI, 2023), Qwen-14b (Bai et al.,
2023), Mistral-7b (Jiang et al., 2023), Phi-2 (Java-
heripi and Bubeck, 2023), MPT-30b (MosaicML,
2023), Vicuna-13b (LMSYS, 2023), and Phi-1.5
(Li et al., 2023b)) across three complexity classes
(P, NP-complete, NP-hard) each with 10 difficulty
levels. This comparison sheds light on the rela-
tive strength and weakness of these models and
determines the proficiency of them in solving pro-
gressively challenging problems, thus gauging their
capability to handle tasks with escalating complex-
ity.
Robustness of Benchmark Assessments This
study examines whether the frequent updating of
algorithmic benchmarks can effectively prevent the
risk of the benchmark being “hacked”. The dy-
namic updating of benchmarks is proposed as a
strategy to reduce the likelihood of LLMs overfit-
ting to these benchmarks. However, a pertinent
question arises: does finetuning LLMs on bench-
marks from the previous month lead to overfit-

ting specific problem types? To explore this, we
conducted an experiment where three open-source
models – Phi-2, Mistral-7b, and Qwen-14b – were
finetuned on five distinct versions of the bench-
marks. The performance of each checkpoint of
these models was evaluated on two versions of the
benchmark, each differing in difficulty level. This
approach allowed us to assess whether finetuning
enables models to “hack” benchmarks of varying
complexity.

2 Related Work

Reasoning ability of LLMs LLMs (Brown et al.,
2020; Chowdhery et al., 2023; Chung et al., 2022)
have made significant advancements in natural lan-
guage processing and related fields. Recent re-
search underscores the unprecedented reasoning
abilities of LLMs in various fields, from biomed-
ical and human-computer interaction research to
humanities and social studies (Huang and Chang,
2022; Hua et al., 2023; Fan et al., 2023a; Gao et al.,
2023; Li et al., 2023a). It has been discussed that
these models exhibit “emergent” behaviors, includ-
ing the ability to “reason” when they are large
enough (Wei et al., 2022a; Schaeffer et al., 2023).
By providing the models with the chain of thoughts
with a simple prompt “Let’s think step by step”,
these models are able to answer questions with
explicit reasoning steps (Wei et al., 2022b). This
has sparked considerable interest in the community
since reasoning ability is a hallmark of human in-
telligence. Various variations of chain-of-thought
have been developed to prompt models’ reasoning
ability (Kojima et al., 2022; Wang et al., 2022; Hua
and Zhang, 2022), such as tree of thought (Yao
et al., 2023), graph of thought (Besta et al., 2023),
self-inspring technique (Wang et al., 2023). Later,
various self-critique methods have been proposed
to enhance LLM’s reasoning performance. The Re-
cursively Criticizes and Improves (RCI) approach,
for example, iteratively refines outputs, proving
more effective in automating computer tasks and
elevating reasoning capabilities (Kim et al., 2023).
Backward verification proposes an intuitive human-
like mechanism for LLMs to self-check and im-
prove their conclusions, reducing errors in reason-
ing tasks (Weng et al., 2022).

Benchmarks of LLMs’ Performance Exist-
ing evaluation approaches predominantly rely on
datasets comprising human-generated questions
and their standard answers. For instance, MMLU

4093



(Hendrycks et al., 2020) and GAOKAO (Zhang
et al., 2023) both utilize human exam questions in
their automated evaluations. Exam datasets such as
GHOST (Graduate-Level High-Order Skill Tests)
are utilized to assess LLMs’ reasoning proficiency
(Frieder et al., 2023). Nonetheless, the requirement
for manual verification of answers in these datasets
limits their practical utility. Big-Bench Hard (Suz-
gun et al., 2022), DROP (Dua et al., 2019), and
HellaSwag (Zellers et al., 2019), while valuable,
predominantly target multi-step reasoning, reading
comprehension, and commonsense reasoning, re-
spectively. They do not adequately prioritize com-
plex logical reasoning in their assessment criteria.
Zhu et al. (2023) proposes a dynamic graph-based
reasoning benchmark whilst mainly focusing on
polynomial time problems.

Other Benchmarks such as AlpacaEval (Dubois
et al., 2023) and SuperCLUE (Xu et al., 2023) have
attempted to incorporate open-ended questions in
English and Chinese, respectively, to capture a di-
verse breadth of possible answers and enhance the
comprehensiveness of LLM’s evaluation. However,
they are often constrained by language barriers and
cultural contexts, potentially skewing the evalua-
tion of reasoning abilities toward a specific sce-
nario. Reasoning tasks should transcend linguistic
and cultural specifics, focusing instead on universal
logical principles.

The prevalent focus on question answering and
math problems in current benchmarks insufficiently
capture the essence of reasoning – the ability to
logically process and deduce information beyond
memorized knowledge. It also falls short on pro-
viding a rigorous metric on the reasoning ability.
This gap highlights the importance of NPHard-
Eval which is a dynamic logic-based reasoning
benchmarks which provides a quantitative and rig-
orous evaluation on the logical reasoning capacity
of LLMs.

3 Benchmark Construction

3.1 Complexity Classes

In our study, we employ the concept of complex-
ity classes to categorize the reasoning tasks for
LLMs. These classes are defined based on the
computational resources, such as time or memory,
required to solve the problems they contain (John-
son, 1990). Primarily, most complexity classes
comprise decision problems that can be solved us-
ing a Turing machine, with differentiation based

on their time or space (memory) requirements. For
example, the class P includes decision problems
that a deterministic Turing machine can solve in
polynomial time. Tasks within this class often pose
multi-dimensional cognitive challenges, enriching
the evaluation framework of LLMs. This structured
approach not only aids in assessing the reasoning
capabilities of LLMs but also holds substantial rele-
vance in various practical applications, particularly
in optimization and decision-making process.

In particular, we use three complexity classes
to define the task complexity in the benchmark,
including P (polynomial time), NP-complete (non-
deterministic polynomial-time complete), and NP-
hard, which are increasingly complex in both the in-
trinsic difficulty and the resources needed to solve
them. Figure 1 shows their relation regarding com-
putational complexity in an Euler diagram. The
details of the nine problems, including Graph Col-
oring Problem Optimization Version (GCP), Travel-
ing Salesman Problem Optimization Version (TSP),
Meeting Scheduling Problem (MSP), Knapsack
Problem (KSP), Traveling Salesman Problem De-
cision Version (TSP-D), Graph Coloring Problem
Decision Version (GCP-D), Shortest Path Problem
(SPP), Edit Distance Problem (EDP), and Sorted
Array Search (SAS), are provided in Appendix
B. This approach aims to delineate the extent of
complex reasoning achievable by LLMs, thus for
each complexity class, we only choose tasks from
the non-overlapping subset of the complexity class.
In our selection criteria, we intentionally exclude
tasks that demand intensive mathematical computa-
tions, such as matrix multiplication and logarithmic
calculations. Thus, we do not list NP class (ques-
tions in NP but not P and not NP-complete), which
is exemplified by the discrete logarithm and inte-
ger factorization problems, as the majority of such
problems are characterized by their calculation-
intensive nature (see details in Appendix C).

3.2 Difficulty Level for Tasks

NPHardEval categorizes each challenge into a hi-
erarchy of difficulty, spanning from the simplest
to the most difficult with 10 levels. This grada-
tion allows for a nuanced assessment of an LLM’s
problem-solving abilities across a spectrum of in-
creasingly difficult tasks. For instance, the GCP-D
problem has difficulty levels 1 to 10 with questions
of 6, 8, 10, 12, 14, 16, 18, 20, 22, and 24 average
edges and 6, 7, 8, 9, 10, 11, 12, 13, 14, and 15

4094



Figure 2: Zero-shot model performance on the nine tasks from P to NP-Complete bottom-up.

nodes. Beginning with graphs of 6 nodes and 6
edges, each subsequent level incorporates an addi-
tional 2 edges and 1 node, culminating in graphs of
24 edges and 15 nodes.

The difficulty level is not strictly bounded to a
linear scaling of difficulty; rather, it is designed to
explore the nuances of performance degradation.
By observing how LLMs cope with an escalating
series of challenges, we aim to identify the inflec-
tion point where the performance notably dimin-
ishes. This approach provides a comprehensive
understanding of where LLMs excel and where
they falter, informing potential pathways for the
enhancement of their reasoning capabilities.

3.3 Data Synthesis

In the context of data synthesis for complex tasks,
the approach can be categorized into two distinct
methodologies, each corresponding to a different
type of data structure: graph data (e.g., GCP) and
linear data (e.g., MSP). The synthesis process in
both cases is governed by a progression of com-
plexity across a spectrum of predefined levels. This
structured approach enables the creation of diverse
datasets, suitable for evaluating and benchmarking
LLMs’ reasoning ability. We provide examples

of the synthesized data and how they are used in
prompts in Appendix A. We also justify the bench-
mark consistency and size in Appendix D.

Graph Data Synthesis The complexity in graph
data synthesis escalates through a series of levels,
each defined by a set of parameters that dictate
the graph’s size and intricacy. These parameters
typically include the number of vertices, the num-
ber of edges, and the range of edge weights. At
lower levels, graphs are simpler with fewer vertices
and edges, and a limited range of edge weights.
As the level increases, the graphs become progres-
sively more complex, featuring more vertices, a
higher density of edges, and a wider variety of
edge weights.

Linear Data Synthesis In linear data synthe-
sis, complexity is modulated by manipulating the
length of the data array and the range of its con-
stituent elements. Initial levels are characterized by
shorter arrays with elements drawn from a narrow
range. As the difficulty level ascends, the arrays
lengthen, and the range of possible element values
expands, thus introducing greater variability and
complexity to the problem.

4095



Figure 3: Model performance on different complexity problems: (a) weighted accuracy (b) (weighted) failure rate.
Open models are denoted in squares and close models are denoted in triangles. Trends of metrics are demonstrated
for models with outstanding performances in both weighted accuracy and failure rate, including both close-source
(GPT 4 Turbo and Claude 2) and open-source (Mistral-7B and Phi-2) models.

4 Experimental Setting

This section presents the experiment setting to an-
swer the three research questions. Our approach
assessed 12 distinct LLMs, with a dichotomy be-
tween five proprietary (closed-source) models and
five open-source models, including GPT 4 Turbo,
Claude 2, GPT 3.5 Turbo, Claude Instant 1.2,
PaLM 2, Vicuna-13b, Yi-34b, Mistral-7b, MPT-
30b, Phi-1.5, Phi-2, and Qwen-14b.

4.1 Experiment 1: Model Performance
Comparison

To evaluate the reasoning abilities of different
LLMs through the NPHardEval benchmark, we
employ a comparative experimental design. We
use zero-shot prompts containing task descriptions
and a specific question as the foundational measure
of performance. Each model’s performance was
evaluated based on two primary metrics: weighted
accuracy and failure rate across the different com-
plexity classes of problems, as we will discuss in
Section 4.3. We also conduct few-shot experiments
on SAS and EDP using GPT-4 generated examples
in prompts and observe interesting performance
change across different types of prompts.

4.2 Experiment 2: Benchmark Robustness
The primary objective of this experiment is to as-
certain whether it is possible to “hack” our bench-
mark by finetuning models on its previous versions.
To simulate this, we constructed five versions of
the benchmark, maintaining a consistent difficulty
level. Additionally, we utilize two distinct versions
of the benchmark, each varying in difficulty, to

evaluate the potential for hacking under varying
conditions. To replicate the progression of time,
models were finetuned sequentially on one to five
benchmarks, each finetuned checkpoint is tested on
the two distinct benchmarks for evaluation.

The experiment involved finetuning three high-
performing open-source models: Phi-2, Mistral-7b,
and Qwen-14b. Due to constraints in computing
resources, the Yi-34b model was not included in
the finetuning process. For the finetuning process,
we employed the QLoRA technique, applying spe-
cific hyperparameters: batch size set to 8, a single
epoch, a warmup proportion of 0.03, a learning
rate of 1e-4, lora_r at 64, lora_alpha at 16, and a
lora_dropout of 0.1. This approach aims to rigor-
ously test the robustness of our benchmark against
potential overfitting strategies.

4.3 Evaluation Metrics

To evaluate the reasoning ability of LLMs, we uti-
lize two metrics, the Weighted Accuracy and the
Failure Rate, to comprehensively quantify the cor-
rectness of LLMs’ reasoning outputs.

Weighted Accuracy (WA) is calculated for each
problem either through the comparison with the cor-
rect answer or through step-by-step results check-
ing, for those problems without the only answer.
To better represent the comparative accuracy, we
assign weights to different difficulty levels so that
each level has a weight corresponding to its rel-
ative importance or challenge. Higher difficulty
levels are given more weight in a linear manner
(e.g., level 1 has weight 1, level 2 has weight 2,

4096



Figure 4: Few-shot learning results on SAS and EDP of all models

etc.). The Weighted Accuracy is defined as:

WA =

∑10
i=1(wi ×Ai)∑10

i=1wi

where wi represents the weight assigned to diffi-
culty level i, from 1 to 10, and Ai is the accuracy
at that level.

Failure Rate (FR) is a measure used to assess
the frequency of unsuccessful outcomes across the
different problems and difficulty levels. It is partic-
ularly useful for identifying cases where an LLM’s
result does not comply with the expected output
format. The Failure Rate is calculated by consider-
ing the proportion of failed attempts relative to the

total number of attempts for each difficulty level.
An attempt is defined as failed if the model gener-
ates results that cannot be successfully parsed in
all endpoint calls, and we set the maximum times
of try as 10. For each problem, the Failure Rate is
then aggregated across all difficulty levels, taking
into account the total 10 attempts at each level. The
formal definition of Failure Rate is given by:

FR =

∑10
i=1 Fi

100

where Fi denotes the number of failed attempts at
difficulty level i.

4097



Figure 5: Model’s robustness on different problems and difficulty levels.

5 Results

5.1 Reasoning Ability of Foundation Models

Experiment 1 focuses on a comprehensive compar-
ison among various foundation models and across
complexity classes and difficulty levels. In Figure
2, we present the overall zero-shot accuracy for
each problem, providing a visual representation of
the performance of different models.

Our observations reveal that closed-source mod-
els generally demonstrate higher accuracy and a
lower rate of failure compared to their open-source
counterparts. Notably, GPT-4 Turbo often emerges
as the frontrunner in performance across the ma-
jority of tasks, indicating its superior problem-
solving capabilities, while Claude 2, on the other
hand, often performs the best on medium-level (NP-
complete) complexity in zero-shot settings. Within
the realm of open-source models, Yi-34b, Qwen-
14b, and Mistral-7b distinguish themselves by sig-
nificantly outperforming other models in this cat-
egory. We observe a disparity between the perfor-
mance of these three models and other open-source
options, highlighting a notable performance gap

and suggesting that these models possess more ad-
vanced reasoning abilities.

In particular, we use the weighted accuracy and
the failure rate metrics to further quantify different
models’ performance. The trends observed below
in both weighted accuracy and failure rates point
to a nuanced understanding of the capabilities and
limitations of current LLMs. These observations
are also supported by statistical tests within and
across complexity classes, indicating the model
performance differences among complexity classes
(see Appendix E for details).

Weighted Accuracy Figure 3(a) shows the
weighted accuracy for different models across prob-
lem complexities. The general trend is all mod-
els experiencing a decrease in accuracy as prob-
lem complexity increased. Notably, there are
two detailed findings for overall reasoning abil-
ity change. First, regarding the performance decay
speed, among the 12 models we tested, the average
performance demonstrated a higher accuracy at the
P and NP-Complete complexity levels (with similar
weighted accuracies of 0.24 and 0.25) but saw a
sharper decline as the problems became more com-

4098



plex when proceeding to the NP-hard level (with a
weighted accuracy of 0.02). There is a performance
decay on average when models are tested against
NP-Hard problems. Second, close-source models
usually perform better than open-source models:
there are more triangles in the upper locations than
squares in Figure 3(a).

Failure Rate Figure 3(b) indicates that the fail-
ure rates mirrored the trends observed in weighted
accuracy but in reverse. On average, the models
showed an increase in failure rates corresponding
to the complexity of the problems. Open-source
models fail more often (with more squares on the
top) than the close-source models (with more tri-
angles on the bottom), indicating close-source’s
models advanced ability in following the prompt
to understand the reasoning problems and generate
answers with correct format.

Few-shot Learning Results Figure 4 illustrates
the outcomes of few-shot learning experiments on
SAS and EDP across various models, each sub-
jected to 11 distinct few-shot prompts. These
prompts were systematically varied in terms of dif-
ficulty level, ranging from -5 to +5 relative to the
difficulty level of the target question each model
was tasked to solve. The results underscore a no-
table enhancement in model performance while ex-
hibiting significant variability across the different
prompts on open-source models. Such observations
indicate a potential limitation in the open-source
models’ capacity for acquiring the underlying task-
solving skills and generalizing from the examples
from prompts. This highlights a crucial area for
further investigation and development.

5.2 Evaluating Benchmark Robustness

In Experiment 2, we explore the robustness of
benchmark against hacking attempts through a pro-
cess of finetuning on pairs of question and gold
answer. We experiment using 3 well-performing
open-source models: Qwen-14b, Mistral-7b, and
Phi-2 on two versions of benchmarks. Figure 5
presents the result1: each problem has two graphs
with one displaying evaluation results at difficulty
levels 1-10 and one displaying evaluation results at
difficulty levels 11-20. In each graph, the first row
indicates the mean accuracy of each model, aver-
aged over the outcomes at 5 finetuning checkpoints,

1We do not present the result on MSP as this problem does
not have a fixed solution and no finetuning was conduct on it.

ranging from tuning using zero (no finetuning) to
five distinct benchmarks.

Our findings are twofold: (1) While finetun-
ing yields improvements in solving polynomial-
time problems, its impact on the more complex
NP-complete and NP-hard problems are negative.
This suggests the inherent difficulty of hacking
NP-complete, and potentially NP-hard, problems
through the basic finetuning with question-and-
answer approach. Manual annotation of the chain-
of-thought, which is not provided in the bench-
marks, could potentially enhance effectiveness, al-
beit with challenges in annotation. (2) Finetun-
ing appears beneficial for performance within the
same difficulty level of all P problems, yet shows
limited out-of-distribution (OOD) adaptability and
struggles to generalize to more difficult problems
(as evidenced in graphs a and c) except for SAS.
For instance, Qwen-14b demonstrates notable pro-
ficiency on SPP challenges at levels 1-10 follow-
ing finetuning; its performance is comparable to
that of GPT-4. However, its performance signifi-
cantly diminishes on SPP problems at levels 11-20,
even underperforming compared to its unfinetuned
checkpoint. This indicates that finetuning on these
benchmarks can only benefit very simple questions
such as SAS but could potentially impede general-
ization capabilities and render finetuning hacking
useless. In conclusion, our benchmark is challeng-
ing to hack due to two primary factors: (1) the
inherent complexity of NP-complete and NP-hard
problems, which are difficult to learn solely from
question-answer pairs, and (2) the propensity for P
problems to become overfitted through finetuning
on these pairs, while the real “reasoning” ability
can be easily exposed by increasing the problem
difficulty level.

6 Conclusion

We present a novel benchmark, NPHardEval, de-
signed to rigorously evaluate LLMs’ reasoning ca-
pabilities across a spectrum of complex tasks, up
to the complexity class of NP-hard. By eschewing
standard QA formats in favor of complex, logic-
oriented problems, this benchmark aims to pro-
vide a more accurate measure of a model’s rea-
soning prowess. This approach is crucial for de-
veloping LLMs capable of handling sophisticated,
real-world tasks that demand high-level cognitive
processing, steering the evaluation of LLMs from
potentially “useful” to fundamentally “logical”.

4099



7 Acknowledgement

We extend our sincere gratitude to Libby Hemphill
for her invaluable support in this work. We also
thank Jinkui Chi, who kindly contributed to the
maintenance of the benchmark’s code repository
and user guidance. Additionally, we are grateful for
the diverse feedback we received from Siqi Liu and
many others, which illuminated our path towards
enhancing the quality of this paper.

Limitations

While our study offers a novel approach to assess-
ing the reasoning abilities of LLMs, it is important
to reflect on the limitations of our current method-
ology to provide a comprehensive understanding
and guide future research.

Task Complexity’s Comparison A significant
limitation lies in the scope of our task selection and
the definition of complexity within our benchmark.
While we have delineated criteria for task selec-
tion in the appendix, a more resource-intensive
approach could involve the inclusion of a larger
variety of questions for each task type, enhancing
the depth and breadth of our evaluation. Addition-
ally, our current approach to defining complexity
is based on a linear increment of weights. This
simplistic weighting heuristic may not accurately
represent the nuanced complexity increase in real-
world tasks. More experimental work is needed
to refine this approach and determine the most ef-
fective weight assignment that truly reflects the
intricacies of task complexity.

Randomness Another critical aspect to consider
is the inherent randomness in the generation of re-
sponses by LLMs. This randomness can introduce
variability in performance, making it challenging
to draw consistent conclusions about a model’s rea-
soning capabilities. Notably, decision questions
in the NP-complete level, including GCP-D and
TSP-D, use true or false results as the evaluation
criteria. Thus, it is hard to directly rule out the
random positive cases, although the model may
not go through a correct reasoning process, lead-
ing to potentially inflated performance. Address-
ing this issue requires a more nuanced approach
to evaluating responses, possibly through repeated
trials or the incorporation of statistical methods to
account for this variability.

Model Updates and Emergence The fast-paced
evolution of LLMs also presents a significant chal-
lenge. With the continuous version updates and
emergence of advanced models like Gemini Ul-
tra (DeepMind, 2023) and miniCPM, as well as an
increasing number of open-source options, the anal-
ysis based on our benchmark may quickly become
outdated. Thus we will monitor and experiment on
new models, together with the LLMs research com-
munity, to keep pace with these rapid developments
is crucial for maintaining the relevance and appli-
cability of our findings. This dynamic nature of the
field necessitates a flexible and adaptable approach
to benchmarking, where updates and revisions are
integral to the evaluation process.

Future research should aim to expand the scope
and depth of task selection, refine the complexity
definition, account for generation randomness, and
adapt to the evolving landscape of LLMs. Address-
ing these challenges will enhance the accuracy and
relevance of our benchmark, contributing to the
development of LLMs that are capable of sophisti-
cated reasoning in complex, real-world scenarios.

Ethics

In this paper, we present a novel benchmark aimed
at rigorously evaluating the reasoning capabilities
of LLMs through algorithmic questions up to the
NP-Hard complexity class. The introduction of a
dynamic update mechanism is a significant innova-
tion designed to prevent the overfitting of LLMs to
our benchmark, thereby fostering a more genuine
assessment of their reasoning prowess. In the de-
velopment process and release of the benchmark,
we are aware of the potential ethical challenges and
address them to our best knowledge as follows.

Fair and Objective Evaluation We have taken
significant measures to ensure that the NPHardEval
benchmark is unbiased and equitable, providing a
fair ground for evaluating all LLMs regardless of
their origin or the entity developing them. Our se-
lection of algorithmic questions and the subsequent
categorization into complexity classes were con-
ducted with utmost objectivity, aiming to reflect a
broad spectrum of reasoning capabilities without
favoring any specific model or approach.

Data Privacy and Security Although our bench-
mark does not directly involve human subjects or
personally identifiable information, we are com-
mitted to maintaining high standards of data pri-

4100



vacy and security. The dynamic update mechanism,
while designed to refresh datapoints regularly, will
only keep the most current three months of data
available, aiming to prevent benchmark hacking.

Transparency and Reproducibility We have
made efforts to ensure that our methodology, in-
cluding the design and implementation of the dy-
namic update mechanism, is transparent and well-
documented. This allows for the reproducibility
of our benchmark by the research community, fa-
cilitating further studies and advancements in the
field. Our code repository is currently anonymously
available online.

Responsible Use of AI Recognizing the poten-
tial of LLMs to impact society significantly, our
research is grounded in the principle of promoting
the responsible development and use of AI tech-
nologies. The NPHardEval benchmark is intended
to contribute positively to the field by encouraging
the development of LLMs that are not only ad-
vanced in their reasoning capabilities but are also
ethically aligned and beneficial for society.

Avoidance of Overfitting A primary ethical con-
cern in AI benchmarking is the risk of models being
overfitted to specific datasets, which can misrep-
resent their true capabilities. Our dynamic update
mechanism directly addresses this concern, pro-
moting an ethical approach to AI evaluation that
emphasizes genuine progress over superficial per-
formance metrics.

Accessibility and Inclusivity We are committed
to ensuring that our benchmark is accessible to a
wide range of researchers and practitioners in the
AI community. We include detailed guidance on
how to use our benchmark. This inclusivity fos-
ters a diverse and rich environment for AI research
and development, where insights and innovations
can emerge from various perspectives and back-
grounds.

References
01-AI. 2023. Building the next generation of open-

source and bilingual llms.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Shamim Ahmed. 2012. Applications of graph coloring
in modern computer science. International Journal
of Computer and Information Technology, 3(2):1–7.

Anthropic. 2023a. Claude 2.

Anthropic. 2023b. Releasing claude instant 1.2.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, et al. 2023. Qwen technical report. arXiv
preprint arXiv:2309.16609.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Ger-
stenberger, Lukas Gianinazzi, Joanna Gajda, Tomasz
Lehmann, Michal Podstawski, Hubert Niewiadomski,
Piotr Nyczyk, et al. 2023. Graph of thoughts: Solv-
ing elaborate problems with large language models.
arXiv preprint arXiv:2308.09687.

Miquel Bofill, Jordi Coll, Marc Garcia, Jesús Giráldez-
Cru, Gilles Pesant, Josep Suy, and Mateu Villaret.
2022. Constraint solving approaches to the business-
to-business meeting scheduling problem. Journal of
Artificial Intelligence Research, 74:263–301.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Chi-Min Chan, Weize Chen, Yusheng Su, Jianxuan Yu,
Wei Xue, Shanghang Zhang, Jie Fu, and Zhiyuan
Liu. 2023. Chateval: Towards better llm-based eval-
uators through multi-agent debate. arXiv preprint
arXiv:2308.07201.

Wenhu Chen, Ming Yin, Max Ku, Pan Lu, Yixin Wan,
Xueguang Ma, Jianyu Xu, Xinyi Wang, and Tony
Xia. 2023. Theoremqa: A theorem-driven question
answering dataset. arXiv preprint arXiv:2305.12524.

Michael Cho. 2019. The knapsack problem and its ap-
plications to the cargo loading problem. Anal. Appl.
Math, 13:48–63.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul
Barham, Hyung Won Chung, Charles Sutton, Sebas-
tian Gehrmann, et al. 2023. Palm: Scaling language
modeling with pathways. Journal of Machine Learn-
ing Research, 24(240):1–113.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al.
2022. Scaling instruction-finetuned language models.
arXiv preprint arXiv:2210.11416.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

4101

https://huggingface.co/01-ai/Yi-34B
https://huggingface.co/01-ai/Yi-34B
https://www.anthropic.com/news/claude-2
https://www.anthropic.com/news/releasing-claude-instant-1-2


T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein.
2022. Introduction to Algorithms, fourth edition.
MIT Press.

Google DeepMind. 2023. Gemini.

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel
Stanovsky, Sameer Singh, and Matt Gardner. 2019.
Drop: A reading comprehension benchmark re-
quiring discrete reasoning over paragraphs. arXiv
preprint arXiv:1903.00161.

Yann Dubois, Xuechen Li, Rohan Taori, Tianyi Zhang,
Ishaan Gulrajani, Jimmy Ba, Carlos Guestrin, Percy
Liang, and Tatsunori B Hashimoto. 2023. Al-
pacafarm: A simulation framework for methods
that learn from human feedback. arXiv preprint
arXiv:2305.14387.

Lizhou Fan, Sara Lafia, Lingyao Li, Fangyuan Yang,
and Libby Hemphill. 2023a. Datachat: Prototyping a
conversational agent for dataset search and visualiza-
tion. arXiv preprint arXiv:2305.18358.

Lizhou Fan, Lingyao Li, Zihui Ma, Sanggyu Lee, Huizi
Yu, and Libby Hemphill. 2023b. A bibliometric re-
view of large language models research from 2017 to
2023. arXiv preprint arXiv:2304.02020.

Simon Frieder, Luca Pinchetti, Ryan-Rhys Grif-
fiths, Tommaso Salvatori, Thomas Lukasiewicz,
Philipp Christian Petersen, Alexis Chevalier, and
Julius Berner. 2023. Mathematical capabilities of
chatgpt. arXiv preprint arXiv:2301.13867.

Zhenxiang Gao, Lingyao Li, Siyuan Ma, Qinyong Wang,
Libby Hemphill, and Rong Xu. 2023. Examining
the potential of chatgpt on biomedical information
retrieval: Fact-checking drug-disease associations.
Annals of Biomedical Engineering, pages 1–9.

Yingqiang Ge, Wenyue Hua, Jianchao Ji, Juntao Tan,
Shuyuan Xu, and Yongfeng Zhang. 2023a. Openagi:
When llm meets domain experts. arXiv preprint
arXiv:2304.04370.

Yingqiang Ge, Yujie Ren, Wenyue Hua, Shuyuan Xu,
Juntao Tan, and Yongfeng Zhang. 2023b. Llm
as os (llmao), agents as apps: Envisioning aios,
agents and the aios-agent ecosystem. arXiv preprint
arXiv:2312.03815.

Google. 2023. Palm 2.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2020. Measuring massive multitask language under-
standing. arXiv preprint arXiv:2009.03300.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021. Measuring mathematical
problem solving with the math dataset. NeurIPS.

Wenyue Hua, Lizhou Fan, Lingyao Li, Kai Mei,
Jianchao Ji, Yingqiang Ge, Libby Hemphill, and
Yongfeng Zhang. 2023. War and peace (waragent):
Large language model-based multi-agent simulation
of world wars. arXiv preprint arXiv:2311.17227.

Wenyue Hua and Yongfeng Zhang. 2022. System 1+
system 2= better world: Neural-symbolic chain of
logic reasoning. In Findings of the Association for
Computational Linguistics: EMNLP 2022, pages
601–612.

Jie Huang and Kevin Chen-Chuan Chang. 2022. To-
wards reasoning in large language models: A survey.
arXiv preprint arXiv:2212.10403.

Jie Huang, Xinyun Chen, Swaroop Mishra,
Huaixiu Steven Zheng, Adams Wei Yu, Xiny-
ing Song, and Denny Zhou. 2023. Large language
models cannot self-correct reasoning yet. arXiv
preprint arXiv:2310.01798.

Glenn D Israel et al. 1992. Determining sample size.

Mojan Javaheripi and Sébastien Bubeck. 2023. Phi-2.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

David S Johnson. 1990. A catalog of complexity classes.
In Algorithms and complexity, pages 67–161. Else-
vier.

Geunwoo Kim, Pierre Baldi, and Stephen McAleer.
2023. Language models can solve computer tasks.
arXiv preprint arXiv:2303.17491.

Andreas Kipf, Ryan Marcus, Alexander van Renen, Mi-
hail Stoian, Alfons Kemper, Tim Kraska, and Thomas
Neumann. 2019. Sosd: A benchmark for learned in-
dexes.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. Advances in
neural information processing systems, 35:22199–
22213.

Lingyao Li, Lizhou Fan, Shubham Atreja, and Libby
Hemphill. 2023a. "hot" chatgpt: The promise of chat-
gpt in detecting and discriminating hateful, offensive,
and toxic comments on social media. arXiv preprint
arXiv:2304.10619.

Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie
Del Giorno, Suriya Gunasekar, and Yin Tat Lee.
2023b. Textbooks are all you need ii: phi-1.5 techni-
cal report. arXiv preprint arXiv:2309.05463.

Carla Negri Lintzmayer, Mauro Henrique Mulati, and
Anderson Faustino da Silva. 2011. Register alloca-
tion with graph coloring by ant colony optimization.
In 2011 30th International Conference of the Chilean
Computer Science Society, pages 247–255. IEEE.

4102

https://books.google.com/books?id=HOJyzgEACAAJ
https://deepmind.google/technologies/gemini/#introduction
https://ai.google/discover/palm2/
https://www.microsoft.com/en-us/research/blog/phi-2-the-surprising-power-of-small-language-models/
http://arxiv.org/abs/1911.13014
http://arxiv.org/abs/1911.13014


LMSYS. 2023. Vicuna: An open-source chatbot im-
pressing gpt-4 with 90% chatgpt quality.

Robert C MacCallum, Keith F Widaman, Shaobo Zhang,
and Sehee Hong. 1999. Sample size in factor analysis.
Psychological methods, 4(1):84.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe,
Mike Lewis, Hannaneh Hajishirzi, and Luke Zettle-
moyer. 2022. Rethinking the role of demonstra-
tions: What makes in-context learning work? arXiv
preprint arXiv:2202.12837.

Janice M Morse. 1992. Qualitative health research,
volume 22. Sage Newbury Park, CA.

MosaicML. 2023. Mpt-30b: Raising the bar for open-
source foundation models.

OpenAI. 2024. Gpt-3.5 turbo.

Roberto Roberti and Mario Ruthmair. 2021. Exact meth-
ods for the traveling salesman problem with drone.
Transportation Science, 55(2):315–335.

Rylan Schaeffer. 2023. Pretraining on the test set is all
you need. arXiv preprint arXiv:2309.08632.

Rylan Schaeffer, Brando Miranda, and Sanmi Koyejo.
2023. Are emergent abilities of large language mod-
els a mirage? arXiv preprint arXiv:2304.15004.

Kaya Stechly, Matthew Marquez, and Subbarao Kamb-
hampati. 2023. Gpt-4 doesn’t know it’s wrong: An
analysis of iterative prompting for reasoning prob-
lems. arXiv preprint arXiv:2310.12397.

Bo Sun, Ali Zeynali, Tongxin Li, Mohammad Hajies-
maili, Adam Wierman, and Danny HK Tsang. 2020.
Competitive algorithms for the online multiple knap-
sack problem with application to electric vehicle
charging. Proceedings of the ACM on Measurement
and Analysis of Computing Systems, 4(3):1–32.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Se-
bastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny
Zhou, et al. 2022. Challenging big-bench tasks and
whether chain-of-thought can solve them. arXiv
preprint arXiv:2210.09261.

Karthik Valmeekam, Alberto Olmo, Sarath Sreedharan,
and Subbarao Kambhampati. 2022. Large language
models still can’t plan (a benchmark for llms on plan-
ning and reasoning about change). arXiv preprint
arXiv:2206.10498.

Boshi Wang, Xiang Deng, and Huan Sun. 2022. Itera-
tively prompt pre-trained language models for chain
of thought. arXiv preprint arXiv:2203.08383.

Yancheng Wang, Ziyan Jiang, Zheng Chen, Fan Yang,
Yingxue Zhou, Eunah Cho, Xing Fan, Xiaojiang
Huang, Yanbin Lu, and Yingzhen Yang. 2023. Rec-
mind: Large language model powered agent for rec-
ommendation. arXiv preprint arXiv:2308.14296.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel,
Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, et al.
2022a. Emergent abilities of large language models.
arXiv preprint arXiv:2206.07682.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022b. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in Neural
Information Processing Systems, 35:24824–24837.

Jerry Wei, Jason Wei, Yi Tay, Dustin Tran, Albert
Webson, Yifeng Lu, Xinyun Chen, Hanxiao Liu,
Da Huang, Denny Zhou, et al. 2023. Larger language
models do in-context learning differently. arXiv
preprint arXiv:2303.03846.

Yixuan Weng, Minjun Zhu, Shizhu He, Kang Liu,
and Jun Zhao. 2022. Large language models are
reasoners with self-verification. arXiv preprint
arXiv:2212.09561.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu,
Shaokun Zhang, Erkang Zhu, Beibin Li, Li Jiang,
Xiaoyun Zhang, and Chi Wang. 2023. Auto-
gen: Enabling next-gen llm applications via multi-
agent conversation framework. arXiv preprint
arXiv:2308.08155.

Liang Xu, Anqi Li, Lei Zhu, Hang Xue, Changtai Zhu,
Kangkang Zhao, Haonan He, Xuanwei Zhang, Qiyue
Kang, and Zhenzhong Lan. 2023. Superclue: A com-
prehensive chinese large language model benchmark.
arXiv preprint arXiv:2307.15020.

Taro Yamane. 1973. Statistics: An introductory analy-
sis.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Thomas L Griffiths, Yuan Cao, and Karthik
Narasimhan. 2023. Tree of thoughts: Deliberate
problem solving with large language models. arXiv
preprint arXiv:2305.10601.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a
machine really finish your sentence? arXiv preprint
arXiv:1905.07830.

Xiaotian Zhang, Chunyang Li, Yi Zong, Zhengyu Ying,
Liang He, and Xipeng Qiu. 2023. Evaluating the
performance of large language models on gaokao
benchmark. arXiv preprint arXiv:2305.12474.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen
Zhang, Junjie Zhang, Zican Dong, et al. 2023. A
survey of large language models. arXiv preprint
arXiv:2303.18223.

Kaijie Zhu, Jiaao Chen, Jindong Wang, Neil Zhenqiang
Gong, Diyi Yang, and Xing Xie. 2023. Dyval: Graph-
informed dynamic evaluation of large language mod-
els. arXiv preprint arXiv:2309.17167.

4103

https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://www.mosaicml.com/blog/mpt-30b
https://www.mosaicml.com/blog/mpt-30b
https://platform.openai.com/docs/models/gpt-3-5-turbo


A Examples of Synthesized Data, the
Corresponding Prompts, and LLMs’
Outputs

To further demonstrate the synthesized Data, the
corresponding prompts, and LLMs’ outputs, we
choose two specific problems with different at-
tributes, including the EDP problem from the P
complexity class with linear data synthesis and the
GCP problem from the NP-Hard complexity class
with graph data synthesis. We provide the zero-shot
prompt for these questions and the output based
on the GPT 4 Turbo. The details of all prompts
and results available at https://anonymous.
4open.science/r/NPHardEval-5EF3.

A.1 Example for P: EDP

1 # Synthesized Data
2 {
3 "string_a": "cef",
4 "string_b": "ccb"
5 }
6

7 # Prompt with Synthesized Data
8 The Edit Distance Problem (EDP) involves

finding the minimum number of
operations required to transform one
string into another, where each

operation is either an insertion,
deletion, or substitution of a
single character.

9 Find the minimum number of operations
required to transform the first
string cef into the second string
ccb. The operations are insertion,
deletion, and substitution of a
single character, each requiring 1
edit operation.

10 Please provide the minimum number of
operations required to transform the
first string into the second string

. Offer a brief explanation of your
methodology. Keep your response
concise and focused.

11 Enclose your output within <root></root>
tags. Present your reasoning in <

reasoning></reasoning> tags and the
final minimum number of operations
in <final_answer></final_answer>
tags, like <final_answer>{’
Operations’: ’
MINIMUM_NUMBER_OF_OPERATIONS’}</
final_answer>.

12

13 # Output (formatted for easier reading)
14 <root>
15 <reasoning>
16 To transform \"cef\" into \"ccb\

", we can follow these steps:\n
17 1. Substitute ’e’ with ’c’ (cef

-> ccf)\n
18 2. Substitute ’f’ with ’b’ (ccf

-> ccb)\n

19 This results in two substitution
operations.

20 </reasoning>
21 <final_answer>
22 {"Operations": 2}
23 </final_answer>
24 </root>

Listing 1: EDP Example

A.2 Example for NP-Hard: GCP

1 # Synthesized Data
2 c This is a generated graph with

chromatic number 2
3 p edge 6 4
4 e 1 6
5 e 2 6
6 e 3 4
7 e 3 5
8

9 # Prompt with Synthesized Data
10 Graph coloring refers to the problem of

coloring vertices of a graph in such
a way that no two adjacent vertices
have the same color.

11 There are 6 vertices 1 to 6 in a graph.
You may use 4 colors with alphabats
from A, B, C,... to color the graph.

12 Please label every vertex, even if it is
disconnected from the rest of the

graph. Please provide each vertex’s
color. Do not skip any vertices. You
should also provide very short step
by step reasoning. Do not use

multiple lines and try your best to
save output tokens.

13 Your output should contain two parts
enclosed by <root></root>. First,
your step by step reasoning wraped
by <reasoning></reasoning>. Second,
the final output of all vertex
numbers and their associated colors,
wrapped by final_answer tag, like <

final_answer>{0:’COLOR_1’, 1:’
COLOR_2’, ...}</final_answer>.

14 The graph is below:
15 Vertex 1 is connected to vertex 6.
16 Vertex 2 is connected to vertex 6.
17 Vertex 3 is connected to vertex 4.
18 Vertex 3 is connected to vertex 5.
19

20 # Output (formatted for easier reading)
21 <root>
22 <reasoning>
23 Start with vertex 1, color it A;

color adjacent vertex 3 with B;
vertex 2 can be A as it’s not
adjacent to 1; vertex 4 connected to
2 must be different, use B; vertex

5 connected to both 2 and 3, use C;
vertex 6 connected to 3 and 4, use A
.

24 </reasoning>
25 <final_answer>
26 {1:’A’, 2:’A’, 3:’B’, 4:’B’, 5:’

C’, 6:’A’}
27 </final_answer>

4104

https://anonymous.4open.science/r/NPHardEval-5EF3
https://anonymous.4open.science/r/NPHardEval-5EF3


28 </root>

Listing 2: GCP Example

A.3 Example of a Failed Case and Error
Analysis

As a representative failed case, in an Edit Distance
Problem (EDP), we have the following results:

1 # Output (formatted for easier reading)
2 {
3 "output": {"Operations": "5"},
4 "correctness": [false, "The reported

edit distance (5) is incorrect.
Actual distance: 4."],

5 "reasoning": "To transform \"ieebi\"
into \"ihahc\", we can follow these
steps:\n

6 1. Substitute ’e’ with ’h’ (
ieebi -> ihhbi)\n

7 2. Delete ’h’ (ihhbi -> ihbi)\n
8 3. Substitute ’b’ with ’a’ (ihbi

-> iha)\n
9 4. Insert ’h’ (iha -> ihah)\n

10 5. Substitute ’i’ with ’c’ (ihah
-> ihahc)\n

11 This results in a total of 5
operations. It’s possible that there
might be a more efficient sequence

of operations, but without
performing a detailed dynamic
programming analysis (such as using
the Wagner-Fischer algorithm), this
is a reasonable estimate."

12 }.

Listing 3: EDP Failed Case Example

The correct answer for this EDT problem should
be 4, and here is our analysis. In this case, the
correct steps should be:

• We start with two strings, "ieebi" and "ihahc".
Our goal is to transform "ieebi" into "ihahc" us-
ing a minimum number of operations: insertion,
deletion, or substitution.

• "i" and "i" are the same, so no operation is needed
here. We move to the next character in both
strings.

• We have "e" in the first string and "h" in the
second. They are different, so we need to perform
an operation. The best choice here is substitution
(changing "e" to "h"), as it directly aligns with
our target string. This counts as 1 operation.

• Now we have "e" in the first string and "a" in
the second. Again, they are different, necessitat-
ing another substitution ("e" to "a"). This is our
second operation.

• The fourth characters are "b" and "h". They are
different, requiring a substitution ("b" to "h").
This is the third operation.

• Finally, we compare "i" and "c". These are dif-
ferent, requiring one last substitution ("i" to "c").
This brings our total to four operations.

The main problem occurs in “3. Substitute ’b’
with ’a’ (ihbi -> iha)”, where the substitution did
not influence the character ’i’ at the end. Therefore,
there is no need for additional insertion. Since there
are four different letters in total, 4 substitutions will
work. The main reason why this happens because
of the model’s ignoring of information, where it
wrongly get rid of a letter. This error might due to
the hallucination of a in-step generated fact (in our
case the word) in the process of reasoning.

B Details of Complexity Classes

There are nine category problems (tasks) in total
in our benchmark and each complexity class have
three unique problem categories.

B.0.1 P (Polynomial time) Tasks
This class consists of tasks that can be solved by a
deterministic Turing machine in polynomial time.
Essentially, it represents tasks that are efficiently
solvable. We include three P problems in the bench-
mark, namely Sorted Array Search (SAS), Edit Dis-
tance Problem (EDP), and Shortest Path Problem
(SPP).

Sorted Array Search (SAS) SAS is about find-
ing the position of a target value after sorting a
given array. Given an array A of n elements and a
target value T , the goal is to determine the index at
which T is located in A after sorting. Renowned al-
gorithms like binary search efficiently accomplish
this task by iteratively halving the search interval,
operating in logarithmic time. The problem can
be formally stated as finding an index i such that
A[i] = T , or determining that no such index ex-
ists. It is commonly used in databases and search
engines to quickly find specific data within a large
dataset (Kipf et al., 2019). SAS consists of 10
complexity levels, with each level designated by
an array length (starting from 3 up to 12) and a
number range that extends from (1, 15) to (1, 60).
The complexity scales with each level by increas-
ing the array length by one and the number range’s
upper limit by 5, thereby broadening the scope of
sequential assignments required.

4105



Edit Distance Problem (EDP) EDP is about
finding the minimum number of operations re-
quired to transform one string into another. Given
two strings, A and B, of lengths m and n respec-
tively, the aim is to determine the minimum num-
ber of operations needed to convert A into B. The
allowable operations are insertion, deletion, and
substitution of a single character. Formally, the
problem can be defined as finding a minimum num-
ber d such that string A can be transformed into
string B using d operations. This algorithm has a
time complexity of O(ab) where a and b are the
lengths of the strings. When the full dynamic pro-
gramming table is constructed, its space complexity
is also O(ab). EDP has widespread applications,
especially in fields like computational biology for
sequence alignment, natural language processing
for spell checking and correction, and in data anal-
ysis for measuring similarity between data strings.
EDP is structured into 10 complexity levels, tai-
lored to measure the minimal number of edits re-
quired to transform one string into another. Each
level is characterized by two strings whose lengths
are equal and progressively increase from 3 to 12
characters from Level 1 to Level 10. Concurrently,
the character range for constructing these strings
is expanded, starting with the first 6 letters and ex-
tending by 2 additional letters at each subsequent
level.

Shortest Path Problem (SPP) SPP is about find-
ing the shortest path between two nodes in a non-
negative weighted graph. In our experiments, we
ask for the shortest path between the first and
last nodes. Given a graph G = (V,E) with a
weight function w : E → R assigning weights
to edges, and two vertices u and v in V , the task
is to find the path from u to v that minimizes the
total weight. This is often solved using Dijkstra’s
algorithm which systematically expands the short-
est path from the starting node until it reaches the
target node. Formally, the problem is to find a path
P = (v1, v2, ..., vk), where v1 = u and vk = v,
such that the sum of weights of consecutive edges
in P ,

∑k−1
i=1 w(vi, vi+1), is minimized. This prob-

lem can be used in network routing, GPS naviga-
tion systems, and logistics to find the shortest or
most efficient path between two points. It helps in
reducing travel time and costs in transportation and
communication networks. SPP involves determin-
ing the shortest path across different complexity
levels, ranging from Level 1 to Level 10. Each level

is characterized by an increasing number of nodes
(starting from 4 to 13), edges (5 to 14), and a maxi-
mum weight (6 to 15) that escalates linearly with
each level. The complexity of the problem scales
by adding one node, one edge, and increasing the
maximum weight by one for each subsequent level.

B.0.2 NP-complete problems
This is a subset of NP. A problem is NP-complete
if it is in NP and as hard as any problem in NP. If
any NP-complete problem can be solved in poly-
nomial time, then every problem in NP can also be
solved in polynomial time. We include three NP-
complete problems that are not in P in the bench-
mark, namely Traveling Salesman Problem Deci-
sion Version (TSP-D), Graph Coloring Problem
Decision Version (GCP-D), and Knapsack Prob-
lem (KSP).

Traveling Salesman Problem (Decision Version,
TSP-D) TSP-D is concerned with determining
if a salesman can complete a route, visiting each
city at least once, with the total travel distance
being less than a specified value. Given a com-
plete graph G = (V,E) with vertices V repre-
senting cities and edges E representing paths be-
tween cities, each edge (i, j) is assigned a distance
d(i, j). The decision version of this problem asks
whether there exists a tour (a sequence of cities)
such that the total distance of the tour is less than
or equal to a given value D. Formally, the problem
can be stated as finding a permutation P of the
set of cities 1, 2, ..., n that satisfies the condition∑n−1

i=1 d(P (i), P (i + 1)) + d(P (n), P (1)) ≤ D.
This problem is useful in logistics and supply chain
management in planning efficient delivery routes
and schedules (Roberti and Ruthmair, 2021). TSP-
D configuration spans 10 complexity levels with
node counts from 4 to 13, similar to the TSP. It
also introduces a threshold of 0.75, setting factor
of the allowed travel distance to the total possible
distance.

Graph Coloring Problem (Decision Version,
GCP-D) GCP-D involves determining if it is pos-
sible to color the vertices of a graph using a given
number of colors so that no two adjacent vertices
share the same color. Given an undirected graph
G = (V,E), with V representing vertices and E
representing edges, the goal is to find out if there
is a way to assign one of k colors to each vertex
such that for any edge (u, v) ∈ E, the vertices
u and v have different colors. The formal state-

4106



ment is to determine if there exists a coloring func-
tion c : V → 1, 2, ..., k such that for every edge
(u, v) ∈ E, c(u) ̸= c(v). It has wide applica-
tions in Round-Robin Sports Scheduling, Aircraft
scheduling, and Biprocessor tasks (Ahmed, 2012).
GCP-D has difficulty levels 1 to 10 with questions
of 6, 8, 10, 12, 14, 16, 18, 20, 22, and 24 average
edges and 6, 7, 8, 9, 10, 11, 12, 13, 14, and 15
nodes. Beginning with graphs of 6 nodes and 6
edges, each subsequent level incorporates an addi-
tional 2 edges and 1 node, culminating in graphs of
24 edges and 15 nodes.

Knapsack Problem (KSP) KSP asks whether a
subset of items can be chosen to fit into a knapsack
of fixed capacity without exceeding it, while also
maximizing the total value of the selected items.
Consider a set of items, each with a weight wi and a
value vi, and a knapsack with a weight capacity W .
The problem is to select a subset of these items such
that the total weight does not exceed W and the
total value is maximized. Formally, let xi be a bi-
nary variable indicating whether item i is included
in the knapsack (xi = 1) or not (xi = 0). The
problem can be stated as maximizing

∑n
i=1 vixi

subject to the constraint
∑n

i=1wixi ≤ W , where
n is the number of items. It is used in resource
allocation and budgeting where the goal is to maxi-
mize the total value of a selection under a weight
or cost constraint. Applications include cargo load-
ing, and electric vehicle charging (Sun et al., 2020;
Cho, 2019).KSP is organized into 10 levels, each
marked by an ascending number of items (from 4
to 13), a weight range (1 to the level number), a
value range (identical to the weight range), and a
knapsack capacity that starts at 20 and increases
by 5 with each level. The complexity elevates by
broadening the weight and value ranges, adding
more items, and enlarging the knapsack’s capacity.

B.0.3 NP-hard problems

These problems are at least as hard as the hard-
est problems in NP. They may not necessarily be
in NP (i.e., they may not have solutions verifiable
in polynomial time) but solving an NP-hard prob-
lem in polynomial time would imply that P = NP.
We include three NP-hard problems that are not
reducible to NP-complete problems in the bench-
mark, namely Traveling Salesman Problem Opti-
mization Version (TSP), Graph Coloring Problem
Optimization Version (GCP), and Meeting Schedul-
ing Problem (MSP).

Traveling Salesman Problem (Optimization Ver-
sion, TSP) TSP-O involves finding the shortest
route for a salesman to visit each city exactly once
and return to the starting city. Given a complete
graph Kn with n vertices, where each vertex rep-
resents a city and each edge (i, j) is assigned a
non-negative cost or distance d(i, j), the problem
is to find the shortest possible route that visits each
city exactly once and returns to the origin city. For-
mally, let P be a permutation of the set of cities
1, 2, ..., n representing the order in which the cities
are visited. The traveling salesman problem can be
formulated as finding the permutation P that min-
imizes the total travel cost, given by the function
f(P ) = d(P (n), P (1))+

∑n−1
i=1 d(P (i), P (i+1)).

This problem is important in operational research
and logistics to find the most efficient route to visit
multiple locations and return to the origin, partic-
ularly route planning for delivery services, main-
tenance operations, and sales. TSP is structured
across 10 complexity levels, each defined by a set
number of nodes ranging from 4 to 13. The com-
plexity of the problem increases with the addition
of more nodes, enhancing the challenge of find-
ing the shortest possible route that visits each node
exactly once and returns to the starting point.

Graph Coloring Problem (Optimization Version,
GCP) GCP-O refers to the problem of coloring
vertices of a graph in such a way that no two adja-
cent vertices have the same color. Given an undi-
rected graph G = (V,E), where V is the set of
vertices and E is the set of edges, assign a color
to each vertex such that no two adjacent vertices
have the same color. Formally, let c : V → C
be a function that assigns a color from a set of
colors C to each vertex in V . The graph coloring
problem can be formulated as finding a proper col-
oring, i.e., a function c such that for every edge
(u, v) ∈ E, c(u) ̸= c(v). This problem is used
in constraint satisfaction problems and applied in
exam timetabling and register allocation in compil-
ers (Lintzmayer et al., 2011). GCP is devised with
10 levels of complexity, featuring questions with
average edges ranging from 6 to 24 and nodes from
6 to 15. Beginning with graphs of 6 nodes and 6
edges, each subsequent level incorporates an addi-
tional 2 edges and 1 node, culminating in graphs of
15 nodes and 24 edges, progressively elevating the
difficulty of assigning colors to each node without
any two adjacent nodes sharing the same color.

4107



Meeting Scheduling Problem (MSP) MSP
deals with allocating time slots for meetings such
that all constraints, including participant availabil-
ity and room capacity, are satisfied without over-
laps. Given a set of n participants and their avail-
ability for m time slots, find a schedule that max-
imizes the number of participants who can attend
the meeting. Formally, let A = a1, a2, ..., an be
the set of participants and T = t1, t2, ..., tm be the
set of time slots. For each participant ai, let Si

be a subset of T representing the times when ai is
available and mi be a subset of meetings that are re-
quired to attend. The meeting scheduling problem
can be formulated as finding a subset S ⊆ T such
that |ai ∈ A|Si ∩ S ̸= ∅| is maximized. In other
words, the aim is to find a scheduling subset Si

where the collective availability of participants in-
tersects with Si, ensuring maximum participation.
This problem is crucial in organizational manage-
ment for scheduling meetings involving multiple
participants with varying availability. It ensures
optimal utilization of time and resources and is
used in corporate scheduling systems and collabo-
rative software (Bofill et al., 2022). MSP outlines
complexity across 10 levels, determined by an in-
creasing number of meetings (2 to 11), participants
(one more than the number of meetings, i.e., 3 to
12), and time slots (two more than the number of
meetings, i.e., 4 to 13). Each level advances the
problem’s complexity by adding one meeting, con-
sequently increasing the number of participants and
time slots required for scheduling.

C Choices of Problems

In the benchmark, we exclude calculation-only
(math intensive) tasks for each of the complexity
classes, due to the overlap with already exist bench-
marks and the known uncertainty of LLMs’ math
ability. For other reasoning, we provide detailed
explanations and highlight them in bold.

C.1 Excluded P problems

Prime Number Determination Using algo-
rithms like AKS primality test to determine if a
given number is prime. Reason: Math-intensive.

Solving Linear Equations Finding solutions for
a system of linear equations. Reason: Math-
intensive.

Maximum Flow Problem Finding the maximum
flow from a source node to a sink node in a flow

network. A flow network is a directed graph G =
(V,E) where each edge (u, v) ∈ E has a capacity
c(u, v) and flow f(u, v), with a designated source
s and sink t. The objective is to maximize the total
flow from s to t under the constraints that the flow
on an edge does not exceed its capacity and the
incoming flow is equal to the outgoing flow for
every vertex except s and t. Reason: Most open
source algorithms cannot follow the question
and the prompt to provide outputs with mostly
correct formats.

C.2 Excluded NP-Complete problems
3-SAT Problem Deciding whether a given
Boolean formula in conjunctive normal form with
three literals per clause is satisfiable. Reason:
Math-intensive.

C.3 Excluded NP-hard problems
Integer Linear Programming Finding the best
integer solution for a set of linear equations and
inequalities. Reason: Math-intensive.

D Benchmark Statistics: Consistency and
Size

This section presents the statistical analysis of our
benchmark’s consistency and size, providing in-
sights into its reliability and comprehensiveness.

D.1 Benchmark Consistency
Our benchmark demonstrates high consistency, as
evidenced by preliminary assessments and ongoing
developments to facilitate open-source consistency
checks. Currently, the benchmark comprises three
versions (V0, V1, and V2), which are utilized to
assess the consistency of model performance. We
tested seven open-source models, including Yi-34b,
Qwen-14b, Mistral-7b, Phi-2, MPT-30b, Vicuna-
13b, and Phi-1.5, along with GPT-4 Turbo. By
calculating the variance across these versions, we
generated 72 data points for model-specific obser-
vations. The summary statistics are as follows:

• Minimum variance: 0.0 (approximately half of
the variances are near zero)

• Mean variance: 0.0072

• Maximum variance: 0.1114

These statistics indicate minimal variance across
the benchmark versions, suggesting a high level of
consistency with each update.

4108



D.2 Benchmark Size

The benchmark is designed to be comprehensive,
supported by a dynamic update mechanism that
ensures continual renewal over six months to a
year. All archived questions remain accessible for
further evaluations, such as testing model consis-
tency. Over time, each task within the benchmark
will feature 1,200 questions, totaling 10,800 unique
questions.

Furthermore, we justify our sample size selec-
tion through rigorous statistical analysis. While
an infinite number of reasoning questions would
ideally be required to precisely evaluate a Large
Language Model’s (LLM) capability on a specific
task, practical constraints necessitate a finite sam-
ple. Based on sample size estimations (MacCallum
et al., 1999; Morse, 1992) and margin of error cal-
culations (Israel et al., 1992; Yamane, 1973), 100
questions per task are necessary to achieve a 95%
confidence level with a 10% margin of error. For in-
stance, in Appendix E, our statistical analysis at the
p < 0.05 significance level confirms the robustness
of the results.

E Model Performance across Task
Complexity and Difficulty Levels

To evaluate across task complexity, specifically
comparing the complexity among P, NP-Complete,
and NP-Hard pairs, we initially pinned the data
based on complexity levels. Subsequently, we ap-
plied the Wilcoxon test to each pair of complex-
ity sets. Wilcoxon is a non-parametric statisti-
cal hypothesis test that allows us to compare two
populations with matched samples. To evaluate
problem difficulty, aiming to discern differences
among problems within the complexity category,
we pinned the data based on the specific problems
and then used the Wilcoxon test to compare pairs
of different problem sets.

E.1 Across Complexity Levels

Figure 6 shows the accuracy of each model across
different complexity levels. The test results re-
veal statistical significance (p < 0.05) in the p-
values between P and NP-Hard, as well as NP-
Complete and NP-Hard. These findings indicate
that our investigated LLMs performed significantly
worse when confronted with NP-Hard problems
compared to P and NP-Complete problems.

E.2 Across Models

Figure 7 presents the accuracy of each model across
various problems associated with P, NP-Complete,
and NP-Hard complexities. Regarding P complex-
ity, notable differences emerged among the mod-
els. GPT 3.5 Turbo, GPT 4 Turbo, Yi-34b, and
Qwen-14b models exhibited significantly superior
performance on the SAS problem compared to the
other two problems. GPT 3.5 Turbo, Yi-34b, and
Vicuna-13b models demonstrated markedly better
performance on the EDP problem compared to the
SPP problem. Only the Vicuna-13b model dis-
played slightly better performance, although not
significant, on the EDP problem compared to SAS
across all investigated models.

E.3 Other observations

GPT 4 Turbo showcased very similar performance
between the EDP and SPP problems, while Claude
Instant 1.2 exhibited similar performance for all
these three problems. Yi-34b, Qwen-14b, GPT
3.5 Turbo, and GPT 4 Turbo displayed remarkably
high accuracy specifically for the SAS task. MPT-
30b and Phi-1.5 showed very limited performance
in identifying these three problems.

Regarding NP-Complete complexity, there are
several observations to highlight. Still, neither
MPT-30b nor Phi-1.5 could deliver any identifica-
tion for problems in the NP-Complete complexity.
In the case of GCP-D and TSP-D problems, the per-
formance of these models varied significantly. Phi-
2, Vicuna-13b and GPT 4 Turbo outperformed in
the GCP-D problem compared to TSP-D, whereas
Claude Instant 1.2, Claude 2, and PaLM 2 exhib-
ited better performance in TSP-D over GCP-D. On
the other hand, models like Mistral-7b, Yi-34b,
Qwen-14b, and GPT 3.5 Turbo showcased rela-
tively similar performance between these two tasks.
For the KSP task, only GPT 4 Turbo demonstrated
promising performance, while the remaining mod-
els faltered.

Considering NP-Hard complexity as the most
intricate task set among the three (as evidenced in
Figure 6), many of the examined models encoun-
tered challenges in identifying tasks within this
complexity. For the GCP task, Mistral-7b, PaLM 2,
GPT 3.5 Turbo, and GPT 4 Turbo exhibited some
potential, while Vicuna-13b and Claude Instant 1.2
showed limited performance. For the TSP task,
identification was observed only in Claude 2 and
GPT 4 Turbo. Of all the investigated models, GPT

4109



Figure 6: Models’ performance on each complexity level. (a) GPT 4 Turbo. (b) Claude 2. (c) GPT 3.5 Turbo. (d)
Claude Instant 1.2. (e) PaLM 2. (f) Yi-34b. (g) Qwen-14b. (h) Mistral-7b. (i) Phi-2. (j) MPT-30b. (k) Vicuna-13b.
(l) Phi-1.5.

4 Turbo exhibited promise in identifying these three
tasks within the NP-Hard complexity. However, the
performance in GCP and TSP identification signifi-
cantly surpassed that of the MSP task across these
models. For the MSP task, only GPT 4 Turbo dis-
played some ability for identification, while with
notably low accuracy.

F Model Generalization through
In-context Learning

Given examples in the context, can LLMs gen-
uinely learn and apply algorithmic skills presented
in contextual examples as opposed to merely mim-
icking problem-solving processes (Wei et al., 2023;
Min et al., 2022)? We differentiate between “learn-
ing” and “mimicking” by evaluating whether LLMs
can generalize solutions to new problems of vary-
ing difficulty levels within the same task, after be-
ing exposed to examples. Our hypothesis is that
if an LLM has truly learned the underlying algo-
rithmic skill, it should be able to tackle problems
across different difficulty levels within the same
task. Conversely, if an LLM is merely mimick-
ing, its performance may falter when faced with

variations in problem difficulty.

F.1 Experiment: Comparative Analysis of
Learnability by In-context Learning

A prevalent approach in current few-shot learn-
ing involves using examples that bear similarity to
the test question. However, this raises a question
about the extent to which the model is replicating
the problem-solving process from the examples as
opposed to genuinely acquiring reasoning skills.
Consequently, it becomes pertinent to investigate
whether the problem-solving abilities developed
through example-based learning are generalizable.

To delve deeper into the models’ in-context
learning abilities, we utilize various few-shot in-
context learning prompts to discern whether the
model is “learning” from the few-shot examples or
merely “mimicking” the behavior. In our bench-
mark, since we distinctly classify the difficulty
level of each question, it allows for the use of ques-
tions from the same task but with varying difficulty
levels as few-shot examples. The crux of this anal-
ysis lies in varying the difficulty levels of examples
within the prompts. Since the fundamental algo-

4110



Figure 7: Models’ performance on tasks across complexity levels. (a) GPT 4 Turbo. (b) Claude 2. (c) GPT 3.5
Turbo. (d) Claude Instant 1.2. (e) PaLM 2. (f) Yi-34b. (g) Qwen-14b. (h) Mistral-7b. (i) Phi-2. (j) MPT-30b. (k)
Vicuna-13b. (l) Phi-1.5.

rithmic skill required to solve a question remains
constant across varying difficulty levels under the
same task, a model that truly learns this skill should
show consistent performance irrespective of the ex-
ample difficulty in the prompt. We propose the fol-
lowing hypotheses about the relationship between
in-context learning ability and the difference of dif-
ficulty level between the given examples and the
question being asked in context:

• Models possessing optimal generalization ca-
pabilities should demonstrate consistent perfor-
mance improvement regardless of the difficulty
level of the prompt examples in context. This
assumption is based on the premise that mod-
els with robust learning abilities are capable of
discerning and applying the intrinsic problem-
solving skills learned in the examples. Given
that questions within the same task fundamen-

tally require similar skills, variations in difficulty
are unlikely to significantly affect the model’s
performance.

• If a model exhibits the ability to generalize only
from some types of examples but is unable to
extend this learning to others, it reveals a defi-
ciency in its capacity for generalization in terms
of reasoning. This suggests that the model is not
genuinely acquiring problem-solving skills from
the examples but merely recognizing and apply-
ing patterns from examples that are of equal or
greater complexity to the problem at hand.

• If a model is unable to generalize from either
more difficult or easier examples and is re-
stricted to examples of the same difficulty level,
it strongly suggests that the model is merely
replicating the process presented in the con-
text rather than internalizing any fundamental

4111



problem-solving techniques or pattern recogni-
tion embedded within the examples. This behav-
ior indicates a profound deficiency in the model’s
ability to comprehend and understand the under-
lying principles. It points to an absence of trans-
ferable, logic-learning skills, reflecting a super-
ficial form of learning that is limited to surface-
level imitation rather than a deeper, conceptual
grasp.

We categorize the few-shot prompts into three
types:

• Few-shot prompts with examples of the same
difficulty level: Here, the model is provided with
five examples in the prompt, all of which are at
the same difficulty level and distinct from the
question being asked.

• Few-shot prompts with examples that are easier
than the question: This set comprises five vari-
ations of prompts, each with examples that are
1, 2, 3, 4, and 5 levels easier than the question,
respectively.

• Few-shot prompts with examples that are more
challenging than the question: Similarly, we pre-
pare five sets of prompts, each containing exam-
ples that are 1, 2, 3, 4, and 5 levels more difficult
than the question, offering a gradient of increased
challenge.

Through this diverse array of prompts, we aim
to provide a nuanced understanding of the LLMs’
ability to learn from examples, thereby offering
valuable insights into their underlying learning ca-
pabilities.

F.2 Effects of Few-shot Examples’ Difficulty
on Reasoning Ability Enhancement

In the experiment above, we focused on the tasks
of SAS and EDP to investigate the nature of the
in-context learning capabilities of LLMs. This ex-
periment empirically distinguishes between “learn-
ing” and “mimicking” as exhibited by LLMs dur-
ing in-context learning scenarios. Our findings
also revealed a clear dichotomy in the approach to
learning and generalization from examples between
closed-source and open-source models.

For closed-source models, including GPT 4
Turbo, Claude 2, GPT 3.5 Turbo, PaLM 2, and
Claude Instant 1.2, the results were notably close to
the ideal scenario. We observed minimal variation

in performance across different levels of difficulty
in the examples provided. This consistency sug-
gests that these models are not merely mimicking
the solutions but are indeed learning the algorith-
mic skills presented in the context of the examples.

In contrast, the performance of open-source mod-
els, particularly Yi-34b and Mistral-7b, exhibits a
clear pattern where the models generally general-
ize well from examples that are more challenging
than the given question, yet they struggle to do so
from simpler examples. Other open-source models
display less distinct patterns, but a notable trend
is still evident: these models demonstrate some
capacity to generalize from more challenging to
simpler questions, but they are less successful in
generalizing from simpler to more complex ques-
tions. An exception is observed with the Phi-1.5
model in EDP, where it appears to generalize better
from easier examples than from harder examples at
certain difficulty levels. However, broadly speak-
ing, none of the open-source models consistently
learn from both harder and easier examples. The
difficulty level significantly influences the models’
performance, suggesting a tendency for these mod-
els to mimic patterns rather than engage in genuine
learning from the context.

This phenomenon underscores that the differen-
tiation between powerful closed-source and open-
source models lies not only in their raw reasoning
ability but also significantly in their capacity to
learn from in-context examples. This insight high-
lights the importance of considering both reasoning
and learning abilities when evaluating the effective-
ness and potential applications of LLMs.

G Research Outlook

Our research outlook includes future investigations
that can extend and enrich our understanding of the
reasoning abilities of LLMs.

Fine-grained Time Complexity under Polyno-
mial (P) with Big O notation We will further
the investigation of the P complexity class with fine-
grained time complexity notation, the Big O nota-
tion. For example, the time complexity of SAS is
O(log n), while the time complexity of the Dijkstra
algorithm, the solution to SPP, is O(V log V + E)
with Fibonacci heaps (Cormen et al., 2022). This
approach will enable a detailed evaluation of mod-
els within the same complexity, proving a com-
plement perspective to the current difficulty levels
and enabling a possible cross-comparison among

4112



Accuracy GPT 4 Turbo Claude 2 GPT 3.5 Turbo Claude Instant PaLM 2 Yi-34b Qwen-14b Mistral-7b Phi-2 MPT-30b Vicuna-13b Phi-1.5

Prompts on SAS

Zeroshot 1.000 0.445 0.942 0.442 0.416 0.620 0.706 0.149 0.191 0.000 0.113 0.000

Fewshot (-5) 0.978 0.685 0.920 0.735 0.603 0.065 0.103 0.043 0.095 0.165 0.085 0.155
Fewshot (-4) 1.000 0.662 0.902 0.667 0.516 0.093 0.189 0.129 0.149 0.156 0.084 0.118
Fewshot (-3) 0.982 0.694 0.831 0.769 0.496 0.143 0.114 0.153 0.116 0.131 0.067 0.084
Fewshot (-2) 1.000 0.771 0.910 0.710 0.617 0.102 0.070 0.094 0.073 0.117 0.037 0.087
Fewshot (-1) 0.987 0.770 0.896 0.589 0.607 0.048 0.126 0.085 0.107 0.157 0.087 0.057
Fewshot (0) 0.984 0.671 0.846 0.651 0.660 0.598 0.255 0.413 0.222 0.258 0.089 0.098
Fewshot (1) 0.991 0.580 0.878 0.696 0.455 0.593 0.455 0.386 0.287 0.233 0.055 0.109
Fewshot (2) 1.000 0.675 0.829 0.587 0.656 0.647 0.444 0.296 0.260 0.175 0.067 0.056
Fewshot (3) 0.993 0.736 0.800 0.598 0.489 0.662 0.427 0.318 0.275 0.144 0.093 0.098
Fewshot (4) 1.000 0.729 0.869 0.580 0.471 0.638 0.251 0.287 0.195 0.269 0.053 0.106
Fewshot (5) 1.000 0.671 0.844 0.602 0.607 0.167 0.387 0.356 0.196 0.202 0.055 0.064

Prompts on EDP

Zeroshot 0.536 0.120 0.318 0.176 0.033 0.166 0.269 0.058 0.009 0.002 0.147 0.000

Fewshot (-5) 0.387 0.075 0.417 0.048 0.170 0.000 0.000 0.015 0.210 0.000 0.000 0.205
Fewshot (-4) 0.556 0.209 0.367 0.102 0.207 0.000 0.000 0.000 0.300 0.000 0.044 0.284
Fewshot (-3) 0.500 0.178 0.386 0.167 0.235 0.029 0.000 0.029 0.327 0.000 0.108 0.331
Fewshot (-2) 0.462 0.173 0.479 0.210 0.208 0.146 0.065 0.090 0.329 0.000 0.154 0.335
Fewshot (-1) 0.485 0.200 0.513 0.246 0.289 0.135 0.069 0.098 0.348 0.011 0.248 0.328
Fewshot (0) 0.518 0.209 0.564 0.253 0.238 0.282 0.227 0.182 0.320 0.022 0.164 0.293
Fewshot (1) 0.535 0.184 0.535 0.355 0.205 0.089 0.266 0.089 0.115 0.013 0.160 0.115
Fewshot (2) 0.545 0.209 0.544 0.238 0.196 0.195 0.266 0.042 0.098 0.015 0.093 0.087
Fewshot (3) 0.536 0.189 0.449 0.315 0.182 0.127 0.140 0.067 0.060 0.007 0.191 0.051
Fewshot (4) 0.538 0.209 0.507 0.305 0.200 0.247 0.186 0.095 0.009 0.000 0.129 0.000
Fewshot (5) 0.531 0.205 0.449 0.244 0.167 0.271 0.146 0.055 0.015 0.009 0.202 0.000

Table 1: Weighted accuracy of Zero-shot and Few-shot on SAS and EDP. The best performance for each column is
highlighted with bold font (respectively for SAS and EDP).

different tasks’ difficulty levels.

Self-correction for Reasoning Another promis-
ing avenue is the enhancement of LLM reasoning
abilities. A key strategy here is the implementa-
tion of iterative self-correction mechanisms. Pio-
neered by self-correction experiments in (Huang
et al., 2023; Stechly et al., 2023), allowing LLMs
to go through multiple rounds (e.g., ranging from 1
to 10) of self-correction, we can observe how the
refinement process affects the accuracy and sophis-
tication of their responses. This iterative process
mimics human problem-solving, where multiple
drafts and revisions lead to improved outcomes.

Multi-agent Systems for Reasoning Moreover,
exploring a multi-agent system (Wu et al., 2023;
Chan et al., 2023; Ge et al., 2023a,b) approach
could significantly advance LLMs’ reasoning abili-
ties. In such a system, different LLM agents, each
potentially specialized in certain types of reason-
ing or knowledge areas, collaborate to solve com-
plex problems. This collaborative approach could
mimic a team of experts, each contributing their
expertise, leading to more comprehensive and nu-
anced solutions. It also opens the door to under-
standing how LLMs can interact and augment each
other’s capabilities, which is crucial for their appli-
cation in real-world, multi-faceted problem-solving
scenarios.

These future research directions hold the poten-

tial not only to deepen our understanding of the
current capabilities and limitations of LLMs but
also to drive forward the development of more
sophisticated and reliable AI systems. By focus-
ing on robustness testing and enhancing reasoning
abilities through innovative methods like iterative
self-correction and multi-agent systems, we can
make significant strides towards realizing the full
potential of LLMs in complex decision-making and
problem-solving tasks.

4113



Failure Rate GPT 4 Turbo Claude 2 GPT 3.5 Turbo Claude Instant PaLM 2 Yi-34b Qwen-14b Mistral-7b Phi-2 MPT-30b Vicuna-13b Phi-1.5

Prompts on SAS

Zeroshot 0.000 0.260 0.000 0.400 0.110 0.330 0.200 0.070 0.150 1.000 0.480 1.000

Fewshot (-5) 0.000 0.060 0.020 0.000 0.000 0.940 0.900 0.480 0.920 0.160 0.640 0.860
Fewshot (-4) 0.000 0.033 0.000 0.000 0.017 0.917 0.817 0.617 0.867 0.117 0.633 0.900
Fewshot (-3) 0.000 0.057 0.057 0.014 0.000 0.871 0.886 0.471 0.886 0.043 0.600 0.914
Fewshot (-2) 0.000 0.075 0.025 0.000 0.013 0.888 0.913 0.538 0.900 0.063 0.613 0.888
Fewshot (-1) 0.000 0.044 0.022 0.000 0.011 0.911 0.856 0.622 0.878 0.078 0.589 0.933
Fewshot (0) 0.000 0.060 0.020 0.000 0.020 0.300 0.640 0.380 0.670 0.040 0.540 0.880
Fewshot (1) 0.000 0.040 0.020 0.010 0.010 0.290 0.500 0.420 0.700 0.060 0.520 0.830
Fewshot (2) 0.000 0.040 0.040 0.000 0.010 0.290 0.510 0.440 0.710 0.030 0.640 0.910
Fewshot (3) 0.000 0.020 0.050 0.010 0.030 0.280 0.450 0.460 0.670 0.030 0.650 0.830
Fewshot (4) 0.000 0.050 0.030 0.000 0.040 0.280 0.570 0.530 0.700 0.080 0.630 0.850
Fewshot (5) 0.000 0.050 0.040 0.000 0.020 0.680 0.520 0.440 0.740 0.050 0.650 0.900

Prompts on EDP

Zeroshot 0.000 0.000 0.000 0.000 0.440 0.000 0.000 0.040 0.000 0.960 0.160 0.950

Fewshot (-5) 0.000 0.000 0.000 0.140 0.160 0.000 0.320 0.140 0.540 0.880 0.460 0.640
Fewshot (-4) 0.000 0.000 0.000 0.100 0.150 0.000 0.233 0.050 0.400 0.817 0.383 0.483
Fewshot (-3) 0.000 0.043 0.000 0.057 0.100 0.000 0.100 0.029 0.300 0.871 0.329 0.400
Fewshot (-2) 0.000 0.038 0.000 0.025 0.075 0.000 0.038 0.025 0.263 0.700 0.238 0.350
Fewshot (-1) 0.000 0.011 0.000 0.056 0.033 0.000 0.022 0.000 0.167 0.667 0.200 0.256
Fewshot (0) 0.000 0.020 0.000 0.060 0.000 0.000 0.040 0.000 0.130 0.730 0.190 0.200
Fewshot (1) 0.000 0.000 0.000 0.070 0.000 0.000 0.010 0.000 0.100 0.800 0.190 0.210
Fewshot (2) 0.000 0.040 0.000 0.050 0.000 0.000 0.020 0.000 0.000 0.750 0.090 0.100
Fewshot (3) 0.000 0.020 0.000 0.060 0.040 0.000 0.000 0.000 0.010 0.710 0.040 0.100
Fewshot (4) 0.000 0.030 0.000 0.030 0.000 0.000 0.000 0.000 0.000 0.810 0.000 0.000
Fewshot (5) 0.000 0.050 0.000 0.030 0.000 0.000 0.000 0.000 0.000 0.820 0.030 0.000

Table 2: Weighted failure rate of Zero-shot and Few-shot on SAS and EDP.

4114


