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Abstract
Incremental models that process sentences one
token at a time will sometimes encounter points
where more than one interpretation is possible.
Causal models are forced to output one inter-
pretation and continue, whereas models that
can revise may edit their previous output as the
ambiguity is resolved. In this work, we look
at how restart-incremental Transformers build
and update internal states, in an effort to shed
light on what processes cause revisions not vi-
able in autoregressive models. We propose an
interpretable way to analyse the incremental
states, showing that their sequential structure
encodes information on the garden path effect
and its resolution. Our method brings insights
on various bidirectional encoders for contextu-
alised meaning representation and dependency
parsing, contributing to show their advantage
over causal models when it comes to revisions.1

1 Introduction

This is the honey... even if we stopped mid-sentence
here, you would likely have created a partial inter-
pretation of this prefix considering the honey as (the
beginning of) a noun phrase. It could have many
continuations, e.g. that skunks like, or produced by
stingless bees. But what if the next token is another
noun, as bee? A semantic parser would have to
revise its previous hypothesis to accommodate the
fact that honey has become a modifier of bee.

Bidirectional NLP models (i.e. those that encode
linguistic input using both its left and right context)
have transformed the field of computational linguis-
tics. But that has come at the cost of cognitive plau-
sibility in various aspects, in particular establish-
ing a disregard for language’s temporal structure.
While humans process language one increment at
a time (Marslen-Wilson, 1973; Altmann and Steed-
man, 1988; Levelt, 1993), BiLSTMs (Graves and

*Equal contribution.
1Our code is available at: https://github.com/

briemadu/restart-inc-ambiguities
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Figure 1: A prefix with multiple valid continuations.
A causal decoder is forced to output only one POS-
tag for the token can at this point and cannot change
it anymore, even if its internal state encodes the local
ambiguity. In contrast, a restart-incremental model can
perform revisions and would thus be able to recover if
the selected label turned out to be incorrect (as in left).

Schmidhuber, 2005) and Transformers (Vaswani
et al., 2017) have mechanisms that rely on access to
the complete input sequence, making them unsuit-
able as off-the-shelf components for incremental
applications. Although their unidirectional coun-
terparts, LSTMs and autoregressive (aka causal)
Transformers, are equipped with the possibility of
incremental decoding (making predictions relying
only on left context), their token representations
are static and thus not updated as incoming tokens
arrive (Eisape et al., 2022), because the underly-
ing encoding is unidirectional. This places them at
the disadvantage of not being able to revise, which
is a desired property to recover from mistakes or
local ambiguities (Schlangen and Skantze, 2011;
Madureira et al., 2023), as shown in Figure 1.

The restart incremental (RI) paradigm2

(Schlangen and Skantze, 2011) circumvents this
issue by adding an interface upon any model,
making it work incrementally by processing
prefixes from scratch whenever a new input
increment arrives (Beuck et al., 2011). Even
though it is computationally costly, RI has been
effectively studied in simultaneous MT (Arivazha-

2Or qualitative incrementality (Kilger and Finkler, 1995).
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gan et al., 2020a; Sen et al., 2023), dialogue
systems (Khouzaimi et al., 2014), disfluency
detection (Chen et al., 2022) and NLU pipelines
(Rafla and Kennington, 2019). Besides, it has the
advantage of incorporating recent increments into
past predictions, revising hypotheses when deemed
necessary.

A recent line of work has investigated restart-
incrementality for sequence labelling by profiling
bidirectional encoders (Madureira and Schlangen,
2020; Kahardipraja et al., 2021) and modelling and
evaluating revision policies (Kahardipraja et al.,
2023; Kaushal et al., 2023; Madureira et al., 2023).
Still, evaluations so far have been performed in a
black box fashion: Only the relations between in-
put tokens and output labels have been considered.
The output labels as top positions of the softmax op-
eration are only one product of many intermediate
computations that have not been examined.

Therefore, we still do not know why RI models
revise when they revise. What happens internally in
the model’s mechanisms to encode the need to edit
previous outputs? How can (static) causal represen-
tations be affected under RI bidirectionality? Can
we predict whether the model will recover from a
wrong interpretation? To answer such questions,
we need a shift to glass box interpretability meth-
ods that can shed light on the dynamics of updates
in the internal states which lead to output revisions.
Linguistically motivated analyses are also required
to examine the behaviour of bidirectional models
with respect to specific phenomena known to cause
reinterpretations, like garden path constructions.

Thus, our present contributions to make RI mod-
els more transparent and explainable are (a) a
formalisation of RI sequential processors as tran-
sition systems that create structured step-by-step
constructions not present in causal models; (b) a
proposal of interpretability methods for the inter-
nal mechanisms of RI models; and (c) an analysis
of the strategies employed by various models on
stimuli containing local ambiguities, for which a
well-defined motivation for reanalysis is known.

2 Related Work

Alternatives to Restart Incrementality Mono-
tonic decoding is advantageous to avoid output in-
stability but comes with the downside of not recov-
ering if there is a genuine reason to revise. Some
attempts to overcome this issue are adapting back-
propagation to update the internal representation of

the output (Qin et al., 2020) or gradient-based meth-
ods to update the cached internal representations
(Yoshida and Gimpel, 2021) without changing the
model’s parameters. Although this alleviates the
strict monotonicity, it requires adapting the model’s
implementation. RI, on the other hand, is available
to anyone in possession of any model, as it only
requires re-running it as is each time. Via recompu-
tations, bidirectional models innately incorporate
new increments into its states and revise if needed
(Kahardipraja et al., 2023). For causal models, re-
visions can occur if one resorts to beam search
methods (see e.g. Leblond et al. (2021)), traversing
the sequence of static states generated at each token
to make predictions at each time step. However,
this technique does not reside within the model’s
own mechanisms. Besides, if the correct sequence
falls out of the chosen beam size at some point,
the needed revision signal will be lost. Performing
the search requires enough memory and additional
processing time, which may become an issue for
longer sentences.

Benefits of Bidirectionality Several works have
studied the effects of bidirectionality in LMs.
Artetxe et al. (2022) show that bidirectional atten-
tion is beneficial for some tasks like infilling and
fine-tuning (but detrimental for others like next to-
ken prediction), while bidirectional context is ben-
eficial when used in conjunction with bidirectional
attention. Springer et al. (2024) propose using rep-
etitions to allow that early tokens incorporate later
tokens in their representations in LLMs. Dukić and
Šnajder (2024) also show advantages of applying
layer-wise removal of the causal mask during LLM
fine-tuning.

Interpretability Various methods have been pro-
posed to analyse how neural networks encode lin-
guistic information (Belinkov and Glass, 2019),
with Transformers front and centre, e.g. in how
information flows in its self-attention (Abnar and
Zuidema, 2020) and how its predictions are refined
or affected by previous tokens layer after layer
(Geva et al., 2022; Ferrando et al., 2023; Belrose
et al., 2023; Yom Din et al., 2024). Voluminous
BERTology works exist (Clark et al., 2019; Rogers
et al., 2020), in particular investigating its attention
mechanisms, what it means for an embedding to
be contextualised instead of static and what layers
encode what type of linguistic structure. Another
angle is to look at how linguistic information is dy-
namically learnt throughout the training regime of
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LMs (Saphra and Lopez, 2019; Chen et al., 2024).
The realm of incremental processing has also been
active. Ulmer et al. (2019) propose methods to in-
terpret how RNNs incrementally encode, integrate
and retain information. The incremental aptitude
of neural networks to encode syntactic information
has also been examined with the aid of psycholin-
guistic experimental methodologies (Futrell et al.,
2019; Wilcox et al., 2021).

Cognitive Motivation An evident test bed are
stimuli containing local ambiguities to evaluate
if models exhibit garden path effects. In psy-
cholinguistics, a traditional debate holds between
the early-commitment with eventual reanalysis
vs. beam search approaches, where multiple hy-
potheses are kept in parallel, known as two and
one-stage accounts, respectively (Van Schijndel
and Linzen, 2021). In this sense, the RI paradigm
can be viewed as a two-stage account performing
multiple forward-reanalyses (Frazier and Rayner,
1982).

Transformers and Ambiguities Recent findings
point to models encoding multiple hypotheses in
face of local ambiguities. Aina and Linzen (2021)
probe to what extent autoregressive LMs encode
multiple syntactic analyses by assessing the proba-
bility assigned to each interpretation as they gener-
ate continuations of a prefix, finding that multiple
interpretations are followed in parallel. Methods
relying on surprisal theory show that the magnitude
of the garden path effect in autoregressive and RNN
LMs underestimate human behaviour (Van Schijn-
del and Linzen, 2021; Arehalli et al., 2022). Other
works study BERT-based models using differences
in surprisal and attention between unambiguous
and locally ambiguous sentences (Lee et al., 2022;
Lee and Shin, 2023).

Other analyses Other glass box analyses have
been put forward. Irwin et al. (2023) use probing
tasks with garden paths to study how the BERT
family assigns semantic roles in QA tasks. Jurayj
et al. (2022) define vector similarity methods as an
improvement over surprisal to shed light on how
GPT-2 traverses garden paths, finding periods of
ambiguity in the hidden states that do not always
surface. Lindborg and Rabovsky (2021) study how
meaning is built word by word by GPT-2 looking
at the connection between the size of the updates in
its output activations and the N400 psychometric
in humans.

Speculating Continuations Through structural
probes, Hewitt and Manning (2019) show that it is
possible to recover syntax trees from ELMo and
BERT embeddings using linear transformations.
Eisape et al. (2022) extend the probe to incremen-
tal settings and conclude that the internal repre-
sentations of autoregressive LMs encode syntactic
uncertainty that can be explored by future tokens,
which would be a reason why such models per-
form well even without access to future words. It is
also possible that monotonic models work well due
to speculation about the future. Pal et al. (2023)
use GPT’s internal states to predict future tokens,
finding that some layers partially anticipate sub-
sequent tokens. But this speculation may lead to
wrong paths and is not always desirable. Kitaev
et al. (2022), for instance, explore non-speculative
incrementality to induce syntactic representations
free of speculation.

As we see, in previous studies, analyses hap-
pened either at autoregressive mode or with bidi-
rectional access to the whole sequence. Our focus
is to tailor interpretability methods for inspecting
the emergent properties of bidirectional models un-
der restart incrementality, beyond output labels.

3 Formalisation

A restart-incremental model is constructed upon
an underlying (non-incremental) model, making it
perform a sequence of re-computations as the input
is processed increment by increment (Schlangen
and Skantze, 2011; Beuck et al., 2011). We propose
a general formalisation of this procedure, detail its
structures for sequential processing and discuss
their interpretation for bidirectional models.

Restart-Incrementality Let M : w 7→ o be a
(non-incremental) model that maps an input w to
an output o by computing internal states s. Gener-
ally speaking, restart-incrementality is an interface
I around M , such that I(M) can be fed individual
tokens wi, which—until the interface is reset—are
taken as continuations of the sequence of tokens
fed so far. Hence, at time step t, I(M) will be
provided with the token wt. Internally, the inter-
face assembles the prefix w1, . . . , wt (denoted as
wt below), which it feeds to M , to compute the
corresponding sequences st = (st1, . . . , s

t
t) and

ot = (ot1, . . . , o
t
t).

3

3By growing incrementally, each prefix changes the con-
text of each prior input token, which is why the elements
of state and output sequences need to be indexed with the
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This way, from the perspective of M , it is always
a sequence of tokens that is being processed from
scratch, independently from any prior calls of M ,
while from the perspective of I(M), with each call
a single token is added. While for the further down-
stream processing, only the output revisions (that
is, the elements where ot+1 differs from ot) may
be of interest,4 for the purpose of our analysis the
sequences s1, s2, . . . , sn corresponding to each pre-
fix are kept in memory by I(M). I(M) can hence
be regarded as a transition system where states are
updated based on the action of recomputing with
the integration of a new input increment.

Triangular Structures To represent the mem-
ory built by I(M), we can extend the 2D chart of
outputs in Madureira et al. (2023) with a third di-
mension, filling it with state sequences as follows:

w1 s11
w1 w2 s21 s22

w1 w2 w3 s31 s32 s33

. . . . . . . . .
...

...
...

...
. . .

w1 w2 w3 . . . wn sn1 sn2 sn3 · · · snn

The right portion represents how the states
evolve from time step to time step for an input
sequence of n tokens. The last state sequence co-
incides with the sequence M creates when the full
input is available. Figure 2 illustrates three types
of resulting structures. Although they are actu-
ally multidimensional arrays, with some abuse of
nomenclature, we will reference them by the trian-
gular prisms they resemble. In the right triangle
in (a), each token is assigned one value per time
step. In the right triangular prism (b), each time
step produces a vector with a fixed number of di-
mensions for each token (for instance, a probability
distribution over labels or an embedding). In the
truncated triangular prism (c), at each time step, a
vector the same size of the current prefix is built
for each token (for example, attention scores or
dependency arcs over the input).

These structures allow us to inspect emergent
properties by comparing time steps. We can specif-
ically look at the dynamics of the sjk for a fixed k,

timestep in superscript; e.g. s41 is the internal representation
of token 1, at the time when the first 4 tokens were available.

4As in the IU model of Schlangen and Skantze (2011),
implemented in InproTK (Kennington et al., 2014).
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Figure 2: Triangular structures representing states built
step by step in restart-incremental sequential processing.

i.e. the states corresponding to the same input to-
ken, but over the re-computations at each time step.
Note that, when models are bidirectional, this is a
much richer process than what happens in autore-
gressive or monotonic decoders, where elements
in the main diagonal are computed once and kept
fixed for all subsequent steps. Here, all s can keep
changing as right context gets integrated.5

4 Method

We now introduce our method and motivate its in-
terpretations. Once we have extracted states as a
RI model processes a sentence, we can analyse the
dynamics of this process, i.e. how do these vectors
evolve over time. The 3D structures (b) and (c)
from Figure 2 can be converted into 2D as in (a)
if we apply a metric over the features dimension,
summarising it into one value (e.g. Shannon’s en-
tropy or divergence over distributions and similar-
ity or distance metrics for embeddings). With such
scores, we can then examine whether the behaviour
of their variation aligns with output edits.

If we look at columns of the triangular structures,
we can analyse a sequence of states assigned to one
token step by step. If we consider the rows, we
see the effect that the recently added token had on
the current prefix. This analysis can in principle be
applied to any sentence. However, to shed light on
how restart-incremental models edit the output and
how they engage in reinterpretation, it is useful to
analyse what happens when the linguistic input is
known to contain local ambiguities. That way, we
have a genuine motivation to expect revisions and
can study how states change at key positions.

Let vijk be the value assigned for feature k of
token j at time step i in a sequence with n tokens.

5The main diagonal contains another form of causality:
Although its elements also see no right context, they are com-
puted considering bidirectional representations of the left to-
kens available. In causal models, all states are unidirectional.
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We can compare the differences between vijk and
four relevant positions with clear interpretations:

• the value vjjk at the main diagonal, i.e. the
initial interpretation of token j when it was
first observed without any right context

• the value v
(i−1)
jk at the previous time step, i.e.

the change in the interpretation of token j
caused by the most recently added token wi

• the value vnjk at the last time step, i.e. the final
(gold standard) interpretation of token j when
it is observed with the whole context

• the value v
(i+d)
jk , where i + d is the position

when the disambiguating token occurs

A classic approach in studies using surprisal or
reading time as a measure of processing difficulty is
to consider the difference of the measure in the dis-
ambiguating region of an unambiguous sentence
and a locally ambiguous sentence as the garden
path effect (Van Schijndel and Linzen, 2021; Are-
halli et al., 2022; Huang et al., 2023). Drawing a
parallel with that approach, we compute triangular
structures for the stimulus and its baseline. After
removing the extra tokens, we have two structures
with the same dimensions, as shown in Figure 3.
To give an example, such a pairing would be “The
professor noticed the grant gained more attention”
and “The professor noticed (that) the grant gained
more attention”, with the token in parentheses re-
moved after computing the states to make the
structures directly comparable.

5 Analysis

Overall, we are interested in how future tokens
affect states of past tokens and how such changes
surface as output revisions. Our main hypothesis
is that RI models are led down the garden path
when they first encounter a local ambiguity without
further right context but, as the disambiguating
region is integrated, states are updated to absorb
the new interpretation. We provide insights into
updates that may be allowing them to recover.

Scope We apply our method to two RI scenar-
ios. Firstly, we look at the construction of meaning
representations in bidirectional LMs (§5.2). We
assume that the representations of a token encode
its meaning in the available context, tracking how

temporarily 
ambiguous

unambiguous unambiguous without 
added token

Figure 3: We realign tokens, after computing the states,
by removing the states of additional token(s) from the
triangular structure. That way we can directly compare
the states of a locally ambiguous sentence with its un-
ambiguous counterpart.

it evolves step by step and across all the layers. If
there is a shift in the meaning of a token, we expect
to observe variation over a control reference in the
corresponding states. The second scenario is de-
pendency parsing as sequence labelling with arcs
and relations (§5.3) (Spoustová and Spousta, 2010;
Strzyz et al., 2019). In this case, we have the output
labels as an external signal of the concrete deci-
sions made by the model. We investigate whether
changes in divergence of the attention scores and of
the distribution over labels or arcs align with output
edits and with the resolution of the ambiguity.

Material We study three kinds of local ambi-
guities in English: 24 instances of Direct Ob-
ject/Sentential Complement (NP/S) and of Main
Verb/Reduced Relative ambiguity (MVRR) garden
paths from Huang et al. (2023) and 281 instances
of noun-noun compounds (NNC) from Garcia et al.
(2021) with a fixed context. Examples of each type
are shown in Figure 4. NNC has a very localised
need for revision, where the immediate next token
changes the interpretation of the preceding noun.
In NP/S and MVRR, the disambiguating token ap-
pears after a NP, with a more broad syntactic and
semantic shift of all the prefix. Please see the origi-
nal publications for detailed motivations.

NNC (s)

NP/S (s)

MVRR (s)

This is the public service ,

The professor noticed the grant gained more attention…

The dancer assigned the ballet achieved incredible success…

         (b) This is the public ,

The professor noticed that the grant gained more attention…         (b)

The dancer who was assigned the ballet achieved incredible…         (b)

Figure 4: The three types of stimuli (s) and their corre-
sponding reference baselines (b) used in our analyses.
The words in lilac/bold are locally ambiguous until the
underlined/yellow token is observed.
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5.1 General Effects of Right Context
We start by showing, in Table 1, that even in the
baseline stimuli (where no major revisions are ex-
pected), a token’s state keeps being updated as
more right tokens are integrated. For meaning, we
compute the cosine distance between a state and its
previous version at the last layer of BERT, to iso-
late how the latest token wt+i affects st+i−1

t . For
dependency parsing, we measure the variation of
entropy of the arc distribution also with respect to
its previous state for the biaffine parser (Dozat and
Manning, 2017) with RoBERTa. On average, there
is a considerable effect when the immediately next
token is added, which decreases gradually as more
right context is observed in almost all cases.

t+1 t+2 t+3 t+4 t+5 t+6 t+7

Meaning
MVRR 0.38 0.09 0.05 0.04 0.04 0.03 0.03
NPS 0.39 0.10 0.07 0.05 0.03 0.03 0.02
NNC 0.34 0.12 0.15 0.13 - - -

DP
MVRR 0.11 0.02 0.01 0.02 0.01 0.00 0.00
NPS 0.19 0.06 0.05 0.01 0.00 0.00 0.00
NNC 0.14 0.21 0.29 0.08 - - -

Table 1: Average effect of token wt+i (each column) on
previous states st over all baseline stimuli (i.e. here, the
effect is measured without the influence of the garden
path structure).

5.2 Incremental Construction of Meaning
For this part, we extract the hidden states for all
layers of pretrained bidirectional transformer LMs.
We show results for BERT (Devlin et al., 2019) here
and RoBERTa (Liu et al., 2019b) in Appendix B.
We also study static embeddings in causal models,
namely GPT-2 (Radford et al., 2019) here and OPT
(Zhang et al., 2022) in Appendix B. We measure
how much states are updated, by computing their
cosine distance to a reference time step.

NNC In Figure 5, we zoom in at what happens
to the prefix when the second noun is added (the
fifth time step) by computing the cosine distance
between states s4i and s5i , for i = 1, . . . , 4. We
subtract from it a baseline case where a comma
is observed instead. This controls for keeping the
meaning of the first noun as a NP head versus it be-
coming a modifier of the second noun. The results
show that the second noun affects the meaning of
all previous tokens, more than the baseline, and the
effect is even larger for the first noun, in all layers

This is the noun1

  NNC

0.00

0.05

0.10

0.15

co
sin

e 
di

st
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0
2
4
6
8
10
12

Figure 5: BERT’s mean effect of the second noun on the
tokens in the prefix. Absolute difference over baseline.

but especially in middle ones. In the last layer, the
mean cosine distance between the initial state of
the first noun and its updated version when the sec-
ond noun is observed is almost 0.41, considerably
above the corresponding 0.34 in Table 1.

NP/S In these stimuli, humans can first interpret
the NP as direct object, but only until disambiguat-
ing region is observed, when it becomes a sentential
complement. The final meaning of the stimulus is
the same as the baseline’s. Thus here we measure
how distant each sji is from its target interpretation
sNi at the final time step N . Then we compute
the absolute difference between the distances for
the stimulus and the baseline. In Figure 6 (left),
we show the effect around the disambiguating to-
ken for the layer where it is most prominent. The
representation of the first verb diverges from its
final meaning as the NP is processed. After the
disambiguating region is integrated, this difference
almost disappears. This suggests that the model
first builds an initial interpretation for the stimulus
but, one token after the second verb, it turns to its
final meaning, as in the unambiguous case. BERT
seems to load the semantics of the argument on the
first verb, so the noun does not encode so much
what its role is in the two variations of the sentence.
We also observe this in almost all layers, especially
the middle to upper ones (see Appendix B).

no
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 1 de
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rb

 2 ... ... ... ... ...
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noun
verb 1
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verb 2
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verb 2
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Figure 6: Average absolute difference between stimulus
and baseline in distance of each representation to its
final state at layer 9 of BERT.
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MVRR For stimuli where the first verb becomes
a reduced relative, we perform the same type of
analysis as in NP/S and observe similar results. In
Figure 6 (right), a similar pattern occurs, but the
divergence starts earlier, at the initial step where the
first verb is observed. Again, this is evidence that
the initial representation of the verb did not fully
encode what would be the final reduced relative
form and is revised in the face of upcoming tokens.

The mean variation on the first verb once the sec-
ond disambiguating token is observed is 0.15 and
0.14 for NP/S and MVRR, well above the average
variation at t+ 4 in Table 1. The conclusion so far
is that future tokens do affect the meaning repre-
sentation of previous tokens and more considerably
so when the model has a linguistic motivation to
revise its states.

Causal Models We now look at what happens
with static embeddings by directly computing the
distance from the states in the ambiguous stimulus
to the corresponding states in the baseline, which
disambiguates the meaning in advance. We sub-
tract from that the distance of a similar pair of
sentences with an unambiguous first verb (given
for MVRR and said for NP/S, see Appendix B for
the detailed formulation) to account for the effect
of one sentence having more tokens than the other.
The remaining absolute difference is shown in Fig-
ure 7. The intermediate layers encode a difference,
which should be due to non-commitment in the
ambiguous stimulus to what will turn out to be the
“true” analysis. That can be interpreted as how the
model would revise, if it could. In OPT (Appendix
B), the difference remains and can affect its predic-
tions. For GPT-2’s last layer, however, the distance
is close to 0 in both pairs, so that the actual states
used for downstream decisions are practically the
same in the stimulus and the baseline, despite their
potentially different unfolding meanings.

5.3 Incremental Dependency Parsing

Aside from being a fundamental aspect of human
language processing, incremental parsing is also
useful in applications such as simultaneous trans-
lation (Ryu et al., 2006) and disfluency detection
(Honnibal and Johnson, 2014). We investigate two
dependency parsers in a RI setting: 1) the biaffine
parser (Dozat and Manning, 2017) trained on top
of RoBERTa and fine-tuned on PTB (Marcus et al.,
1993) and 2) the DiaParser (Attardi et al., 2021),
which uses ELECTRA (Clark et al., 2020) and is
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Figure 7: Distance between the causal embeddings of
the stimulus and the baseline, after taking the absolute
difference of the expected variation by a counterpart
pair with an unambiguous verb, for all layers of GPT-2.

fine-tuned on PTB and EWT (Silveira et al., 2014).
Here we only show findings for the biaffine parser
as we find similar results to occur in DiaParser. See
Appendix C for a full comparison.

Our focus is on the self-attention mechanism of
the parsers, from which the dependency arcs and
labels are directly derived. Both parsers handle
parsing and labelling decisions sequentially, select-
ing the labels for each arc only after ensuring the
well-formedness of the tree via the MST algorithm
(Chu and Liu, 1965; Edmonds, 1967). As such, an
independent analysis of the dependency labels is
not possible, as they depend on the predicted arcs,
which in turn may also change from time to time as
more tokens are observed. Hence we analyse both
dependency arcs and labels in a joint fashion. We
measure how attention distributions evolve across
time steps, by computing the Jensen-Shannon di-
vergence (JSD) with respect to the last, previous,
or first (the main diagonal) time step as a reference.
We also consider how the arc may change due to
future tokens. See Appendix C for full details.

NNC We isolate the effect of the local ambigu-
ity by computing the absolute difference of JSD
between the stimulus and the baseline in a similar
manner to (§5.2). Using the first time step as a ref-
erence, we glean how far the label distribution of
the first noun shifts from its origin when it acts as a
modifier for the second noun as opposed to encoun-
tering a comma, where it retains its interpretation
as the NP head. We also compute the difference
with respect to the previous step to investigate how
the distribution shift causes the dependency struc-
ture to change through time. Both are shown in
Figure 8. On the left, we see that the second noun
alters the original distribution of the first noun more
than the baseline, as the head-dependent relation
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of the first noun changes. To the right, we find that
the second noun affects not only the first noun, but
also the distributions of all previous tokens as it
replaces the first noun as the argument of is. This
is not present on the left figure.
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Figure 8: Average absolute difference of JSD between
stimulus and baseline on NNC. Left: first step reference.
Right: previous step reference.

NP/S As the stimulus in the NP/S ambiguity has
the same final interpretation as their unambiguous
counterpart, we take the final step as a reference
and compute the absolute difference of JSD be-
tween them, factoring out the complementiser that.
We find that the label distribution of the sentential
complement diverges at the beginning between the
stimuli and the baseline when compared to the fi-
nal distribution (Figure 9, left). However, there is
almost no difference between them after entering
the disambiguating region, similar to (§5.2).
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Figure 9: Average absolute difference of JSD between
stimulus and baseline on NP/S (left, final step reference)
& MVRR (right, previous step reference).

MVRR For MVRR, we are interested in how
the dynamics of the parse evolve throughout the
time axis. We subtract the JSD of the stimulus
calculated wrt. the previous step from the baseline
chart. In Figure 9 (right), we notice peaks in the
difference for the first noun when the first and sec-
ond verbs are encountered. The first one occurs
as the first verb can initially be parsed either as
the main verb or the verb in the reduced relative

clause, making the first noun be interpreted differ-
ently. However, this is reconciled in the second
peak when the disambiguating region is incorpo-
rated to the stimulus’ interpretation. We observe an
effect similar to NP/S afterwards, as the ambiguity
is resolved and the JSD difference vanishes.

Alignment with Edits We examine whether
changes in label distributions due to future tokens
also coincide with changes in arcs or labels. For
instance, this happens in NNC when the first noun
is revised from the argument of the verb to be the
modifier of the second noun. To do this, we use the
JSD chart with the previous step as a reference and
assume that changes or edits happens if its value
is bigger than a threshold τ = 0.45 ln(2), where
ln(2) is the divergence upper bound. Then we com-
pute the Matthews correlation coefficient (MCC;
Matthews, 1975) between the predictions and the
edits (Table 2). In general, we find that distribu-
tion shifts are positively correlated to edits, with a
stronger magnitude for dependency arcs compared
to labels. This suggests that shifts in distributions
encode information that surface as revisions.

NNC NP/S MVRR

Arc S B S B S B

Biaffine 0.99 0.96 0.95 0.92 0.86 0.93
DiaParser (EWT) 0.97 1.00 0.95 0.92 0.80 0.94
DiaParser (PTB) 0.81 0.78 0.91 0.92 0.79 0.96

Label S B S B S B

Biaffine 0.55 0.77 0.86 0.77 0.71 0.84
DiaParser (EWT) 0.37 0.53 0.78 0.70 0.61 0.75
DiaParser (PTB) 0.23 0.52 0.78 0.72 0.64 0.86

Table 2: MCC between distribution shifts and edits for
dependency arcs and labels. S: stimulus & B: baseline.

6 Discussion & Conclusion

Our method has shown that a RI interface applied
to bidirectional encoders yields models that build
sequences of states with a rich dynamics of updates
of past representations. This grants these models
with revisability, a property that is desirable in in-
cremental systems (Schlangen and Skantze, 2011)
but not present in unidirectional models. While
causal models must create a representation based
only on left context and stick to their first com-
mitment, RI bidirectional models can profit from
incorporating right context and revisit its previous
decisions. Our analysis has empirically revealed

4729



that the RI models we studied seem to run into the
downsides of parsing, i.e. they are led down the gar-
den path, but their initial internal representations
are updated once the disambiguating region is pro-
cessed, more than in the baselines. In other words,
it seems that they make early commitments but
then revise accordingly, as in two-stage approaches
to language processing.

In the analysis of contextualised embeddings,
the effect is less pronounced on lower layers, but
more prominent from middle to upper layers. This
relates to the findings of Tenney et al. (2019) who
suggest that upper layers (that are more semantic)
can be used to disambiguate decisions in lower
layers (that are more syntactic). This is also in line
with works showing that middle to upper layers are
most informative for some tasks (Liu et al., 2019a).

Treating the triangular structures as internal
states of a transition system constructed from graph-
based dependency parsers allows us to uncover how
relations between tokens change as an effect of fu-
ture tokens. By using the divergence computed
with various reference time steps as a measure, we
show that attention distributions may evolve differ-
ently throughout the course of processing and how
they can become similar again through the disam-
biguation process. The shift in distributions also
indicates edits in dependency arcs and labels, and
more importantly, enlightens us more about why
RI models revise when they do.

While decoder-only LLMs have grown in popu-
larity the past few years, we still see room for im-
provement, particularly regarding how their static
representations can be updated (like RI models) as
more tokens are processed. This can benefit tasks
that require non-monotonic reasoning (Kraus et al.,
1990), regardless of whether it involves NLG or
NLU. Natural language is also inherently ambigu-
ous, although its spectrum of ambiguity depends on
its use (Schlangen, 2023) which necessitates this
processing mode. Moreover, modern LLMs still
struggle with this aspect of language understanding
(Liu et al., 2023).

Applying a RI interface may result in a non-
monotonic output. However, there are certain cases
where monotonicity is preferred. For instance, to
reduce flicker in simultaneous machine translation
models (Arivazhagan et al., 2020a,b) or when a sta-
ble and immediate output is always needed for fur-
ther processing in an incremental pipeline. In both
cases, the lookahead strategy (Beuck et al., 2011)
can be used for disambiguation by considering to-

kens within the lookahead window. Alternative
methods like beam search can also be employed,
depending on how various properties such as mono-
tonicity, timeliness, and decisiveness (Köhn, 2018;
Beuck et al., 2011) are prioritised in the use case.

One of Transformers’ properties that does not
align with human language processing, is how
words are processed in parallel, even in autore-
gressive settings. Ideally, models of human lan-
guage should also face similar input and linguistic
challenges as humans do (Blank, 2023). We show
that when facing such challenge in the form of
garden-path sentences, Transformers with a RI in-
terface still exhibit the ability to disambiguate using
forward-reanalysis (Frazier and Rayner, 1982).

Future research can explore how the restart activ-
ity can serve as an indicator of updates that should
not be immediately integrated into the output, or
model a controller that is able to detect variations
that lead to revisions and decide whether to delay
outputs until a level of certainty has been reached.
Additionally, it would be interesting to see how a RI
interface can be used to investigate the capability
of NLP models to deal with linguistic ambiguities
in other languages than English, e.g. the interpre-
tation of relative clauses in Dutch (Wijnholds and
Moortgat, 2023).

Limitations

Feeding prefixes to models pretrained on full sen-
tences can lead to out-of-distribution issues. The
results in Madureira and Schlangen (2020) showed
that bidirectional models can exhibit a high rela-
tive correctness, which means that models often
output the same labels for prefixes as they do for
the full sentence, although BERT suffers more than
others. This is exactly why it is important to un-
derstand how much they rely on the right context
and study how and when revisions happen in this
setting, with stimuli that is expected to induce a
revision for human language processing.

We have only considered short-range temporary
ambiguities, i.e. those that are resolved up to 3 or
4 tokens into the future. It would be interesting
to study whether meaningful revisions also occur
when the distance between the temporarily ambigu-
ous token and the disambiguating region is longer.

We observed that the standard deviation of the
means we report can be large at some cases. That
means that, for some sentences, the effect is less
present and in others where it is more extreme.
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This may relate to what is the most likely early
commitment given the lexical information of the
ambiguous tokens. Further investigation could try
to consider that. Larger samples would also be
necessary to have better mean and std. estimators.
Related to that, we did not take into account the fre-
quency of the vocabulary choices in these datasets.

The garden path effects we found may not be so
salient for all types of local ambiguities. Our initial
analysis on the verb-noun ambiguity using the stim-
uli by Aina and Linzen (2021) (like the example
in Figure 1) led to inconclusive results. For such
cases, maybe other metrics are required, especially
because it is harder to isolate the effect of the ambi-
guity from the effect that the immediate next token
has on its neighbour. Further investigation can also
be done with ungrammatical sentences and other
types of garden paths in the SAP benchmark.

As we discuss in the Appendix, some stimuli
were excluded from the analysis of meaning due to
rare tokens that require subtokenisation and cause
misalignment in the incremental structures.

For the analysis of causal embeddings, we used
different architectures. Ideally, we should also com-
pare a fixed architecture, trained with all the same
parameters and data, but once with causal masking
and once with bidirectional access. That way we
could directly compare how the RI bidirectional
and causal embeddings differ. Besides, cosine has
some known drawbacks as a measure of similarity
of embeddings, because it is sensitive to training
data frequency and can underestimate similarity
in comparison to human judgements (Zhou et al.,
2022). We explored other metrics, but opted to
report cosine similarity due to its intuitive inter-
pretation and bounds. Future studies could further
explore other metrics. See Jurayj et al. (2022) for a
comparison.

We do not perform layer-level analysis for depen-
dency parsing as both parsers use scalar mix of hid-
den representations from pre-trained LMs. While
we only use graph-based dependency parsers, it
would be interesting to apply our methods to
transition-based parsers, as they works from left
to right and are traditionally associated with the
notion of incrementality (Nivre, 2008). In our pre-
liminary analysis, we also compare Shannon’s en-
tropy on attention distributions for dependency arcs.
However, the results are inconclusive.
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A Appendix

In this section, we provide some additional details
and results.

Classic garden paths The NP/S garden path
was originally discussed by Frazier (1979) and
the MVRR by Bever (1970). We did not use the
other forms of garden path in the SAP benchmark
(Huang et al., 2023) because the type of revision
would be harder to isolate or, in the case of NP/Z
and subject-verb agreement mismatch, the stimu-
lus is not a completely well-formed construction in
written text.

NNC The template we selected for the stimuli is
This is a noun1 noun2, and for the baseline
reference is This is a noun1, . This was chosen
to be a not very informative left context in order to
focus on the effect of the NP construction.

Licenses The NNC stimuli6 are released without
a license. The NP/S and MVRR stimuli7 and the
repository as a whole is under the MIT license.
BERT and ELECTRA are released under Apache
2.0. RoBERTa and GPT-2 are under MIT. OPT is
under a custom OPT-175B license agreement. The
dependency parsing libraries we used are under the
MIT license.

B Details: Incremental Construction of
Meaning

We use the pretrained model checkpoints and cor-
responding tokenizers available on HuggingFace:
bert-base-uncased,8 roberta-base,9 gpt2,10

and facebook/opt-125m.11

We did not include the stimuli for which tokens
were split into subtokens, because that creates mis-
alignment in the triangular structures and thus re-
quires workarounds. Because of that, the samples
differed slightly for each model. This is not a prob-
lem in our analysis because we are not ranking the
performance of the models; what matters is the
intrinsic behaviour of each model separately. The
number of excluded instances is shown in Table 3.

Cosine distance was chosen because that should
capture meaning variations in the embedding space.

6https://github.com/marcospln/noun_compound_
senses

7https://github.com/caplabnyu/sapbenchmark
8https://huggingface.co/bert-base-uncased
9https://huggingface.co/roberta-base

10https://huggingface.co/gpt2
11https://huggingface.co/facebook/opt-125m

model source n excluded

BERT NP/S 5
BERT MVRR 4
BERT NNC 14
RoBERTa NP/S 1
RoBERTa MVRR 0
RoBERTa NNC 23
opt NP/S 1
opt MVRR 0
opt NNC 23
gpt2 NP/S 1
gpt2 MVRR 0
gpt2 NNC 23

Table 3: Number of excluded instances for each model
and type of stimuli due to subtokenisation.

It is also possible to use other distance met-
rics like Manhattan or Euclidean distance. We
used the paired_distances method from the
sklearn.metrics.pairwise package12 to com-
pute the cosine distance.

B.1 Computations

We now describe in greater detail the computation
steps we took to derive the plots the results they
illustrate.

Each sentence was fed to each model prefix by
prefix and after each step we saved the hidden rep-
resentations. We stored the representations of all
layers using 4D arrays with dimensions number
of layers, sequence length (time step), sequence
length (token position), embedding dimension. All
models had an initial embedding layer and 12 en-
coding layers.

NNC We extracted the states for all stimuli and
their corresponding baseline. Then, we computed
the cosine distance of each state to its own version
in the preceding time step. For the main diagonal
(i.e. the first time a token’s state is constructed),
we set this value to be 0 for a better visualisation.
This resulted in a 2D lower diagonal matrix where
each cell contains one value. Let cs and cb be these
charts for the stimulus and its baseline, respectively.
cs has one row and one column more than cb, since
the baseline does not contain the second noun and is
thus one token shorter. We create c′s by deleting the
last row and last column in cs (which correspond to
the comma) and then compute the absolute differ-
ence d = |c′s − cb|. We then average the numbers

12https://scikit-learn.org/stable/modules/
generated/sklearn.metrics.pairwise.paired_
distances.html#sklearn.metrics.pairwise.paired_
distances
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in d over all stimulus+baseline pairs for each layer.

NP/S and MVRR We extracted the states for all
stimuli and their corresponding baseline. Then, we
computed the cosine distance of each state to its
own version in the last time step, which represents
its meaning given the full sentence as context. This
resulted in a 2D lower diagonal matrix where each
cell contains one value. Let cs and cb be these
charts for the stimulus and its baseline, respectively.
Here, cb has more rows/columns due to the added
tokens that disambiguate the verb (i.e. that or who
was). We create c′b by deleting the extra row(s) and
column(s) in cb (which correspond to the added
tokens) and then compute the absolute difference
d = |cs − c′b|. We then average the numbers in
d over all stimulus+baseline pairs for each layer.
Some sentences start with a det adj noun and
other with det noun. For the plots, we remove
the initial rows/columns and begin the chart at the
aligned noun.

Causal For the analysis of causal embeddings,
we use four variations of each sentence: (a) the
stimulus with a temporary ambiguity; (b) the base-
line, which disambiguates the role of the verb and
NP in advance; (c) the stimulus with the first verb
replaced with an unambiguous verb; (d) the base-
line with the first verb replaced by the same unam-
biguous verb. For NP/S, we use the verb said and
for MVRR, given. For example, for NP/S:

(a) The new doctor demonstrated the operation
appeared increasingly likely to succeed.

(b) The new doctor demonstrated that the opera-
tion appeared increasingly likely to succeed.

(c) The new doctor said the operation appeared
increasingly likely to succeed.

(d) The new doctor said that the operation ap-
peared increasingly likely to succeed.

and for MVRR:

(a) The professor awarded the grant gained more
attention from marine biologists.

(b) The professor who was awarded the grant
gained more attention from marine biologists.

(c) The professor given the grant gained more
attention from marine biologists.

(d) The professor who was given the grant gained
more attention from marine biologists.

We first compute the distance of the states of
the tokens in (a) to their corresponding states in
(b) (i.e. the states of the added tokens are ignored).
Let us call the resulting vector dab. To account for
the expected variation due to the different number
of tokens, we do the same for (c) and (d), to be
used as a reference, and get dcd. Then, we take the
absolute difference |dab − dcd| and average values
over all stimuli.

To conclude, we detail the procedure to compute
the numbers in Table 1. We first create triangular
structures for all baseline sentences by computing
the cosine distance of each state to its own version
in the immediately preceding time step. The cell
at row i and column j in the right triangle thus
contain a value representing how much token wi

has affected the state sj of token wj , with i > j.
We then average the distances for all tokens that
have a corresponding state 1, 2, . . . , 7 steps into the
future. In practice, this means collecting values at
each sub-diagonal −1,−2, . . . ,−7 and computing
the average over baseline stimuli.

B.2 Additional Results

In BERT, for layers 1 to 10, the maximum average
change occurs at the first noun when the second
noun is observed. For the upper layers, it is the
second most, but still with a mean distance of al-
most 0.41, considerably above the corresponding
0.34 in Table 1. In the full overview in Figure 17
we see that all previous tokens are affected by all
right tokens, especially during the construction of
the NP. In Figure 10, we see that RoBERTa has
a similar effect on the NNC stimuli as BERT: the
second noun influences the whole prefix, especially
the first noun. Here, however, the magnitude of the
effect is smaller, roughly half that of BERT. Be-
sides, the upper layers have effects as high as the
middle layers, different from BERT, where two of
the middle layers stand out. Figure 20 shows again
that the magnitude of the state distances is smaller
for RoBERTa. Up to layer 7, the effect of the sec-
ond noun on the first one is the largest. However, in
the upper layers, this no longer holds: The largest
variation occurs for this when is is observed.

Figures 18 and 19 show the full results of the
NP/S and MVRR cases for BERT. For RoBERTa,
the patterns of behaviour are similar: The repre-
sentation of the first verb differs from what will
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be the final one, until the second verb, and one to-
ken after that, are integrated. Again, while BERT
has an effect of around 0.15, RoBERTa’s effect is
around 0.05, as illustrated in Figure 21 and 22. In
both types of ambiguity, the effect becomes smaller
in the last layer for RoBERTa, while it persists in
BERT. More investigation is needed to shed light
on what conceptual differences between the models
cause the different behaviours.

Figure 11 shows the analysis of the causal em-
beddings for OPT. Like GPT-2, it creates dissimilar
representations for the ambiguous and the unam-
biguous prefixes, but here the effect last until the
final layer, i.e. it will influence the subsequent
predictions. Figures 12 and 13 show directly the
distance between stimulus and baseline, without
subtracting the counterpart pair. This is to show
that, indeed, for GPT-2, the representations of the
last layer are very similar, despite the disambigua-
tion in advance.
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Figure 10: NNC. Average (absolute) effect over a base-
line of the second noun on the tokens in the prefix for
RoBERTa.
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Figure 11: Distance between the causal embeddings
of the stimulus and the baseline, after subtracting the
expected variation by a counterpart pair with an unam-
biguous verb, for all layers of OPT.

C Details: Incremental Dependency
Parsing

We use the biaffine parser implemented in SuPar
(https://github.com/yzhangcs/parser) with
embeddings from RoBERTa large. For the Di-
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Figure 12: Distance between the causal embeddings of
the stimulus and the baseline, for all layers of OPT.
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Figure 13: Distance between the causal embeddings of
the stimulus and the baseline, for all layers of GPT-2.

aParser, we follow the original implementation
(https://github.com/Unipisa/diaparser) us-
ing ELECTRA base. Both parsers use stanza (Qi
et al., 2020) as tokenizers.

C.1 Computation
Our method is inspired by the approach of Hrycyk
et al. (2021). Let us consider head(i)t as the
head of token i predicted at time step t. When
head(i)t = head(i)ref , we can directly compare
the label attention distribution between the cur-
rent time step t against the reference time step
ref ∈ {0, t − 1, T}. However when head(i)t ̸=
head(i)ref , either heads may or may not be ob-
served yet. In the case where the head is already
observed, we use the label distribution from the
self-attention matrix at time step t or ref for com-
parison depending whether t < ref , otherwise we
assume a uniform distribution. To be more precise,
let assume that in an incremental scenario, the atten-
tion distribution for dependency labels at time step
n is also available at time step m where m > n.
We then compute the Jensen-Shannon divergence
as the following when head(i)n ̸= head(i)m:

JSD(p(y|arc(i, j)n)||p(y|arc(i, j)m)) (1)

JSD(p(y|arc(i, k)n)||p(y|arc(i, k)m)) (2)

where arc(i, j) is the arc between token i and
j, and p(y|arc(i, ·)) is obtained from the self-
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attention matrix if the token is already observed
and uniform distribution otherwise. The distance
between the label attention distribution at time step
n and m is then defined as the average of (1) and
(2).

C.2 Additional Results
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Figure 14: Average absolute difference of JSD between
stimulus and baseline on NP/S. Left: last step as refer-
ence. Right: previous step as reference. We also include
the results for biaffine parser for the ease of comparison.

NP/S For the last time step as a reference, we
see that the complement’s distribution is closer to
the final for the baseline compared to the stimulus,
showing that the complementiser helps in process-
ing the temporary ambiguity. The overview is de-
picted in Figure 24. We also measure how the label
distribution changes as more token is observed by
taking the absolute difference of JSD between the
stimulus and the baseline wrt. the previous time
step. In Figure 14 (right), we observe a noticeable

difference in the divergence of the complement
when the disambiguation token (the second verb)
is encountered. After that point, the gap diminishes
rapidly.
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Figure 15: Average absolute difference of JSD between
stimulus and baseline on MVRR. Left: last step as refer-
ence. Right: previous step as reference. We also include
the results for biaffine parser for the ease of comparison.

MVRR We compute the absolute difference of
JSD wrt. the last step as the stimulus and the base-
line have the same final interpretation. In Figure
15 (left), we observe that the first noun and the
first verb are processed differently in both cases.
This is highly likely due to the fact that the first
verb can be interpreted as the main verb or as a
reduced relative, which also affects how the first
noun is understood. We see that both the stimulus
and the baseline converge to the same interpretation
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after the disambiguation token (the second verb) is
observed.

Alignment In addition to MCC, we also compute
the average precision (AP) score for both the stim-
ulus and the baseline. We do this by treating edits
as the ground truth and the JSD wrt. previous step
as the prediction to see if edits can be predicted
just from JSD alone (Table 4). We observe that
the AP for dependency arcs are high in general,
while it is lower for the labels. We also see that the
average edit ratio is low for all stimuli except NNC,
as shown in Table 5.

NNC NP/S MVRR

Arc S B S B S B

Biaffine 0.99 0.99 0.92 0.88 0.88 0.89
DiaParser (EWT) 0.99 1.00 0.98 0.96 0.91 0.97
DiaParser (PTB) 0.99 0.99 0.97 0.98 0.92 0.99

Label S B S B S B

Biaffine 0.41 0.90 0.92 0.78 0.80 0.85
DiaParser (EWT) 0.30 0.48 0.86 0.76 0.75 0.87
DiaParser (PTB) 0.55 0.80 0.89 0.74 0.78 0.91

Table 4: Average Precision between JSD wrt. previous
time step and edits for dependency arcs and labels. S:
stimulus & B: baseline.

NNC NP/S MVRR

Arc S B S B S B

Biaffine 0.53 0.41 0.11 0.11 0.12 0.10
DiaParser (EWT) 0.67 0.60 0.13 0.13 0.15 0.11
DiaParser (PTB) 0.53 0.40 0.11 0.12 0.12 0.09

Label S B S B S B

Biaffine 0.27 0.31 0.09 0.08 0.09 0.09
DiaParser (EWT) 0.27 0.30 0.09 0.08 0.11 0.08
DiaParser (PTB) 0.27 0.30 0.09 0.08 0.10 0.08

Table 5: Average edit ratio for dependency arcs and
labels. S: stimulus & B: baseline.
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Figure 16: Average absolute difference of JSD between
stimulus and baseline on NNC. Left: first step as refer-
ence. Right: previous step as reference. We also include
the results for biaffine parser for the ease of comparison
and find similar results to hold across both parsers.
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Figure 17: Overview of the mean cosine distance of a contextual embedding to its state in the preceding time step,
for all layers of BERT, averaged over all NNC stimuli.

4741



no
un

ve
rb

 1 de
t

no
un

ve
rb

 2 ... ... ... ... ...

noun
verb 1

det
noun

verb 2
...
...
...
...
...

.00

.00 .01

.00 .01 .00

.00 .01 .00 .00

.00 .00 .00 .00 .01

.00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00 .00 .00

layer 1  

no
un

ve
rb

 1 de
t

no
un

ve
rb

 2 ... ... ... ... ...

noun
verb 1

det
noun

verb 2
...
...
...
...
...

.00

.00 .02

.01 .02 .02

.01 .01 .00 .00

.01 .01 .00 .00 .01

.01 .01 .00 .00 .01 .01

.00 .01 .00 .00 .01 .01 .01

.00 .00 .00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00 .01

.00 .00 .00 .00 .00 .00 .00 .00 .00 .01

layer 2  

no
un

ve
rb

 1 de
t

no
un

ve
rb

 2 ... ... ... ... ...

noun
verb 1

det
noun

verb 2
...
...
...
...
...

.00

.00 .04

.01 .03 .02

.01 .02 .00 .01

.01 .01 .00 .01 .02

.01 .01 .00 .00 .01 .02

.01 .01 .00 .00 .01 .01 .01

.00 .01 .00 .00 .00 .00 .00 .01

.00 .00 .00 .00 .00 .00 .00 .00 .01

.00 .00 .00 .00 .00 .00 .00 .00 .00 .01

layer 3  
no

un
ve

rb
 1 de
t

no
un

ve
rb

 2 ... ... ... ... ...

noun
verb 1

det
noun

verb 2
...
...
...
...
...

.00

.00 .04

.01 .05 .01

.01 .04 .00 .01

.01 .02 .01 .01 .04

.01 .02 .01 .00 .01 .04

.01 .01 .00 .00 .01 .01 .02

.00 .01 .00 .00 .01 .00 .00 .01

.00 .01 .00 .00 .00 .00 .00 .00 .01

.00 .00 .00 .00 .00 .00 .00 .00 .00 .01

layer 4  
no

un
ve

rb
 1 de
t

no
un

ve
rb

 2 ... ... ... ... ...

noun
verb 1

det
noun

verb 2
...
...
...
...
...

.01

.01 .03

.02 .07 .01

.01 .07 .01 .01

.01 .05 .01 .01 .06

.01 .02 .01 .00 .02 .05

.01 .01 .00 .00 .01 .01 .02

.00 .01 .00 .00 .01 .00 .00 .01

.00 .01 .00 .00 .00 .00 .00 .00 .01

.00 .00 .00 .00 .00 .00 .00 .00 .00 .01

layer 5  

no
un

ve
rb

 1 de
t

no
un

ve
rb

 2 ... ... ... ... ...

noun
verb 1

det
noun

verb 2
...
...
...
...
...

.01

.01 .03

.02 .10 .02

.02 .10 .01 .02

.02 .08 .02 .01 .08

.01 .04 .02 .01 .03 .06

.01 .02 .01 .00 .01 .01 .02

.01 .02 .00 .00 .01 .00 .00 .01

.00 .01 .00 .00 .01 .00 .00 .01 .01

.00 .01 .00 .00 .01 .00 .00 .00 .01 .02

layer 6  

no
un

ve
rb

 1 de
t

no
un

ve
rb

 2 ... ... ... ... ...

noun
verb 1

det
noun

verb 2
...
...
...
...
...

.01

.01 .03

.02 .12 .04

.02 .11 .02 .02

.02 .09 .02 .01 .11

.01 .04 .03 .01 .05 .07

.01 .03 .01 .00 .02 .02 .03

.01 .02 .01 .00 .01 .01 .00 .02

.00 .01 .00 .00 .01 .01 .00 .01 .02

.00 .01 .00 .00 .01 .00 .00 .00 .01 .02

layer 7  

no
un

ve
rb

 1 de
t

no
un

ve
rb

 2 ... ... ... ... ...

noun
verb 1

det
noun

verb 2
...
...
...
...
...

.01

.01 .03

.03 .15 .04

.03 .15 .04 .03

.02 .13 .03 .01 .14

.01 .06 .05 .02 .06 .07

.01 .03 .01 .01 .02 .02 .03

.01 .03 .01 .00 .02 .01 .01 .03

.00 .02 .01 .00 .01 .01 .00 .01 .02

.00 .01 .00 .00 .01 .01 .00 .00 .01 .03

layer 8  
no

un
ve

rb
 1 de
t

no
un

ve
rb

 2 ... ... ... ... ...

noun
verb 1

det
noun

verb 2
...
...
...
...
...

.01

.02 .03

.03 .15 .04

.03 .16 .04 .04

.03 .15 .04 .02 .17

.02 .08 .04 .02 .06 .07

.01 .04 .01 .01 .03 .03 .04

.01 .03 .01 .01 .03 .01 .01 .04

.01 .02 .01 .00 .02 .01 .01 .01 .03

.00 .02 .00 .00 .02 .01 .00 .01 .01 .03

layer 9  

no
un

ve
rb

 1 de
t

no
un

ve
rb

 2 ... ... ... ... ...

noun
verb 1

det
noun

verb 2
...
...
...
...
...

.01

.02 .04

.03 .13 .05

.03 .13 .04 .05

.03 .14 .04 .02 .17

.02 .07 .04 .02 .06 .06

.01 .04 .01 .01 .03 .03 .04

.01 .03 .01 .01 .03 .01 .01 .04

.01 .02 .01 .00 .03 .01 .01 .01 .03

.01 .02 .01 .00 .02 .01 .01 .01 .01 .03

layer 10  

no
un

ve
rb

 1 de
t

no
un

ve
rb

 2 ... ... ... ... ...

noun
verb 1

det
noun

verb 2
...
...
...
...
...

.01

.01 .03

.03 .09 .05

.02 .11 .04 .04

.03 .11 .03 .02 .15

.02 .05 .04 .02 .05 .05

.01 .04 .01 .01 .03 .03 .03

.01 .03 .01 .01 .03 .02 .01 .04

.01 .02 .01 .01 .03 .02 .01 .01 .02

.01 .02 .01 .00 .02 .01 .01 .01 .01 .03

layer 11  

no
un

ve
rb

 1 de
t

no
un

ve
rb

 2 ... ... ... ... ...

noun
verb 1

det
noun

verb 2
...
...
...
...
...

.01

.01 .04

.03 .10 .06

.04 .13 .04 .05

.04 .15 .04 .02 .19

.04 .08 .04 .02 .07 .06

.02 .06 .02 .01 .05 .04 .05

.02 .05 .01 .01 .04 .02 .01 .05

.01 .03 .01 .01 .04 .03 .01 .02 .03

.01 .02 .01 .01 .03 .02 .01 .01 .01 .04

layer 12  

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200

Figure 18: Overview of the cosine distance of a contextual embedding to its final state (last row). The numbers
represent the absolute difference over the unambiguous baseline, for all layers of BERT, averaged over all NP/S
stimuli.
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Figure 19: Overview of the cosine distance of a contextual embedding to its final state (last row). The numbers
represent the absolute difference over the unambiguous baseline, for all layers of BERT, averaged over all MVRR
stimuli.
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Figure 20: Overview of the mean cosine distance of a contextual embedding to its state in the preceding time step,
for all layers of RoBERTa, averaged over all NNC stimuli.
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Figure 21: Overview of the cosine distance of a contextual embedding to its final state (last row). The numbers
represent the absolute difference over the unambiguous baseline, for all layers of RoBERTa, averaged over all NP/S
stimuli.
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Figure 22: Overview of the cosine distance of a contextual embedding to its final state (last row). The numbers
represent the absolute difference over the unambiguous baseline, for all layers of RoBERTa, averaged over all
MVRR stimuli.
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Figure 23: Overview of the JSD for the label attention distributions wrt. the first and previous time steps as reference,
averaged over all NNC stimuli and baselines. From left to right: biaffine parser, DiaParser (ELECTRA-EWT and
ELECTRA-PTB).
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Figure 24: Overview of the JSD for the label attention distributions wrt. the last and previous time steps as reference,
averaged over all NP/S stimuli and baselines. From left to right: biaffine parser, DiaParser (ELECTRA-EWT and
ELECTRA-PTB).
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Figure 25: Overview of the JSD for the label attention distributions wrt. the last and previous time steps as reference,
averaged over all MVRR stimuli and baselines. From left to right: biaffine parser, DiaParser (ELECTRA-EWT and
ELECTRA-PTB).
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