
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 6312–6325
August 11-16, 2024 ©2024 Association for Computational Linguistics

Unlearning Traces the Influential Training Data of Language Models

Masaru Isonuma 1,2 Ivan Titov 1,3

1University of Edinburgh 2University of Tokyo 3University of Amsterdam
m.isonuma@ed.ac.uk ititov@inf.ed.ac.uk

Abstract

Identifying the training datasets that influence
a language model’s outputs is essential for min-
imizing the generation of harmful content and
enhancing its performance. Ideally, we can
measure the influence of each dataset by re-
moving it from training; however, it is pro-
hibitively expensive to retrain a model multiple
times. This paper presents UnTrac: Unlearning
Traces the influence of a training dataset on
the model’s performance. UnTrac is extremely
simple; each training dataset is unlearned by
gradient ascent, and we evaluate how much
the model’s predictions change after unlearn-
ing. Furthermore, we propose a more scalable
approach, UnTrac-Inv, which unlearns a test
dataset and evaluates the unlearned model on
training datasets. UnTrac-Inv resembles Un-
Trac, while being efficient for massive training
datasets. In the experiments, we examine if
our methods can assess the influence of pre-
training datasets on generating toxic, biased,
and untruthful content. Our methods estimate
their influence much more accurately than exist-
ing methods while requiring neither excessive
memory space nor multiple checkpoints.

1 Introduction

Large language models (LLMs) have had a signif-
icant impact on our society. They exhibit remark-
able abilities (e.g., chain-of-thought reasoning)
without being explicitly trained for such tasks. At
the same time, LLMs also pose potential risks, such
as the amplification of discrimination through the
propagation of toxic language. LLMs are trained
on a vast number of corpora via pretraining or re-
fined through finetuning on diverse tasks. Although
some efforts have been made to unravel the black
box of LLMs (e.g., Grosse et al., 2023; Feng et al.,
2023), it is still unclear which data sources cause
their unprecedented abilities and potential harms.

Ideally, we can answer this question by remov-
ing each dataset from the training datasets and as-

sessing the change in the model’s performance af-
ter retraining (leave-dataset-out). However, since
we need to retrain a model on each dataset, leave-
dataset-out is prohibitively expensive. Training
data attribution overcomes this problem by approx-
imating the influence with Hessian-based influence
functions (HIF; Koh and Liang, 2017; Koh et al.,
2019) or tracking changes in test loss during train-
ing (TracIn; Pruthi et al., 2020). However, HIF re-
quires a large memory space to approximate the in-
verse Hessian (Schioppa et al., 2022), while TracIn
generally needs multiple model checkpoints.

In this paper, we propose UnTrac, which traces
the influence of a training dataset by unlearning
it from a trained model (Figure 1). Leave-dataset-
out removes each training dataset and measures its
influence by assessing the trained model’s perfor-
mance on a test dataset. Analogous to leave-dataset-
out, UnTrac unlearns each training dataset and es-
timates its influence by assessing the unlearned
model’s performance on a test dataset. Unlearning
has been studied to eliminate sensitive data from a
trained model (Cao and Yang, 2015; Ginart et al.,
2019; Mehta et al., 2022) and has recently been
applied to LLMs (Jang et al., 2023; Chen and Yang,
2023). Following Jang et al. (2023), we unlearn a
training dataset using gradient ascent, in contrast
to the gradient descent normally used in training.
Interestingly, Schioppa et al. (2023) argued that
influence functions can be regarded as an approxi-
mation of the effect of finetuning on a number of
examples (e.g., unlearning mislabeled examples).
With UnTrac, instead of using the approximations,
we directly quantify the effect of unlearning.

When many datasets are used for training, Un-
Trac is computationally costly because unlearning
must be run for every individual training dataset.
To overcome this drawback, we propose UnTrac-
Inv as a scalable approach particularly effective for
an increasing number of training datasets. UnTrac-
Inv “unlearns” a test dataset instead of training

6312



test datasettrain dataset 1 train dataset 2 train dataset 3

trained model unlearning test
train dataset 1

test datasettrain dataset 1 train dataset 2 train dataset 3 train dataset 2

+ +

+ +

−

−

→

→

test datasettrain dataset 2 train dataset 3

training test

test datasettrain dataset 1 train dataset 3

+ +

+ +

→

→

test datasettrain dataset 1 train dataset 2 train dataset 3

trained model unlearning test

test datasettrain dataset 1 train dataset 2 train dataset 3

+ +

+ +

−

−

→

→

Leave-Dataset-Out
(Ground-Truth)

UnTrac

UnTrac-Inv
train dataset 1

train dataset 2

Figure 1: Overview of leave-dataset-out vs. proposed methods, UnTrac and UnTrac-Inv.

datasets and evaluates the unlearned model on train-
ing datasets. UnTrac-Inv requires only a single run
of unlearning, and, as we will show, can be consid-
ered as an efficient approximation of UnTrac.

In our experiments, we first examine whether
our methods can trace influential training tasks in
the setting of finetuning. We created a dataset rep-
resenting a mixture of synthetic tasks, designed to
evaluate our method’s capability in assessing the
influence of each task. In order to make this assess-
ment more challenging, we have created task pairs
that, while semantically distinct, require responses
in the same format. Additionally, we include pairs
that are nearly identical in content but demand re-
sponses in differing formats. By estimating the
influence across these task pairs, we verify that our
methods are not overly reliant on superficial sim-
ilarities between tasks. In this controlled dataset,
we show that our methods accurately assess the
influence of training tasks, where we use the expen-
sive leave-dataset-out method as the ground-truth,
and are only slightly affected by the output format.

Next, we assess whether our methods can iden-
tify the source of harmful content generated by a
pretrained language model. Using smaller open
pretrained transformers (OPT-125M; Zhang et al.,
2022), the influence of eight pretraining datasets
is estimated. We use three test datasets: Toxigen
(Hartvigsen et al., 2022), WinoBias (Zhao et al.,
2018), and TruthfulQA (Lin et al., 2022), which
contain toxic language, biased text, and false an-
swers to various questions, respectively. We cal-
culate the ground-truth influence of each training
dataset and evaluate the correlation between the es-
timated influence and ground-truth influence. We
demonstrate that our methods accurately estimate
the influence of pretraining datasets, significantly

outperforming other influence functions.
Finally, we investigate how hyperparameters af-

fect the performance of our methods. We found
that UnTrac works robustly as long as we use pre-
conditioned gradient methods with higher learning
rates and a sufficient number of training iterations.
In contrast, UnTrac-Inv works well for large batch
sizes while being relatively sensitive to the learning
rate and the number of training steps.

2 Problem Formulation

Our goal is to estimate the influence of a training
dataset on the model’s predictions on a test dataset.
To formalize this goal, we assume the counterfac-
tual that a model is trained on the mixture of all
datasets except for a dataset Z: θ−Z . The ground-
truth influence of the training dataset Z on a test
dataset Z ′ is defined as Equation (1) using model
θ−Z and θ0, which is trained on all datasets D.

Itruth(Z ′,Z)=
N ′∑

j=1

L(z′j ,θ−Z)−L(z′j ,θ0)

(1)
where z′j is the j-th batch in the test dataset Z ′,
N ′ is the number of test batches, and L is the loss
function. Koh et al. (2019) use all examples in the
dataset to train the counterfactual model: θ−Z =
argminθ

∑
z∈D\Z L(z,θ). This definition overly

emphasizes the influence of large datasets, as, when
removing them, the number of training examples
drops substantially. However, when asking about
the influence of a dataset, our primary interest often
centers on whether the type of data present within
a dataset wields considerable influence. We modify
the definition of dataset’s influence so as to better
align with this research question. Thus, for every

6313



training dataset Z , we train a model for the same
number of training steps T instead of the entire
dataset: θ−Z = argminθ

∑T
t=1 L(zt,θ) where

zt ∼ D \ Z . This setup is practical for evaluating
the influence of datasets of different sizes.1

3 Methods

3.1 UnTrac
Here, we formally introduce UnTrac, which esti-
mates the influence of a training dataset on a test
dataset by unlearning. Let Z ′ be a test dataset, θi
be the model parameters after the i-th unlearning
step (θ0 is the trained model parameters). The influ-
ence of a training dataset Z on a test dataset Z ′ is
defined as the change in test loss due to unlearning.

I(Z ′,Z)=
N ′∑

j=1

L(z′j ,θT )−L(z′j ,θ0)

=
N ′∑

j=1

T∑

i=1

L(z′j ,θi)−L(z′j ,θi−1)

(2)

where T is the number of unlearning steps. Here,
θi is updated via gradient ascent, which maximizes
the loss of the i-th batch zi in the training dataset
Z . If we use stochastic gradient ascent, the updated
parameters can be written as Equation (3); however,
any optimizer can be used for unlearning.

θi = θi−1 + ηi∇θL(zi,θi−1) (3)

3.2 UnTrac-Inv
When many datasets are used for training, UnTrac
is computationally costly because unlearning must
be run for every training dataset. In a practical sce-
nario, we are interested in detecting which training
dataset influences a particular test dataset. Here,
we introduce UnTrac-Inv, an alternative scalable
approach that can handle an increasing number
of training datasets. UnTrac-Inv unlearns the test
dataset instead of training datasets and measures
the change in loss on the training datasets. UnTrac-
Inv computes the influence by Equation (4).

I ′(Z ′,Z)=
N∑

i=1

L(zi,θT ′)− L(zi,θ0)

=
N∑

i=1

T ′∑

j=1

L(zi,θj)− L(zi,θj−1)

(4)

1In Appendix A.1, we show the conventional leave-dataset-
out setup overestimates the influence of large datasets.

where N is the number of batches in the training
dataset, and T ′ is the number of unlearning steps.

This alternative influence can be regarded as an
approximation to UnTrac, Equation (2). Note that
θj = θj−1+ηj∇θL(z

′
j ,θj−1), and we use the first-

order approximation L(zi,θj) − L(zi,θj−1) ≈
∇θL(zi,θj−1)(θj − θj−1). Equation (2) and (4)
can then be re-approximated as Equation (5) and
(6), respectively.

I(Z ′,Z)

≈
T∑

i=1

N ′∑

j=1

ηi∇θL(zi,θi−1)
⊤∇θL(z

′
j ,θi−1)

(5)

I ′(Z ′,Z)

≈
N∑

i=1

T ′∑

j=1

ηj∇θL(zi,θj−1)
⊤∇θL(z

′
j ,θj−1)

(6)
If the number of unlearning steps is one (T =
T ′= 1), and a single batch contains all examples,
I(Z ′,Z) corresponds to I ′(Z ′,Z). This suggests
that UnTrac-Inv should work well with a small
number of unlearning steps and a large batch size.
We will empirically validate it later in Section 6.1.

4 Relation to Other Influence Functions

4.1 TracIn, GradDot & GradCos
Pruthi et al. (2020) proposed TracIn, which traces
the influence of a training example by the total
change in test loss during training. While the origi-
nal TracIn assesses the influence of individual train-
ing examples, it can be easily extended to assess a
whole dataset. As accounting for the loss reduction
at every step is computationally expensive, they
approximate it using model checkpoints, assum-
ing that every example in the training dataset is
encountered once between these checkpoints. By
approximating the loss reduction with gradients
at each checkpoint t: L(z′j ,θt) − L(z′j ,θt+1) ≈
ηt∇θL(zi,θt)

⊤∇θL(z
′
j ,θt), TracIn is defined as:

TracIn(Z ′,Z)

=
∑

t∈Tcp

N∑

i=1

N ′∑

j=1

ηt∇θL(zi,θt)
⊤∇θL(z

′
j ,θt)

(7)

where Tcp denotes the set of training steps where
the model checkpoints are saved. As using multiple
checkpoints induces substantial overhead, only the
last checkpoint is often used in practice (Schioppa

6314



et al., 2023), which is referred to as GradDot. Bar-
shan et al. (2020) pointed out that some outlier
training examples have significantly large gradi-
ents, leading to an overestimation of their influ-
ences. Therefore, normalizing the gradients (i.e.,
replacing the dot product with cosine similarity)
can be effective, referred to as GradCos (Han and
Tsvetkov, 2021; Akyurek et al., 2022).

4.2 Hessian-based Influence Functions

Hessian-based influence functions (HIF) are
grounded in robust statistics (Hampel, 1974; Cook
and Weisberg, 1982) and were introduced to deep
learning by Koh and Liang (2017). Koh et al.
(2019) used HIF to assess the influence of multiple
training examples, and the estimated influence cor-
relates well with the ground-truth. Given a trained
model θ0, HIF estimates the influence of a training
dataset Z on a test dataset Z ′ as Equation (8).

HIF(Z ′,Z)

=
N∑

i=1

N ′∑

j=1

∇θL(zi,θ0)
⊤H−1

θ ∇θL(z
′
j ,θ0)

(8)

where Hθ is the Hessian of training loss: Hθ =
1/N

∑N
i=1∇2

θL(zi,θ0).

4.3 Connection to UnTrac & UnTrac-Inv

GradDot, GradCos, and HIF can be viewed as spe-
cial cases of UnTrac and UnTrac-Inv. Suppose a
single training batch contains all training exam-
ples. The increase in test loss after a single step of
unlearning can be approximated as Equation (9).

I(Z ′,Z)=
N ′∑

j=1

L(z′j ,θ1)− L(z′j ,θ0)

≈
N ′∑

j=1

∇θL(z
′
j ,θ0)

⊤(θ1 − θ0)

(9)

When we use SGD, Equation (9) corresponds
to GradDot by substituting θ1 − θ0 =
η0

∑N
i=1∇θL(zi,θ0). Similarly, It corresponds to

GradCos if we use RMSProp or Adam: θ1 − θ0 =
η0

∑N
i=1∇θL(zi,θ0)/∥

∑N
i=1∇θL(zi,θ0)∥, and

corresponds to HIF if we use Newton’s method:
θ1 − θ0 =

∑N
i=1H

−1
θ ∇θL(zi,θ0). In the same

way, these influence functions can also be regarded
as a special case of UnTrac-Inv. HIF can be re-
garded as providing an approximation to UnTrac.

5 Experiments

We evaluate if our methods can measure the in-
fluence of training datasets across different model
architectures (encoder-decoder and decoder-only)
and training setups (pretraining and fine-tuning).2

Since we would not generally have a validation
set (i.e., ground-truth attributions), it is impracti-
cal to tune the hyperparameters for each experi-
ment. Thus, we set the hyperparameters based on
the experimental results on Toxigen, one of the test
datasets used in Section 5.2. The same hyperparam-
eters are used across all the experiments. We use
Adam (Kingma and Ba, 2014) with a constant learn-
ing rate of 5e-5, β1 = 0.9, and β2 = 0.999, while
Adafactor is used in Section 5.1 due to memory
constraints. Gradient clipping is turned off during
unlearning. As for UnTrac, we set the batch size to
1 and run unlearning for 1 epoch. As discussed in
Section 3.2, UnTrac-Inv requires a small number of
unlearning steps and a large batch size. Hence, we
set the batch size as 256 (a single batch contains
all test examples) and the number of unlearning
steps (epochs) as 5. In Section 6, we discuss the
hyperparameter sensitivity of our methods.

The baseline methods are as follows:

TracIn, GradDot & GradCos We compute the
gradient w.r.t. all of the model parameters. TracIn
uses the checkpoints saved for every 128 steps in
Section 5.1 and 10,000 steps in Section 5.2.

HIF Following Koh and Liang (2017), we ap-
proximate the inverse Hessian by LISSA (Agarwal
et al., 2017), where the number of iterations is set
to 10. We also use Arnoldi iteration with low-rank
eigenvector projection following Schioppa et al.
(2022). We set the number of Arnoldi iterations to
n = 25 and the number of eigenvectors to p̃ = 25 in
Section 5.1 due to the memory constraints, while
n = 200 and p̃ = 100 in Section 5.2. Following the
previous studies, the gradients of training datasets
are normalized, and 256 training examples are used
to approximate the Hessian of training loss.

5.1 Tracing Influential Training Tasks

We examine whether UnTrac can detect influen-
tial training tasks in the setting of finetuning. If a
task is unlearned from a model, one may hypoth-
esize that the model will no longer respond in the

2The code and data are available at: https://github.
com/misonuma/untrac/. More implementation details are
noted in Appendix A.2.

6315

https://github.com/misonuma/untrac/
https://github.com/misonuma/untrac/


Synthetic Datasets A Input Output

Test (Task P/Format P) What is the number that comes after {0}? {1}

Train1 (Task P/Format P) Determine the number that succeeds {two}. Provide your answer in numerical form. {3}
Train2 (Task P/Format Q) Determine the number that succeeds {one}. Provide your answer in words. {two}
Train3 (Task Q/Format P) Determine the length of ‘{problem}’. Provide your answer in numerical form. {7}
Train4 (Task Q/Format Q) Determine the length of ‘{align}’. Provide your answer in words. {five}

Synthetic Datasets B Input Output

Test (Task P/Format P) What letter remains in ‘{xmais}’ after extracting ‘{s}’, ‘{x}’, ‘{m}’, ‘{i}’? {a}

Train1 (Task P/Format P) Identify the character left after removing ‘{0}’, ‘{1}’, ‘{4}’, ‘{7}’ from ‘{71b40}’. {b}
Train2 (Task P/Format Q) Identify the character left after removing ‘{6}’, ‘{7}’, ‘{5}’, ‘{2}’ from ‘{27516}’. {1}
Train3 (Task Q/Format P) Identify the part of speech of ‘{problem}’. Select your answer with the associated

letter. Choices: a. noun b. verb c. adjective d. adverb
{a}

Train4 (Task Q/Format Q) Identify the part of speech of ‘{align}’. Select your answer with the associated
number. Choices: 0. noun 1. verb 2. adjective 3. adverb

{1}

Table 1: Example of the synthetic datasets A (top) and B (bottom). {Strings in braces} are varied with each example.

Synthetic Datasets A Synthetic Datasets B

Train Dataset 1(TaskP/FmtP) 2(TaskP/FmtQ) 3(TaskQ/FmtP) 4(TaskQ/FmtQ) 1(TaskP/FmtP) 2(TaskP/FmtQ) 3(TaskQ/FmtP) 4(TaskQ/FmtQ)

GradDot 0.497 0.930 -1.680 0.253 -0.561 1.730 -0.655 -0.513
GradCos 0.993 0.573 -1.637 0.071 1.197 0.708 -1.307 -0.598
HIF (Arnoldi) 1.059 0.566 -0.026 -1.599 1.368 0.015 0.074 -1.457
HIF (LISSA) 0.156 -1.674 0.658 0.860 -0.600 1.708 -0.785 -0.323
TracIn 0.090 1.575 -1.083 -0.582 -0.174 1.638 -1.060 -0.404
UnTrac 1.443 0.344 -0.574 -1.212 1.492 0.175 -0.414 -1.253
UnTrac-Inv 0.980 1.014 -1.104 -0.891 1.056 0.905 -0.716 -1.245

Ground Truth 1.263 0.692 -1.064 -0.891 1.150 0.837 -1.025 -0.962

Table 2: Influence of the training datasets estimated by each method. The average is shown across four runs. The
values are standardized for each method to normalize the range of values. “Fmt” is the abbreviation of “Format”.

format required by the task, regardless of the in-
put. Hence, we are concerned that unlearning not
relevant tasks but those having the same answer
format as a test task may adversely affect the test
task’s performance. This may not be consistent
with the leave-dataset-out ground-truth and, thus,
lead to an overestimation of the non-relevant task’s
influence. Using synthetic datasets, we show that
UnTrac can assess the influence of training tasks
properly, regardless of the output format.

Model We use T5 (Raffel et al., 2020) as a pre-
trained encoder-decoder model. Specifically, we
use the LM-adapted T5-XL (3B), which is fine-
tuned on language modeling (Lester et al., 2021).3

Dataset We create two synthetic datasets, each
containing one test dataset and four training
datasets. The test datasets contain examples of
task P with the output format P (Task P/Format P).
The task and output format of training datasets are
set with respect to the test dataset as follows:

3https://huggingface.co/google/t5-xl-lm-adapt

1. Training dataset 1 (Task P/Format P): similar
task P with the same output format P.

2. Training dataset 2 (Task P/Format Q): similar
task P with different output format Q.

3. Training dataset 3 (Task Q/Format P): irrele-
vant task Q with the same output format P.

4. Training dataset 4 (Task Q/Format Q): irrele-
vant task Q with different output format Q.

Table 1 presents examples of the synthetic
datasets A and B. Each training dataset and test
dataset consists of 256 examples. The model is
trained for 512 steps on the mixture of the four
training datasets with a batch size of 2.

Results Table 2 presents the influence of training
datasets estimated by each method and the ground-
truth influence measured by leave-dataset-out. The
ground truth indicates that datasets 1 and 2 (tasks
similar to the test task) are more influential than
datasets 3 and 4 (tasks irrelevant to the test task).
The influence estimated by UnTrac and UnTrac-
Inv aligns well with the ground-truth influence. All

6316

https://huggingface.co/google/t5-xl-lm-adapt


0.0 0.2 0.4 0.6 0.8 1.0
epoch

0
100
200
300
400
500
600
700

in
flu

en
ce

UnTrac on the Synthetic Datasets A
training dataset

1 (Task P/Format P)
2 (Task P/Format Q)
3 (Task Q/Format P)
4 (Task Q/Format Q)

0.0 0.2 0.4 0.6 0.8 1.0
epoch

0

200

400

600

800

in
flu

en
ce

UnTrac on the Synthetic Datasets B
training dataset

1 (Task P/Format P)
2 (Task P/Format Q)
3 (Task Q/Format P)
4 (Task Q/Format Q)

0 10 20 30 40 50
epoch

0
20
40
60
80

100
120
140
160

in
flu

en
ce

UnTrac-Inv on the Synthetic Datasets A
training dataset

1: SimSame
2: SimDiff
3: DisSame
4: DisDiff

0 10 20 30 40 50
epoch

0
50

100
150
200
250
300
350

in
flu

en
ce

UnTrac-Inv on the Synthetic Datasets B
training dataset

1: SimSame
2: SimDiff
3: DisSame
4: DisDiff

Figure 2: The influence estimated by UnTrac (top) and UnTrac-Inv (bottom) on the synthetic datasets A (left) and B
(right). The line denotes the average across four runs, and the shaded area corresponds to 95% confidence region.

other methods assess the influence of dataset 4 as
lower than that of other datasets. However, they
tend to overestimate the influence of dataset 3 or
underestimate it for datasets 1 and 2.

Figure 2 shows the change in influence esti-
mated by UnTrac and UnTrac-Inv on the synthetic
datasets A (left) and B (right), respectively. For
both synthetic datasets, our methods estimate the
influence of datasets 1 and 2 as greater than that
of datasets 3 and 4 across unlearning steps. These
results indicate that UnTrac and UnTrac-Inv appro-
priately estimate the influence of training datasets
in terms of the relevance of tasks and do not seem
overly affected by the output format.

5.2 Tracing Influential Pretraining Corpora

LLMs sometimes generate toxic, biased, and false
content, which must be prevented to safely use
language models. We next verify that our methods
can identify the influence of a pretraining dataset
on the generation of harmful content.

Model We use an open pre-trained transformer
language model (OPT; Zhang et al., 2022). As
computing ground-truth influence for pretraining
datasets is expensive, we use a relatively small lan-
guage model with 125 million parameters.4 OPT
is pretrained for 40,000 steps with a batch size of 8
on the datasets described below.

4https://huggingface.co/facebook/opt-125m

Dataset We use eight pretraining datasets that
were used for OPT: BookCorpus (Zhu et al., 2015),
CC-Stories (Trinh and Le, 2018), CCNewsV2 (Liu
et al., 2019), and five subsets in the Pile dataset
(Gao et al., 2020): PJ Gutenberg, HackerNews,
OpenWebText2, Pile-CC, and Wikipedia. To inves-
tigate whether our methods are effective regard-
less of the dataset’s proportion, we set up two
settings: one where each pretraining dataset con-
tains an equal number of examples (40,000) and
another where they contain different numbers of ex-
amples (Pile-CC: 96,000, OpenWebText2: 64,000,
CCNewsV2: 48,000, BookCorpus: 32,000, Sto-
ries: 32,000, PJ Gutenberg: 16,000, HackerNews:
16,000, Wikipedia: 16,000). Each training example
consists of a sequence of 1,024 tokens by grouping
several examples into a sequence.

In practice, computing influences using the
whole pretraining dataset is quite expensive. Thus,
we randomly sample 10,000 examples from each
dataset to estimate its influence. To ensure that the
reported results are invariant to the choice of exam-
ples, we report the average and standard deviation
across four runs using different examples.

Regarding test datasets, we use three datasets:
Toxigen (Hartvigsen et al., 2022), WinoBias (Zhao
et al., 2018), and TruthfulQA (Lin et al., 2022).
ToxiGen collects machine-generated toxic lan-
guage against several minority groups. Winobias
contains sentences with entities corresponding to

6317

https://huggingface.co/facebook/opt-125m


Equal Training Dataset Size Different Training Dataset Size

Test Dataset ToxiGen WinoBias TruthfulQA ToxiGen WinoBias TruthfulQA

GradDot -0.123±0.008 0.418±0.018 0.156±0.022 -0.250±0.007 0.446±0.015 -0.524±0.003
GradCos -0.050±0.008 0.524±0.014 0.447±0.015 -0.337±0.007 0.496±0.012 -0.401±0.004
HIF (Arnoldi) -0.068±0.023 0.559±0.010 0.250±0.024 -0.343±0.005 0.584±0.014 -0.362±0.006
HIF (LISSA) -0.040±0.328 0.389±0.117 -0.178±0.173 0.071±0.091 -0.092±0.042 -0.098±0.058
TracIn 0.207±0.010 0.082±0.013 0.591±0.014 -0.187±0.005 0.183±0.019 0.081±0.010

UnTrac 0.419±0.063 0.743±0.086 0.314±0.223 0.403±0.033 0.518±0.122 0.246±0.082
UnTrac-Inv 0.372±0.008 0.813±0.012 0.582±0.016 0.393±0.037 0.275±0.125 0.360±0.017

Table 3: Pearson correlation coefficient between the influence estimated by each method and the ground-truth
influence computed by leave-dataset-out. Each figure denotes the mean and standard deviation across four runs. For
each run, we use different 10,000 examples randomly sampled from the training dataset to compute its influence.
The highest score and the scores that lie within its standard deviation are highlighted in bold.

0.0 0.2 0.4 0.6 0.8 1.0
epoch

0.4

0.2

0.0

0.2

0.4

0.6

pe
ar

so
nr

batch size
1
256

0 10 20 30 40 50
epoch

0.4

0.2

0.0

0.2

0.4

0.6

pe
ar

so
nr

batch size
1
256

Figure 3: Pearson correlation coefficient between the ground truth and the influence estimated by UnTrac (left) and
UnTrac-Inv (right) over unlearning epochs. ToxiGen is used as an evaluation dataset and the size of each training
dataset is set to be equal. The line denotes the average across four runs, and the shaded area corresponds to 95%
confidence region.

people referred to by their occupation and their
pronoun genders. TruthfulQA comprises questions
across several categories and their corresponding
untruthful answers. We measure the negative log-
probability of toxic language, biased text, and false
answers to compute the influences.

Results Table 3 shows the Pearson correlation
coefficient between the estimated influence and
the ground truth assessed by leave-dataset-out.5 As
there are only eight pretraining datasets, the correla-
tion between ground truth and estimated influences
cannot be statistically significant. Therefore, we
divided the test dataset into multiple subsets and
aggregated the correlation for each subset to en-
hance the reliability of the results. We reported the
average across 13 subsets for ToxiGen, 4 subsets
for WinoBias, and 9 subsets for TruthfulQA.

Across all datasets and settings, the estimated in-
fluence by UnTrac and UnTrac-Inv correlates well
with the ground truth. GradCos, GradDot, and

5The same tendency is confirmed when Spearman’s rank
correlation coefficient is used as a metric (Appendix A.3).

HIF (Arnoldi) perform well on Winobias. How-
ever, they show lower performance on Toxigen and
TruthfulQA specifically when the dataset sizes are
unbalanced. The performance of HIF (LISSA) is
unstable, as indicated by the high variance in its
score. While TracIn achieves a relatively higher
correlation with equally sized training datasets, its
performance declines when the sizes are different.

We found that the influences estimated by exist-
ing methods are not significantly different across
training datasets. For WinoBias and TruthfulQA,
the ground-truth influence of each pre-training
dataset does not differ that much. Thus, the ex-
isting methods achieve high correlations on those
datasets as well as ours. In contrast, on ToxiGen,
the ground-truth influences of pre-training datasets
vary significantly; Pile-CC and BookCorpus are
more influential than others. Our methods can
detect these influential datasets, while other ap-
proaches fail, leading to higher performance of our
methods on ToxiGen. These results indicate that
our methods can robustly trace the influence of
pretraining datasets regardless of their proportions.

6318



Optimizer SGD SGD w/momentum RMSProp Adam Adafactor

UnTrac -0.147±0.014 -0.239±0.011 0.418±0.063 0.419±0.063 0.345±0.179
UnTrac-Inv -0.100±0.069 -0.099±0.070 -0.231±0.012 0.376±0.008 0.313±0.003

Learning Rate 5e-06 1e-05 5e-05 1e-04 5e-04

UnTrac -0.127±0.302 0.312±0.311 0.419±0.063 0.377±0.040 0.329±0.015
UnTrac-Inv 0.100±0.084 0.197±0.067 0.376±0.008 0.137±0.019 0.027±0.015

Table 4: Hyperparameter sensitivity across different optimizers and learning rates. Each figure denotes the Pearson
correlation coefficient between the estimated and ground-truth influences. The mean and standard deviation across
four runs are displayed.

6 Discussion

In this section, we explore how hyperparameters
affect the performance of our methods. Following
the experiment in Section 5.2, we compute the in-
fluence of the pretraining dataset on Toxigen under
various hyperparameter settings, where the size of
each training dataset is set to be equal. By monitor-
ing the Pearson correlation coefficient between the
estimated influence and ground truth, we investi-
gate the hyperparameter sensitivity of our methods.

6.1 Sensitivity to Epoch & Batch Size

Figure 3 shows the performance of UnTrac and
UnTrac-Inv over unlearning epochs with batch
sizes of 1 and 256. On both batch sizes, UnTrac
achieves high and stable performance as the num-
ber of unlearning epochs increases. In contrast,
UnTrac-Inv shows entirely different tendencies.
When the batch size is one, UnTrac-Inv performs
poorly over the entire run of unlearning. When the
batch size is 256, the performance of UnTrac-Inv
rises for the first several epochs, while it degrades
gradually after a while. As discussed in Section
3.2, UnTrac-Inv approximates UnTrac when un-
learning is run for a small number of steps with a
large batch size. When the number of unlearning
steps is large or the batch size is small, UnTrac-Inv
deviates from UnTrac and does not perform well.

These observations may suggest why other in-
fluence functions perform worse. As mentioned in
Section 4.3, GradDot, GradCos, and HIF can be re-
garded as approximations of UnTrac (and UnTrac-
Inv) when unlearning is conducted for a single step.
As shown in Figure 3, UnTrac and UnTrac-Inv un-
derperform when the number of unlearning steps
is one. From the viewpoint of unlearning, a single
step is often insufficient to fully trace the influence
of training datasets, suggesting why other influence
functions underperform.

6.2 Sensitivity to Optimizer & Learning Rate
Here, we discuss how the choice of optimizers
and learning rate affects the performance of our
methods. Table 4 shows the performance of each
method across different optimizers and learning
rates, while fixing other hyperparameters.

Optimizer Table 4 (top) shows the performance
with various optimizers. We use SGD, SGD with
momentum (momentum = dampening = 0.9),
RMSProp (Tieleman et al., 2012; α = 0.99),
Adam, and Adafactor (Shazeer and Stern, 2018).
UnTrac performs well when RMSProp, Adam, and
Adafactor are used, indicating that a preconditioner
plays an important role in unlearning.

A similar trend can be seen for UnTrac-Inv,
though it performs worse when RMSProp is used.
We suspect this is because both Adam and Adafac-
tor use a decaying average of gradients, rather than
just the gradient for the current batch as RMSProp
and SGD do. This makes training less stochastic
and has a somewhat similar effect to using larger
batches, which is beneficial for UnTrac-Inv.

Learning Rate Table 4 (bottom) presents the per-
formance with several learning rates. UnTrac per-
forms well across various learning rates when us-
ing higher learning rates. With lower learning rates,
UnTrac does not converge and performs unstably.

In contrast, UnTrac-Inv is somewhat sensitive
to the choice of learning rate. Following the dis-
cussion in Section 3.2, UnTrac-Inv diverges from
UnTrac as unlearning proceeds. As a higher learn-
ing rate boosts the divergence, increasing the learn-
ing rate does not necessarily lead to higher perfor-
mance. However, the estimated influence correlates
positively with ground truth on any learning rate.

7 Related Work

Which training data affects the model’s prediction?
The importance of this question has been rising

6319



along with the emergence of LLMs trained on mas-
sive text corpora (Akyurek et al., 2022; Longpre
et al., 2023; Feng et al., 2023; Han et al., 2023;
Grosse et al., 2023). Hessian-based influence func-
tions (Hampel, 1974; Koh and Liang, 2017) are
pioneering work to address this question and are
widely used in the context of natural language pro-
cessing (Han et al., 2020; Guo et al., 2021; Yang
et al., 2023). As computing inverse Hessian is quite
expensive (Guo et al., 2021; Schioppa et al., 2022;
Grosse et al., 2023), TracIn is another promising
approach for training data attribution (Pruthi et al.,
2020). However, several studies empirically re-
ported that these methods are unstable for deep
neural networks (Basu et al., 2021; Søgaard, 2021).

While the studies above focus on a single train-
ing example, several studies consider the influences
of multiple training examples (Koh et al., 2019;
Barshan et al., 2020). Basu et al. (2020) argue
that the first-order approximation behind influence
functions is unsuitable, as removing multiple ex-
amples leads to a significant perturbation of model
parameters. Schioppa et al. (2023) theoretically
show that influence functions work well for a lim-
ited number of training steps, but are unlikely to
be good approximators of leave-one-out influences.
Therefore, they used influence functions to detect
influential training examples of mispredictions. By
flipping the label of the influential training exam-
ples and training a model on the flipped examples,
the mispredictions can be corrected with a few fine-
tuning steps. Whereas they use influence functions
to detect influential examples to be unlearned, we
use unlearning to detect influential examples.

Sampling-based attribution methods, such as
Shapley values (Ghorbani and Zou, 2019), empir-
ical influences (Feldman and Zhang, 2020), and
datamodels (Ilyas et al., 2022) are also promising
approaches for tracing influential training datasets.
However, they commonly require thousands of
pairs of training subsets and models trained on
the subsets to estimate how the combination of
training examples affects the model’s performance.
Although TRAK (Park et al., 2023), a recent
sampling-based approach, requires significantly
fewer computational resources than others, it still
requires tens of pairs of training subsets and their
corresponding trained models, which can be costly
as well as leave-dataset-out. Indeed, TRAK was
evaluated only on fine-tuning setups in its original
paper. On the other hand, we study approaches that
are scalable to large pretraining datasets.

Unlearning has been studied to remove unde-
sired data from a trained model (Cao and Yang,
2015; Golatkar et al., 2020; Sekhari et al., 2021;
Gupta et al., 2021) and has recently been used for
LLMs (Jang et al., 2023; Wang et al., 2023; Yao
et al., 2023; Maini et al., 2024; Zhang et al., 2024;
Jia et al., 2024).

8 Conclusion

This paper explored unlearning approaches to trace
the influence of training datasets. Our approach,
UnTrac, simply unlearns each training dataset and
evaluates how the model’s performance changes
on a test dataset after unlearning. UnTrac-Inv is
a more scalable approach, which unlearns a test
dataset and evaluates the unlearned model’s perfor-
mance on training datasets. Experimental results
showed that our methods can trace the influence of
training datasets with significantly higher accuracy
than existing methods. UnTrac works robustly if
we use preconditioned optimizers with high learn-
ing rates and a sufficient number of training steps.
In contrast, UnTrac-Inv is relatively sensitive to
the choice of hyperparameters, such as batch size,
learning rate, and the number of training iterations.

As our methods require the same memory foot-
print as standard training, they can be applied to
LLMs as long as we have enough memory space for
training. In future work, we hope that the effective-
ness of our methods will be investigated with even
more large models, and that our methods will be
helpful in revealing the source of LLM’s emergent
abilities, such as chain-of-thought reasoning.

Limitations

Although our methods are assessed across different
model architectures, model sizes, and training se-
tups, further empirical investigations are expected
to verify their effectiveness. We do not argue that
our methods are immediately applicable in practi-
cal use. For real-world applications, we need to
validate our methods in various settings and tasks
against leave-dataset-out, though leave-dataset-out
requires considerable computational cost.

Acknowledgements

MI is supported by JST CREST JPMJCR21D1,
NEDO JPNP20006, and JSPS KAKENHI
23K16940, Japan. IT is supported by the
Dutch National Science Foundation (NWO Vici
VI.C.212.053).

6320



References
Naman Agarwal, Brian Bullins, and Elad Hazan. 2017.

Second-order stochastic optimization for machine
learning in linear time. Journal of Machine Learning
Research, 18(1):4148–4187.

Ekin Akyurek, Tolga Bolukbasi, Frederick Liu, Bin-
bin Xiong, Ian Tenney, Jacob Andreas, and Kelvin
Guu. 2022. Towards tracing knowledge in language
models back to the training data. In Findings of the
Association for Computational Linguistics: EMNLP
2022, pages 2429–2446, Abu Dhabi, United Arab
Emirates. Association for Computational Linguistics.

Elnaz Barshan, Marc-Etienne Brunet, and
Gintare Karolina Dziugaite. 2020. Relatif:
Identifying explanatory training samples via relative
influence. In International Conference on Artificial
Intelligence and Statistics, pages 1899–1909. PMLR.

Samyadeep Basu, Phil Pope, and Soheil Feizi. 2021.
Influence functions in deep learning are fragile. In
International Conference on Learning Representa-
tions.

Samyadeep Basu, Xuchen You, and Soheil Feizi. 2020.
On second-order group influence functions for black-
box predictions. In Proceedings of the 37th Inter-
national Conference on Machine Learning, pages
715–724. PMLR.

Yinzhi Cao and Junfeng Yang. 2015. Towards making
systems forget with machine unlearning. In IEEE
Symposium on Security and Privacy, pages 463–480.
IEEE.

Jiaao Chen and Diyi Yang. 2023. Unlearn what you
want to forget: Efficient unlearning for LLMs. In Pro-
ceedings of the 2023 Conference on Empirical Meth-
ods in Natural Language Processing, pages 12041–
12052, Singapore. Association for Computational
Linguistics.

R Dennis Cook and Sanford Weisberg. 1982. Residuals
and Influence in Regression. New York: Chapman
and Hall.

Vitaly Feldman and Chiyuan Zhang. 2020. What neural
networks memorize and why: Discovering the long
tail via influence estimation. Advances in Neural
Information Processing Systems, 33:2881–2891.

Shangbin Feng, Chan Young Park, Yuhan Liu, and Yulia
Tsvetkov. 2023. From pretraining data to language
models to downstream tasks: Tracking the trails of
political biases leading to unfair NLP models. In
Proceedings of the 61st Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 11737–11762, Toronto, Canada.
Association for Computational Linguistics.

Leo Gao, Stella Biderman, Sid Black, Laurence Gold-
ing, Travis Hoppe, Charles Foster, Jason Phang, Ho-
race He, Anish Thite, Noa Nabeshima, et al. 2020.
The pile: An 800gb dataset of diverse text for lan-
guage modeling. arXiv preprint arXiv:2101.00027.

Amirata Ghorbani and James Zou. 2019. Data shapley:
Equitable valuation of data for machine learning. In
International conference on machine learning, pages
2242–2251. PMLR.

Antonio Ginart, Melody Guan, Gregory Valiant, and
James Y Zou. 2019. Making ai forget you: Data
deletion in machine learning. Advances in neural
information processing systems, 32.

Aditya Golatkar, Alessandro Achille, and Stefano
Soatto. 2020. Eternal sunshine of the spotless net: Se-
lective forgetting in deep networks. In Proceedings
of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 9304–9312.

Roger Grosse, Juhan Bae, Cem Anil, Nelson El-
hage, Alex Tamkin, Amirhossein Tajdini, Benoit
Steiner, Dustin Li, Esin Durmus, Ethan Perez, et al.
2023. Studying large language model general-
ization with influence functions. arXiv preprint
arXiv:2308.03296.

Han Guo, Nazneen Rajani, Peter Hase, Mohit Bansal,
and Caiming Xiong. 2021. FastIF: Scalable influ-
ence functions for efficient model interpretation and
debugging. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing, pages 10333–10350, Online and Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

Varun Gupta, Christopher Jung, Seth Neel, Aaron Roth,
Saeed Sharifi-Malvajerdi, and Chris Waites. 2021.
Adaptive machine unlearning. Advances in Neural
Information Processing Systems, 34:16319–16330.

Frank R Hampel. 1974. The influence curve and its
role in robust estimation. Journal of the American
Statistical Association, 69(346):383–393.

Xiaochuang Han, Daniel Simig, Todor Mihaylov, Yu-
lia Tsvetkov, Asli Celikyilmaz, and Tianlu Wang.
2023. Understanding in-context learning via sup-
portive pretraining data. In Proceedings of the 61st
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 12660–
12673, Toronto, Canada. Association for Computa-
tional Linguistics.

Xiaochuang Han and Yulia Tsvetkov. 2021. Influence
tuning: Demoting spurious correlations via instance
attribution and instance-driven updates. In Findings
of the Association for Computational Linguistics:
EMNLP 2021, pages 4398–4409, Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Xiaochuang Han, Byron C. Wallace, and Yulia Tsvetkov.
2020. Explaining black box predictions and unveil-
ing data artifacts through influence functions. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 5553–
5563, Online. Association for Computational Lin-
guistics.

6321

https://doi.org/10.18653/v1/2022.findings-emnlp.180
https://doi.org/10.18653/v1/2022.findings-emnlp.180
https://doi.org/10.18653/v1/2023.emnlp-main.738
https://doi.org/10.18653/v1/2023.emnlp-main.738
https://doi.org/10.18653/v1/2023.acl-long.656
https://doi.org/10.18653/v1/2023.acl-long.656
https://doi.org/10.18653/v1/2023.acl-long.656
https://doi.org/10.18653/v1/2021.emnlp-main.808
https://doi.org/10.18653/v1/2021.emnlp-main.808
https://doi.org/10.18653/v1/2021.emnlp-main.808
https://doi.org/10.18653/v1/2023.acl-long.708
https://doi.org/10.18653/v1/2023.acl-long.708
https://doi.org/10.18653/v1/2021.findings-emnlp.374
https://doi.org/10.18653/v1/2021.findings-emnlp.374
https://doi.org/10.18653/v1/2021.findings-emnlp.374
https://doi.org/10.18653/v1/2020.acl-main.492
https://doi.org/10.18653/v1/2020.acl-main.492


Thomas Hartvigsen, Saadia Gabriel, Hamid Palangi,
Maarten Sap, Dipankar Ray, and Ece Kamar. 2022.
ToxiGen: A large-scale machine-generated dataset
for adversarial and implicit hate speech detection.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 3309–3326, Dublin, Ireland.
Association for Computational Linguistics.

Andrew Ilyas, Sung Min Park, Logan Engstrom, Guil-
laume Leclerc, and Aleksander Madry. 2022. Data-
models: Understanding predictions with data and
data with predictions. In Proceedings of the 39th In-
ternational Conference on Machine Learning, pages
9525–9587. PMLR.

Joel Jang, Dongkeun Yoon, Sohee Yang, Sungmin Cha,
Moontae Lee, Lajanugen Logeswaran, and Minjoon
Seo. 2023. Knowledge unlearning for mitigating
privacy risks in language models. In Proceedings
of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 14389–14408, Toronto, Canada. Association
for Computational Linguistics.

Jinghan Jia, Yihua Zhang, Yimeng Zhang, Jiancheng
Liu, Bharat Runwal, James Diffenderfer, Bhavya
Kailkhura, and Sijia Liu. 2024. Soul: Unlocking
the power of second-order optimization for llm un-
learning. arXiv preprint arXiv:2404.18239.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980v9.

Pang Wei Koh and Percy Liang. 2017. Understanding
black-box predictions via influence functions. In
Proceedings of the 34th International Conference on
Machine Learning, pages 1885–1894. PMLR.

Pang Wei W Koh, Kai-Siang Ang, Hubert Teo, and
Percy S Liang. 2019. On the accuracy of influence
functions for measuring group effects. Advances in
Neural Information Processing Systems, 32.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 3045–3059, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Stephanie Lin, Jacob Hilton, and Owain Evans. 2022.
TruthfulQA: Measuring how models mimic human
falsehoods. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 3214–3252, Dublin,
Ireland. Association for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Shayne Longpre, Gregory Yauney, Emily Reif, Kather-
ine Lee, Adam Roberts, Barret Zoph, Denny Zhou,
Jason Wei, Kevin Robinson, David Mimno, et al.
2023. A pretrainer’s guide to training data: Measur-
ing the effects of data age, domain coverage, quality,
& toxicity. arXiv preprint arXiv:2305.13169.

Pratyush Maini, Zhili Feng, Avi Schwarzschild,
Zachary C Lipton, and J Zico Kolter. 2024. Tofu: A
task of fictitious unlearning for llms. arXiv preprint
arXiv:2401.06121.

Ronak Mehta, Sourav Pal, Vikas Singh, and Sathya N
Ravi. 2022. Deep unlearning via randomized con-
ditionally independent hessians. In Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 10422–10431.

George A. Miller. 1994. WordNet: A lexical database
for English. In Human Language Technology: Pro-
ceedings of a Workshop held at Plainsboro, New
Jersey, March 8-11, 1994.

Sung Min Park, Kristian Georgiev, Andrew Ilyas, Guil-
laume Leclerc, and Aleksander Mądry. 2023. Trak:
attributing model behavior at scale. In Proceedings
of the 40th International Conference on Machine
Learning, pages 27074–27113. PMLR.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Pytorch: An
imperative style, high-performance deep learning li-
brary. In Advances in Neural Information Processing
Systems, pages 8024–8035. Curran Associates, Inc.

Garima Pruthi, Frederick Liu, Satyen Kale, and Mukund
Sundararajan. 2020. Estimating training data influ-
ence by tracing gradient descent. Advances in Neural
Information Processing Systems, 33:19920–19930.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, Peter J Liu, et al. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Andrea Schioppa, Katja Filippova, Ivan Titov, and
Polina Zablotskaia. 2023. Theoretical and practical
perspectives on what influence functions do. Ad-
vances in Neural Information Processing Systems.

Andrea Schioppa, Polina Zablotskaia, David Vilar, and
Artem Sokolov. 2022. Scaling up influence functions.
In Proceedings of the AAAI Conference on Artificial
Intelligence, pages 8179–8186.

Ayush Sekhari, Jayadev Acharya, Gautam Kamath, and
Ananda Theertha Suresh. 2021. Remember what you
want to forget: Algorithms for machine unlearning.
Advances in Neural Information Processing Systems,
34:18075–18086.

6322

https://doi.org/10.18653/v1/2022.acl-long.234
https://doi.org/10.18653/v1/2022.acl-long.234
https://doi.org/10.18653/v1/2023.acl-long.805
https://doi.org/10.18653/v1/2023.acl-long.805
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2022.acl-long.229
https://doi.org/10.18653/v1/2022.acl-long.229
https://aclanthology.org/H94-1111
https://aclanthology.org/H94-1111


Noam Shazeer and Mitchell Stern. 2018. Adafactor:
Adaptive learning rates with sublinear memory cost.
In Proceedings of the 35th International Conference
on Machine Learning, pages 4596–4604. PMLR.

Anders Søgaard. 2021. Revisiting methods for
finding influential examples. arXiv preprint
arXiv:2111.04683.

Tijmen Tieleman, Geoffrey Hinton, et al. 2012. Lecture
6.5-rmsprop: Divide the gradient by a running aver-
age of its recent magnitude. COURSERA: Neural
networks for machine learning, 4(2):26–31.

Trieu H Trinh and Quoc V Le. 2018. A simple
method for commonsense reasoning. arXiv preprint
arXiv:1806.02847.

Lingzhi Wang, Tong Chen, Wei Yuan, Xingshan Zeng,
Kam-Fai Wong, and Hongzhi Yin. 2023. KGA:
A general machine unlearning framework based on
knowledge gap alignment. In Proceedings of the 61st
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 13264–
13276, Toronto, Canada. Association for Computa-
tional Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Jinghan Yang, Sarthak Jain, and Byron C. Wallace. 2023.
How many and which training points would need
to be removed to flip this prediction? In Proceed-
ings of the 17th Conference of the European Chap-
ter of the Association for Computational Linguistics,
pages 2571–2584, Dubrovnik, Croatia. Association
for Computational Linguistics.

Yuanshun Yao, Xiaojun Xu, and Yang Liu. 2023.
Large language model unlearning. arXiv preprint
arXiv:2310.10683.

Ruiqi Zhang, Licong Lin, Yu Bai, and Song Mei. 2024.
Negative preference optimization: From catastrophic
collapse to effective unlearning. arXiv preprint
arXiv:2404.05868.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022.
Opt: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068.

Jieyu Zhao, Tianlu Wang, Mark Yatskar, Vicente Or-
donez, and Kai-Wei Chang. 2018. Gender bias in
coreference resolution: Evaluation and debiasing

methods. In Proceedings of the 2018 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 2 (Short Papers), pages 15–20, New
Orleans, Louisiana. Association for Computational
Linguistics.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhut-
dinov, Raquel Urtasun, Antonio Torralba, and Sanja
Fidler. 2015. Aligning books and movies: Towards
story-like visual explanations by watching movies
and reading books. In Proceedings of the IEEE In-
ternational Conference on Computer Vision, pages
19–27.

6323

https://doi.org/10.18653/v1/2023.acl-long.740
https://doi.org/10.18653/v1/2023.acl-long.740
https://doi.org/10.18653/v1/2023.acl-long.740
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2023.eacl-main.188
https://doi.org/10.18653/v1/2023.eacl-main.188
https://doi.org/10.18653/v1/N18-2003
https://doi.org/10.18653/v1/N18-2003
https://doi.org/10.18653/v1/N18-2003


5 10 15 20 25 30
dataset proportion (%)

5.05

5.10

5.15

5.20

5.25

5.30

5.35
in

flu
en

ce

5 10 15 20 25 30
dataset proportion (%)

train dataset
Pile-CC
OpenWebText2
CCNewsV2
BookCorpus
Stories
PJ Gutenberg
HackerNews
Wikipedia

Figure 4: Ground-truth influence computed by leave-dataset-out. Left: each counterfactual model is trained on all
the examples except for a training dataset. Right: each counterfactual model is trained for the same number of steps.

Equal Training Dataset Size Different Training Dataset Size

Test Dataset ToxiGen WinoBias TruthfulQA ToxiGen WinoBias TruthfulQA

GradDot -0.017±0.010 0.390±0.020 0.122±0.014 -0.116±0.008 0.445±0.051 -0.483±0.010
GradCos 0.104±0.013 0.554±0.015 0.446±0.028 -0.124±0.004 0.478±0.050 -0.331±0.013
HIF (Arnoldi) -0.194±0.026 0.509±0.018 0.218±0.009 -0.231±0.007 0.513±0.009 -0.243±0.015
HIF (LISSA) -0.002±0.296 0.374±0.149 -0.191±0.199 0.009±0.024 -0.110±0.130 -0.127±0.024
TracIn 0.337±0.005 0.039±0.030 0.574±0.016 -0.037±0.009 0.201±0.003 0.020±0.043

UnTrac 0.421±0.082 0.814±0.060 0.374±0.155 0.440±0.046 0.265±0.149 0.144±0.099
UnTrac-Inv 0.118±0.018 0.854±0.010 0.571±0.025 0.284±0.058 0.249±0.148 0.265±0.014

Table 5: Spearman correlation coefficient between the influence estimated by each method and the ground-truth
influence computed by leave-dataset-out. Each figure denotes the mean and standard deviation across four runs. For
each run, we use different examples randomly sampled from the training dataset to compute its influence.

A Appendix

A.1 How to Compute Leave-Dataset-Out

Figure 4 shows the ground-truth influence as-
sessed by leave-dataset-out where the pertaining
dataset sizes are varied and ToxiGen is used as
a test dataset (see Section 5.2). Leave-dataset-
out assumes a counterfactual model that is trained
on the mixture of all training datasets D ex-
cept for a dataset Z . In the left figure, the
counterfactual model is trained on all the exam-
ples except for the training dataset Z: θ−Z =
argminθ

∑
z∈D\Z L(z,θ). The influence of large

datasets is higher because the size of D \ Z be-
comes smaller, and the performance of model θ−Z
largely depends on the dataset sizes. In the right
figure, each counterfactual model is trained for
the same number of training steps T : θ−Z =
argminθ

∑T
t=1 L(zt,θ) where zt ∼ D \ Z . This

setup does not overestimate the influence of large
datasets. In a practical scenario, we want to figure
out which training datasets should be used under a
fixed computational resource. Thus, the influence

of each training dataset should be compared under
the same number of training steps.

A.2 Implementation Details

Our code is implemented with Python v3.8.13, Py-
Torch v1.12.0 (Paszke et al., 2019), and Transform-
ers v4.18.0 (Wolf et al., 2020). In Section 5.1, we
used the synthetic datasets which are originally cre-
ated in this study. The numbers used in the output
text range from 1 to 256, while the characters and
their part of speech are collected from WordNet
(Miller, 1994, WordNet 3.0 license). Our study
was conducted under the licenses and terms of the
scientific artifacts.

Our experiments were conducted with a single
NVIDIA A100 (80GB) for each run in Section 5.1
and a single Tesla V100 (16GB) for each run in
Section 5.2. Unlearning each training dataset (Un-
Trac) takes approximately two minutes in Section
5.1 and four hours in Section 5.2. Unlearning each
test dataset (UnTrac-Inv) takes approximately one
minute in Section 5.1 and 30 minutes in Section
5.2, not including the time required for evaluation.

6324



A.3 Evaluation by Spearman Correlation
Table 5 shows the Spearman’s rank correlation be-
tween the estimated influence and the ground-truth
influence computed by leave-dataset-out in Section
5.2. The tendency is similar to the result shown in
Table 3, which uses the Pearson correlation as an
evaluation metric. Across all datasets and settings,
the estimated influence by UnTrac and UnTrac-Inv
correlates well with the ground truth.

6325


