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Abstract

As the scale of Large Language Models
(LLMs) increases, it is necessary to compress
the models to reduce the substantial demand
on computational resources. Network prun-
ing significantly reduces the model size by
converting the weight matrix from dense to
sparse data format. Current methodologies ad-
vocate for one-shot pruning to avoid the ex-
pense of retraining, ensuring the maintenance
of model performance under conditions of 50%-
60% unstructured pruning. Nevertheless, matri-
ces characterized by this level of sparsity could
not be treated as sparse matrices, because the
indices would incur significant costs. To miti-
gate this problem, NVIDIA introduced the 2:4
structured sparsity. However, we observe a
notable decline in model performance when
adopting 2:4 structured sparsity due to group
constraints. In this paper, we introduce the
Weight Recover Prune (WRP) approach. By
recovering a minimal set of critical weights,
WRP aims to enhance model performance
while maintaining the efficiency of the com-
pression. Our evaluation of the WRP method
on the LLAMA2 and OPT models shows that
it outperforms other 2:4 pattern one-shot prun-
ing methods. Meanwhile, WRP can guarantee
that the size of the pruned model is about 60%
of the dense model. Our code is available at:
https://github.com/TanZhendong/WRP.

1 Introduction

Nowadays, many Large Language Models (LLMs)
have been developed, based on the transformer
architecture (Zhang et al., 2022; Touvron et al.,
2023a; Achiam et al., 2023). These models have
demonstrated astonishing capabilities across a va-
riety of tasks. However, the deployment of LLMs,
characterized by their billions of parameters, de-
mands substantial hardware resources. For in-
stance, the LLAMA2-70B model, with a size of
129GB, necessitates at least two A100-80GB GPUs

for inference. To mitigate the extensive resource
requirements for model deployment, pruning and
quantization algorithms emerge as two prevalent
strategies. Existing quantization algorithms could
compress LLMs to 4 bits without retraining (Fran-
tar et al., 2022; Lin et al., 2023; Dettmers et al.,
2023), which could significantly reduce the size of
the models.

Network pruning is a model compression ap-
proach orthogonal to quantization algorithms.
Based on the granularity of the pruning algorithm,
it is principally categorized into unstructured prun-
ing and structured pruning. Unstructured prun-
ing offers higher flexibility and typically results
in less precision loss. It converts dense matrices
into sparse matrices by setting certain values in
the weight matrix to zero, thereby achieving model
compression and acceleration. Considering the sig-
nificant training overhead of LLMs, some pruning
algorithms pursue one-shot pruning— that is, they
avoid retraining to recover accuracy (Frantar and
Alistarh, 2023; Sun et al., 2023). Such pruning
methods have demonstrated minimal accuracy loss
but generally could not achieve high levels of spar-
sity, with an optimal sparsity between 50%-60%.
As for the compression of sparse matrices, taking
the Compressed Sparse Row (CSR) data format as
an example, as shown in Figure 1, a sparsity level
of over 70% is usually required to realize compres-
sion benefits. In this context, matrices couldn’t be
treated as sparse for compression and computation
if they do not meet this level of sparsity.

NVIDIA has introduced a solution known as
structured sparsity, or 2:4 sparsity (Mishra et al.,
2021). This pattern mandates that within every
group of 4 values, at most 2 values can be re-
tained. Firstly, this leads to a 50% degree of spar-
sity, which is beneficial for the performance of
models following one-shot pruning. Moreover, by
compressing the indices, it ensures efficient com-
pression under 50% sparsity. Additionally, this
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approach could achieve a 2x math throughput in-
crease on the NVIDIA Ampere GPU architecture.
As a result, this pattern and compressed format are
more hardware-friendly than unstructured sparsity
at 50%. However, due to its grouping constraints,
there is a notable decline in accuracy compared to
unstructured pruning at 50%. For instance, when
applying Wanda pruning (Sun et al., 2023) to the
LLAMA-7B model, the resulting perplexity on the
WikiText dataset under unstructured 50% and 2:4
pattern conditions are 7.26 and 11.53, respectively.
This indicates that there is still room for improve-
ment in performance of 2:4 pattern.

In this work, we observe a performance gap be-
tween the 2:4 pattern and unstructured 50% prun-
ing. Consequently, our primary objective is to en-
hance the model performance of the one-shot 2:4
pattern pruning, while ensuring the model compres-
sion is achieved. In section 3.1, we observed that
some crucial weights might be incorrectly pruned
in the 2:4 pattern pruning. Based on this phe-
nomenon, we propose the Weight Recover Prune
(WRP) approach, which aims to improve model
accuracy by restoring a minor portion of critical
weights, while for the majority of the matrix is still
adopting a 2:4 pattern. To safeguard the compres-
sion efficacy, we partition the weight matrix into
two separately stored entities: one is the 2:4 pat-
tern and the other is high sparsity matrix, as shown
in Figure 1. This approach allows us to achieve
a balance between model size and performance,
addressing the challenge inherent in the structured
2:4 sparsity pattern.

The main contributions of this work are:

• We explore the differences in mask selection
between 2:4 pruning and unstructured 50%
pruning. The results indicate that 2:4 pruning
might incorrectly prune a small number of
values with larger metrics.

• We propose the Weight Recover Prune (WRP)
approach, which enhances the model perfor-
mance after 2:4 pruning by recovering the cru-
cial weights.

• We evaluate our approach on the LLAMA2
and OPT models. The results indicate that our
approach can recover the model performance
while ensuring the model compression effect.

2 Related Work

Network Pruning. Network pruning is a com-
monly used method for model compression. It
typically results in a loss of model accuracy, ne-
cessitating the adoption of various techniques for
its restoration. Training is a common method for
recovering accuracy. Based on the relationship be-
tween training and pruning, this process could be
categorized into three distinct approaches: pruning
before (re)training, pruning during training, and
pruning without retraining.

Han et al. (2015) introduced Deep Compression,
which designed a three-stage pipeline: pruning,
trained quantization, and Huffman coding. This
approach is considered a milestone in the field
of model compression. Additionally, the Lottery
Ticket Hypothesis shows that pruning could be con-
ducted at the network initialization phase (Fran-
kle and Carbin, 2018; Wang et al., 2020). Prun-
ing during training typically needs to design a
weight importance estimation to accurately remove
non-essential weights during the training process
(Molchanov et al., 2019; Evci et al., 2020). Finally,
the second-order information is commonly used for
restoring accuracy without retraining (LeCun et al.,
1989; Hassibi et al., 1993; Frantar and Alistarh,
2022).

Structured 2:4 Sparsity. NVIDIA proposed the
2:4 sparsity pattern, which typically requires re-
training to recover model accuracy (Mishra et al.,
2021). Channel permutations could be utilized to
enhance model accuracy and alleviate the limita-
tions of group constraints (Pool and Yu, 2021). For
the 2:4 sparse matrix format, cuSparseLt provides
the corresponding operators (NVIDIA, 2020). Py-
Torch has also implemented support for 2:4 Spar-
sity (Cai, 2023).

LLMs Pruning. Due to the substantial resources
required for training LLMs, LLMs pruning aims to
restore accuracy with minimal overhead, primarily
through fine-tuning or one-shot pruning.

LLM-Pruner (Ma et al., 2023) implements struc-
tured pruning by identifying dependencies and re-
moving some of them. LoRAPrune (Zhang et al.,
2023) designs a LoRA-guided pruning criterion,
integrating LLM pruning with LoRA (Hu et al.,
2021). These approaches typically rely on fine-
tuning to achieve improved accuracy, which might
necessitate high-quality fine-tuning datasets and
additional computational resources.
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Figure 1: Illustration of the Weight Recover Prune (WRP) approach: we respectively store the sparse matrix in a 2:4
pattern and the recover weights. Indices storage is the primary additional overhead.

SparseGPT (Frantar and Alistarh, 2023) is an
approach based on second-order information, en-
hancing accuracy through weight reconstruction.
Dettmers et al. (2022, 2023) demonstrates the pres-
ence of outliers in LLMs during model quantiza-
tion. Building on this observation, Sun et al. (2023)
introduced the Wanda metric, which not only per-
forms superiorly on LLMs but also achieves faster
pruning speeds. These methods typically exhibit
great performance in unstructured pruning; how-
ever, they fall short of achieving higher levels of
sparsity, such as 70%. When adopting a 2:4 pat-
tern, their accuracy suffers due to group constraints.
Inspired by these challenges, we focus on improv-
ing the accuracy of the 2:4 pattern with minimal
overhead.

3 Weight Recover Prune

3.1 2:4 Pattern vs. Unstructured 50%

In Section 1, we have discussed the benefits and
drawbacks of the 2:4 pattern compared to an un-
structured 50% approach. It is obvious that the
2:4 pattern is more practical than the unstructured
50% pruning. In this part, we will focus on: what
distinguishes the choice of pruning masks between
the 2:4 pattern and the unstructured 50% pruning
when using the same metric?

First of all, we must clarify that in implement-
ing unstructured 50% pruning, we typically do not
prune the 50% of weights with the lower metrics
across the entire weight matrix. Instead, the ap-
proach targets each row individually. This means
sorting the weights within each row of the weight
matrix and pruning the 50% with lower metrics.

pattern A
1:4 or 3:4

2:4

0:4 or 4:4

pattern B

pattern C

× ×

× × × ×

×

Figure 2: Three patterns of X:4. × represents different
weight choices of 50% unstructured and a 2:4 pattern.

To understand different mask choice between
the 2:4 pattern and unstructured 50% pruning, we
divide unstructured pruning matrix into three pat-
terns, as shown in Figure 2. Figure 2 depicts
a weight matrix that has been unstructured 50%
pruned. We consider every four elements as a
group, resulting in five possible scenarios: X:4,
where X denotes the quantity of remaining ele-
ments ranging from 0 to 4. Regarding pattern A
(1:4 or 3:4), when applying 2:4 pattern pruning, ex-
actly one weight is incorrectly removed. Taking the
3:4 case of pattern A as an example, let’s assume
these four values are a1, a2, a3, and a4. If during
the unstructured 50% pruning, a2 is pruned, then
the following is observed:

a2 ∈ Sm≤50% ≤ a1, a3, a4 ∈ Sm≥50%

where m represents the metric used for pruning.
Consequently, when applying the 2:4 pattern, a2
would definitely be pruned again, and additionally,
the smallest among a1, a3, and a4 would also be
incorrectly pruned. Similarly, for pattern B, there
would not be any weights incorrectly pruned. For
pattern C, there would be two weights incorrectly
pruned.
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layer 0:4 1:4 2:4 3:4 4:4
0.q 6.16 25.05 37.66 24.92 6.22
0.k 6.16 25.09 37.59 24.94 6.23
0.v 6.18 25.04 37.59 24.97 6.22
16.q 6.25 25.00 37.52 24.98 6.26
16.k 6.23 25.01 37.53 25.01 6.23
16.v 6.24 24.99 37.53 25.00 6.24
30.q 6.25 24.99 37.52 24.99 6.25
30.k 6.23 25.01 37.53 24.98 6.24
30.v 6.24 24.99 37.54 25.00 6.24

Table 1: LLAMA2-7B proportions of X:4 with Wanda
pruning (%)

To analyze the proportions of three patterns
within unstructured pruning, we use the Wanda
metric (Sun et al., 2023) to prune the LLAMA2-7B
model. The results are summarized in Table 1. In
total, approximately 40% of the groups conform to
a 2:4 pruning pattern, around 25% of the groups
probably would prune one crucial weight element,
and roughly 6.25% of groups might prune two cru-
cial weight elements. This results in suboptimal
accuracy. Consequently, a natural thought arises:
we could recover those values that were potentially
incorrectly pruned in 2:4 pattern to enhance the
model performance.

3.2 Determining the Weights for Recover

In this section, we focus on the process of recover-
ing those values that were potentially incorrectly
pruned in a 2:4 pattern. To address this issue, we
need to determine the following two aspects:

1. How can we identify the weights that need to
be recovered?

2. How many weights need to be recovered to
enhance the model performance?

The primary pruning metrics contain three main
types: magnitude, second-order information (Has-
sibi et al., 1993), and Wanda. Within the framework
of a one-shot pruning, we typically calculate met-
rics for each element first. Then, prune masks are
selected based on the magnitude of these metrics.
Generally, the larger the metric, the more impor-
tant that weight element is considered. Similarly,
we believe that these metrics could effectively re-
flect the impact of the elements on model accuracy.
Therefore, we introduce a ratio factor α, indicating
that the elements with the highest α metrics are

referred to as crucial weights, which should not be
pruned in 2:4 pattern.

In this case, the elements that need to be recov-
ered are those crucial weights that were pruned by
the 2:4 pattern. We formalize the recover elements
as follows:

Wrecover = Wα ∩W2:4

Furthermore, the linear layer in the model could be
modified as:

xW T + b = xW T
2:4 + xW T

recover + b

By adjusting the value of α, we could control
the proportion of elements to recover. Typically,
an increase in the value of α would make more
elements recovered. This would reduce the sparsity
of Wrecover, but improve more in model accuracy.
We provide the pseudo code of our approach in
algorithm 1.

Algorithm 1 Weight Recover Prune

Ensure: W2:4, Wrecover

Require: W, M(metrics), α
1: mask2:4=prune(W, M, "2:4")
2: maskα = topk(W, M, α)
3: maskrecover = maskα ∩mask2:4
4: W2:4 = to_sparse_semi_structured(W [mask2:4])

5: Wrecover = to_sparse_csr(W [maskrecover])

3.3 Recover with Block
The sparse format of unstructured matrix com-
monly poses challenges in exploiting Tensor Cores,
resulting in suboptimal performance during large-
scale Sparse Matrix Multiplication (SpMM), even
with a high degree of sparsity. A potential solution
to this issue is the adoption of the Blocked-ELL
sparse matrix format (NVIDIA, 2022; Yamaguchi
and Busato, 2021). As a result, we extend the WRP
to accommodate block sparse formats, thereby mit-
igating the impact on performance.

Unlike Section 3.2, we couldn’t directly compute
the recovered weights for each element. Instead,
the weight matrix must be processed in blocks. Ac-
cordingly, we introduce two additional hyperpa-
rameters: b and k. Here, b represents the block size
for matrix, and k denotes the number of blocks to
be recovered in each row. Following the applica-
tion of a 2:4 pattern pruning, we calculate the sum
of the metrics for the pruned weights within each
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block, serving as the metric for the entire block.
This is expressed as follows:

Mblock =
i0+b∑

i=i0

j0+b∑

j=j0

mij , (maskij ̸= 1)

In computation, the metric of the retained
weights within the 2:4 pattern should be set to zero.
Then, for each block, calculate the sum of the met-
rics. We recover the k blocks with the highest
metrics in each row after tiled. Parameters b and k
jointly control the sparsity of the recovery matrix,
with its sparsity increasing as values of b increase
and k decrease. To achieve better performance, b
is typically chosen as a power of 2. Overall, the
method of block recovery could achieve better com-
putational efficiency, while the recovery of weights
in an unstructured manner showcases the best trade-
off between compression effects and improvement
in model performance. We provide the pseudocode
for block recovery in Algorithm 2.

Algorithm 2 Weight Recover Prune for Block

Ensure: W2:4, Wrecover

Require: W, M(metrics), b(blocksize), k
1: mask2:4=prune(W, M, "2:4")
2: M [mask2:4] = 0
3: M_block = block_sum(M, b)
4: maskrecover = topn(M_block, k)
5: W2:4 = to_sparse_semi_structured(W [mask2:4])

6: Wrecover = to_blocked_ELL(W [maskrecover])

4 Experiment

4.1 Setup
Models. We evaluate our approach using the
LLAMA2 (Touvron et al., 2023b) and OPT (Zhang
et al., 2022) model families. LLAMA2 is a suite of
pre-trained and fine-tuned generative text models,
comprising models of 7 B, 13 B, and 70 B param-
eters, respectively. We apply the WRP to each of
these configurations. In contrast, OPT is GPT-3
style, with a more classical Transformer decoder-
only architecture. Compared to LLAMA2, it offers
more selection of model sizes, thereby facilitating
our exploration into the scaling trends of LLMs.

Evaluation. We evaluate the performance of the
model on language capabilities: perplexity, a met-
ric also utilized by prior works (Frantar et al., 2022;
Frantar and Alistarh, 2023; Sun et al., 2023). We

conducted tests on the perplexity metric using Wiki-
Text (Merity et al., 2016) and the c4 dataset (Raffel
et al., 2019). To enhance the evaluation of LLMs,
we use the Language Model Evaluation Harness
(Gao et al., 2023) to assess performance on 5 zero-
shot tasks of models: HellaSwag (Zellers et al.,
2019), PIQA (Bisk et al., 2020), WinoGrande (Sak-
aguchi et al., 2019), OpenBookQA (Mihaylov et al.,
2018), RTE (Wang et al., 2018).

Baselines. We compare our method WRP against
two prior pruning methods which could readily
adopt a 2:4 pattern:

• Wanda (Sun et al., 2023) is a pruning metric
that is simple and effective on LLMs. Fur-
thermore, we use Wanda as the 2:4 pattern
pruning for WRP, which implies that Wanda
2:4 could be considered as a scenario of WRP
without recovering.

• SparseGPT (Frantar and Alistarh, 2023) is a
pruning method based on second-order infor-
mation and uses weight reconstruction to re-
store model performance. Through compar-
ison, we aim to verify the effectiveness of
crucial weights in recovering model accuracy.

Both approaches adopt a 2:4 pattern. Regarding cal-
ibration data, as recommended by SpQR (Dettmers
et al., 2023), we utilize the RedPajama dataset
(Computer, 2023) for LLAMA2 and the c4 dataset
for OPT. The length of the samples is uniformly set
at 128.

Pruning what? Following the approaches of
SparseGPT and Wanda, we skip pruning the em-
bedding layer and the final classification head layer.
For the remaining layers in the Transformers archi-
tecture, which are all Linear layers, we uniformly
apply the 2:4 pattern pruning to all weight matrices.

4.2 Model Perplexity

Recover effect. We use SparseGPT, Wanda and
WRP to prune the LLAMA2 model family sepa-
rately. We select the recover ratio α of 0.25. And
the average density of recover matrix is approxi-
mately 1.5%. The perplexity results are summa-
rized in Table 2.

Compared to weight reconstruction, WRP
demonstrate a more effective capability in recover-
ing the perplexity of the LLAMA2 model family
during 2:4 pattern. Due to the group constraints,
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Size Method PPL(wikitext2) PPL(c4)

7B

Dense 5.47 6.97
SparseGPT 10.58 13.32

Wanda 11.97 14.22
WRP 8.69 10.58

13B

Dense 4.88 6.47
SparseGPT 8.54 11.29

Wanda 8.87 11.28
WRP 7.01 9.02

70B

Dense 3.32 5.52
SparseGPT 5.63 8.15

Wanda 5.47 7.50
WRP 4.78 6.74

Table 2: WRP (α = 0.25) can recover the model per-
plexity of 2:4 pattern pruning on LLAMA2-family.

Wanda’s performance demonstrate a significant de-
cline in the 2:4 pattern compared to the unstruc-
tured 50% pruning. Considering that WRP utilize
the Wanda metric, this result confirm that Wanda
could identify the crucial weights efficiently. Fur-
thermore, it is observed that with only a minimal
set of these crucial weights (approximately 1.5%),
a significant reduction in model perplexity could
be achieved.

The impact of α. To explore the influence of the
recover ratio α, we execute WRP on LLAMA2-7B
model with varying α values. The results are shown
in Figure 3. As α increases, a notable decrease in
the model perplexity is observed, alongside a grad-
ual increase in the average sparsity of the recover
matrix. Overall, with an additional weight of less
than 2%, the model’s perplexity on the Wikitext2
dataset decreased from 11.97 to 8.69. We recom-
mend selecting an α value between 0.2 and 0.3 to
achieve an optimal trade-off between model per-
plexity and size. Furthermore, we provide results of
block recovery, with details presented in Appendix
B.

4.3 Zero-shot Tasks

We evalute pruned LLAMA2 and OPT models on
5 zero-shot tasks. Resuls are shown in Table 3 and
Appendix A respectively. For HellaSwag, PIQA,
and OpenBookQA tasks, we present the normal-
ized accuracy.

For the OPT models, we choose more model
sizes, from 2.7B to 30B parameters. As the scale
increases, we observe that the accuracy on some
datasets does not improve and even declines. For
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Figure 3: Exploring the impact of factor α on model
perplexity and the average density of recover weight in
LLAMA2-7B.

instance, the accuracy of OPT-30B on the RTE
dataset is 57.8%, whereas for OPT-13B, it is 58.1%.
We speculate that this instability in performance
across different model scales might be attributable
to factors inherent to the models or the evalua-
tion tasks themselves. WRP is capable of outper-
forming Wanda for most tasks, while SparseGPT
achieves better results in certain cases such as OPT-
13B. However, for the LLAMA2 model, an in-
crease in scale consistently leads to improvements
in accuracy across all tasks. WRP significantly en-
hances the 2:4 pattern accuracy of Wanda and also
surpasses SparseGPT in most tasks.

4.4 Model Size

To explore the efficacy of WRP on model compres-
sion, we prune the OPT model and compress the
2:4 pattern and recover weight matrix with the data
format illustrated in Figure 1. Additionally, we di-
rectly use Wanda to perform a 2:4 pattern pruning
to verify the additional overhead associated with
the recover matrix. The results are presented in
Table 4.

We select different recover ratios α, because the
value of α influences the size of the model. We use
32 bits for storing CSR indices, which is the main
additional overhead of a sparse matrix. Given that
the actual proportion of recover crucial weights
varies across different layers, the compression ratio
of the model exhibits some degree of fluctuation.
Overall, the model size after WRP compression is
approximately 62% of the dense model, while for
the 2:4 pattern compression is about 58%. Conse-
quently, WRP demonstrates little addtional over-
head compared to 2:4 pattern. Furthermore, we
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Size Method HellaSwag PIQA WinoGrande OpenBookQA RTE Average

7B

Dense 75.9 79.0 69.1 44.0 63.2 66.2
SparseGPT(50%) 70.0 77.3 69.7 42.4 53.4 62.6

Wanda(50%) 70.7 76.7 67.0 42.0 54.2 62.1
SparseGPT(2:4) 56.7 70.8 64.5 35.4 55.2 56.5

Wanda(2:4) 54.5 70.9 61.9 37.4 53.4 55.6
WRP(α=0.25) 63.1 74.2 66.1 38.8 54.2 59.3

13B

Dense 79.4 80.6 72.2 45.4 65.0 68.5
SparseGPT(50%) 74.4 78.1 72.5 43.2 62.8 66.2

Wanda(50%) 76.1 78.7 70.9 44.4 60.6 66.1
SparseGPT(2:4) 62.7 73.8 69.6 36.6 58.8 60.3

Wanda(2:4) 62.1 74.0 65.7 35.6 57.0 58.9
WRP(α=0.25) 69.9 77.3 69.1 41.2 61.0 63.7

Table 3: Accuracies (%) for 5 zero-shot tasks with 2:4 pattern on LLAMA2-family. For HellaSwag, PIQA, and
OpenBookQA tasks, we present the normalized accuracy (acc_norm). (50%) means unstructured 50% pruned
model.

Size Dense 2:4 WRP(α=0.20) WRP(α=0.25) WRP(α=0.30) WRP(α=0.35)
1.3B 2.5GB 1.5GB 1.6GB 1.6GB 1.7GB 1.8GB
2.7B 5.0GB 2.9GB 3.1GB 3.2GB 3.3GB 3.5GB
6.7B 13GB 7.2GB 7.5GB 7.7GB 8.1GB 8.5GB
13B 24GB 14GB 15GB 15GB 16GB 17GB
30B 56GB 32GB 34GB 35GB 36GB 38GB

Table 4: The compressed model size for the OPT-family with different α.

provide the model size results of Blocked-ELL data
format in Appendix C.

4.5 Inference Kernel

PyTorch has supported the 2:4 pattern SpMM using
either CUTLASS or cuSparseLt libraries. Conse-
quently, we directly use PyTorch to evaluate the
2:4 pattern latency. Considering that PyTorch does
not support the Blocked-ELL data format, we im-
plement a SpMM kernel for the Blocked-ELL for-
mat as a PyTorch Extension using cuSparse. The
performance of sparse matrix computations is gen-
erally influenced by the matrix sparsity, computing
hardware, and the scale of the problem. We as-
sume a density level of 6.25% for Blocked-ELL,
which is enough to offer a balance between recover-
ing model performance and achieving acceleration.
Furthermore, we set the batch size to 1 and the
sequence length to 2K, controlling problem scales
through hidden states. These tests were conducted
on both A100 and RTX 4090 GPUs, with the re-
sults detailed in Table 5.

For A100 GPUs, we observe that acceleration is
not guaranteed and depend on the scale of the prob-
lem. Specifically, for the acceleration using a 2:4

pattern on A100 GPUs, we were able to achieve a
speedup of approximately 1.3×, which aligns with
(Cai, 2023). Compared to the theoretical maximum
of a 2× increase in mathematical throughput, there
is still room for improvement. Typically, signif-
icant acceleration is observed when dealing with
larger matrices. For the RTX 4090 GPUs, a more
pronounced acceleration effect could be achieved,
with speedup ratios generally exceeding 1.1×. We
speculate that different GPU architectures might
result in different capabilities to process sparse and
dense matrices. As a result, the actual acceleration
achieved is dependent on the specific application
context.

5 Conclusions

In this work, we propose the Weight Recover Prune
(WRP) methodology for achieving structured spar-
sity in LLMs. Observing the notable performance
gap between the 2:4 pruning pattern and the un-
structured 50% pruning, our WRP technique en-
hances the model performance associated with the
2:4 pattern by recovering a minimal set of crucial
weights, thereby ensuring the efficiency of model
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Device Hidden State 2:4(ms) Blocked-ELL(ms) Dense(ms) Speedup
A100 4096 0.274 0.064 0.324 0.95×
A100 7168 0.733 0.147 0.971 1.1×

RTX 4090 4096 0.276 0.081 0.412 1.15×
RTX 4090 7168 0.718 0.230 1.377 1.45×

Table 5: Kernel test of WRP, including 2:4 and blocked-ELL matmul. The density of blocked-ELL is 6.25%.

compression. With the recovery of approximately
1.5% of these crucial weights, the WRP approach
can significantly improve the perplexity of models,
while the compressed models are approximately
60% of their original size. We hope that our work
could contribute to the semi-structured pruning for
LLMs.

6 Limitations

WRP achieves a good trade-off between model
performance and compression effectiveness. How-
ever, due to the fact that sparse matrices in CSR
format typically couldn’t utilize NVIDIA Tensor
Cores for acceleration, our recover matrix is unable
to achieve enhanced inference speed even if very
high sparisty. If, in the future, it becomes feasible
to implement SpMM kernels for high-sparsity un-
structured sparse matrices, we believe WRP might
offer a certain level of speedup.

Blocked-ELL could be a potential solution for
acceleration. Therefore, we extend our method
to block recovery. However, we discover that, al-
though block recovery offers some restoration of
model accuracy, it results in a notable decline in per-
formance compared to the effects of unstructured
recover weights format. As a result, we believe that
block recovery does not achieve the optimal trade-
off between accuracy and compression. Overall,
in pursuit of hardware acceleration, we introduce
additional constraints, which adversely affect the
model’s performance.
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A OPT Zero-shot Tasks

We evaluate 5 zero-shot tasks on OPT models, with
scales ranging from 2.7B to 30B parameters. The
results, as shown in Table 8, indicate that WRP
outperforms Wanda across nearly all tasks, and
surpasses SparseGPT at the 2.7B and 30B levels.
For models scale at 6.7B and 13B parameters, WRP
shows a slight decrease in performance compared
to SparseGPT.

B Perplexity of Block Recover

We evaluate the block recovery on the LLAMA2-
7B and 13B models across various block sizes and
numbers of columns. The results are illustrated
in Tables 6 and 7. Generally, a smaller block size
and a larger number of columns are associated with
enhanced model performance. Moreover, under
equivalent sparsity levels, an unstructured recovery
matrix format demonstrates superior performance
compared to block recovery.

Block Column PPL(wikitext2) PPL(c4)
64 4 10.72 12.84
64 8 9.86 11.86
32 8 10.66 12.80
32 16 9.74 11.78
16 16 10.60 12.7
16 32 9.57 11.58

Table 6: Perplexity of Block recover on LLAMA2-7B

Block Column PPL(wikitext2) PPL(c4)
64 5 8.20 10.49
64 10 7.62 9.81
32 10 8.18 10.46
32 20 7.57 9.74
16 20 8.05 10.33
16 40 7.48 9.59

Table 7: Perplexity of Block recover on LLAMA2-13B

C Model Size of Block Recover

We evaluate the compression efficacy on OPT mod-
els. The results are presented in Table 9. De-
spite the Blocked-ELL data format typically stor-

ing more non-zero values, its requirement for fewer
indices results in great compression performance.

D Compatible with 4:8 Sparsity

Wanda and SparseGPT also provide the results of
4:8 sparsity. They typically adjust the group size
to 8, that is, retaining 4 out of every 8 elements.
Although such 4:8 sparsity cannot be compressed
and accelerated like the 2:4 pattern, considering
their compatibility, we also implement 4:8 sparsity.
Results are show in Table 10.

One thing can be certain is that when adopting
4:8 sparsity, the constraints of the group will be
weakened, hence the gains from WRP will decrease
than 2:4. It is foreseeable that as the group size
increases, such as to 16, 32, 128, the effectiveness
of the pruning algorithm will increasingly approach
the unstructured 50%.
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Size Method HellaSwag PIQA WinoGrande OpenBookQA RTE Average

2.7B

Dense 60.6 74.8 61.0 35.2 55.2 57.4
SparseGPT 49.2 70.5 58.1 31.6 51.6 52.2

Wanda 45.7 68.9 55.6 32.4 52.7 51.1
WRP 49.7 70.8 59.0 32.0 54.2 53.1

6.7B

Dense 67.2 76.6 65.4 37.4 55.2 60.4
SparseGPT 57.0 73.5 61.8 36.6 54.2 56.6

Wanda 54.2 71.8 58.8 34.4 52.3 54.3
WRP 58.1 73.5 62.0 35.4 52.7 56.3

13B

Dense 72.3 76.8 65.0 39.0 58.1 62.2
SparseGPT 59.5 73.8 62.5 37.2 53.8 57.4

Wanda 58.0 72.4 61.6 33.2 53.8 55.8
WRP 60.7 73.7 62.8 34.4 54.5 57.2

30B

Dense 72.3 78.1 68.2 40.4 57.8 63.4
SparseGPT 64.8 77.1 65.3 36.8 54.2 59.6

Wanda 63.4 75.5 63.5 36.2 54.9 58.7
WRP 66.7 76.2 65.3 37.6 56.3 60.4

Table 8: Accuracies (%) for 5 zero-shot tasks with 2:4 pattern on OPT-family. For HellaSwag, PIQA, and
OpenBookQA tasks, we present the normalized accuracy (acc_norm).

Average Density OPT-1.3B OPT-2.7B OPT-6.7B OPT-13B OPT-30B
6.25% 1.6GB 3.2GB 7.8GB 15GB 35GB
12.5% 1.7GB 3.4GB 8.3GB 16GB 37GB

Table 9: OPT model size for block recovery, where block size = 32.

Models Method PPL(Wikitext2) PPL(c4) Recover Density

LLAMA2-7B

SparseGPT 8.32 10.70
Wanda 8.58 10.40

WRP(α=0.25) 8.03 9.78 0.56%
WRP(α=0.35) 7.32 9.01 1.92%

LLAMA2-13B

SparseGPT 6.87 9.32
Wanda 6.95 8.91

WRP(α=0.25) 6.61 8.50 0.59%
WRP(α=0.35) 6.20 7.99 1.93%

LLAMA2-70B

SparseGPT 4.87 7.20
Wanda 4.77 6.73

WRP(α=0.25) 4.59 6.56 0.78%
WRP(α=0.35) 4.36 6.33 1.98%

Table 10: WRP can also recover the model perplexity of 4:8 pattern pruning on LLAMA2-family.
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