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Abstract

Mixture of experts (MoE) is a popular tech-
nique to improve capacity of Large Language
Models (LLMs) with conditionally-activated
parallel experts. However, serving MoE mod-
els on memory-constrained devices is challeng-
ing due to the large parameter size. Typical
solutions such as memory swapping or expert
pruning may lead to significantly higher latency
or severe accuracy loss. In this paper, we in-
troduce SwapMoE, a framework for efficient
serving of MoE-based large language models
with tunable memory budgets. The main idea
of SwapMoE is to keep a small dynamic set
of important experts, namely Virtual Experts,
in the main memory for inference, while seam-
lessly maintaining how the Virtual Experts map
to the actual experts. Experiments have shown
that SwapMoE can reduce the memory foot-
print while maintaining reasonable accuracy.
For example, on text summarization tasks with
Switch Transformer, SwapMoE can reduce the
memory consumption from 14.2 GiB to 4.7
GiB, together with 50% latency reduction and
a slight Rouge-2 score drop of 0.041.

1 Introduction

Recently, the world has witnessed the great ad-
vancement of pre-trained large language models (Li
et al., 2024). Such an advancement is driven by the
phenomenon that the larger model capacity gen-
erally leads to higher intelligence (Kaplan et al.,
2020). Among various attempts to scale up neural
networks, Mixture of Experts (MoE) (Shazeer et al.,
2017) is a promising technique that can avoid lin-
early increasing computation based on conditional
sparse computation. However, memory-costrainted
devices is often a major concern in edge AI train-
ing and serving (Huang et al., 2023b; Gim and Ko,
2022; Wang et al., 2022; Ma et al., 2023; Kong
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et al., 2023). The constraint is even more challeng-
ing for large MoE models. For example, a Switch
Transformer (Fedus et al., 2022) with 64 experts
per layer requires 14 GiB of memory for inference,
which is impossible to fit in consumer devices that
typically have only 8 GiB, 4 GiB, or lower mem-
ory size. What’s more, many consumer devices
need to serve multiple applications, and the system-
allocated memory budget for each application is
even more limited.

Researchers have proposed various methods to
reduce the memory footprint of MoE model in-
ference. The most straightforward approach is
to use memory swapping, i.e. dynamically load-
ing/unloading the parameters from/to the exter-
nal memory. For example, Huang et al. (2023a)
propose to load experts into the memory on de-
mand to reduce memory footprint but introduce
additional latency overhead, EdgeMoE (Yi et al.,
2023) focuses on memory swapping in the decod-
ing phase of MoE-based language models and re-
duces the swapping overhead using quantization.
However, it only considers the scenario of single
token inference, which does not align with real-
world use cases. Other algorithm-perspective ap-
proaches (Chen et al., 2022; Kim et al., 2021) pro-
pose to prune the experts to reduce model size.
However, swapping-based approaches either have
to trade latency for a reduced memory footprint,
while pruning-based methods would lead to ac-
curacy loss and require model training. How to
efficiently serve an off-the-shelf MoE model under
memory constraints remains challenging.

Fortunately, there is a unique property in many
MoE workloads that can be exploited for perfor-
mance optimization - activation locality. For ex-
ample, in generative language models, the output
tokens are produced one by one, and they mostly
belong to the same semantic context. The succes-
sive queries of a user are also semantically related.
Such locality can potentially lead to consistent ac-
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tivation patterns of MoE experts, therefore create
room for more intelligent expert management.

Our work. We introduce SwapMoE to enable ef-
ficient continuous MoE serving under memory con-
straints. The key idea is to maintain a dynamically-
updated compact set of Virtual Experts in the main
memory for MoE inference, instead of the redun-
dant set of all experts in the original model. The
weights of Virtual Experts are seamlessly updated
according to the data distribution locality and pro-
filed hardware capabilities. As such, the memory
footprint and latency of each individual inference
process in SwapMoE are the same as running a
smaller MoE model, while the advantage of large-
capability MoE remains since each expert still has
the chance to participate in the computation.

We implement SwapMoE with Huggingface
Transformers (Wolf et al., 2019) library. To eval-
uate the effectiveness of SwapMoE, we conduct
experiments with Switch Transformer (Fedus et al.,
2022) (SwitchT for short), and GPTSAN (gpt,
2023) models on natural language processing tasks,
compared with the normal model inference scheme
and strong baselines. For example, on text sum-
marization tasks with Switch Transformer, Swap-
MoE can reduce the memory consumption from
14.2 GiB to 4.7 GiB (67% less), together with
50% latency reduction and a slight Rouge-2 score
drop of 0.041, which shows that SwapMoE en-
ables the serving of large MoE models on resource-
constrained consumer devices with limited memory
budgets.

We summarize our key technical contributions
as follows:

• We propose a novel MoE inference framework
that supports efficient serving of large MoE
models under memory constraints. Our method
enables deployment of off-the-shelf MoE mod-
els to consumer devices with tunable memory
budgets.

• We investigate several properties of MoE mod-
els, including the expert activation locality, per-
sample expert importance, and layer-wise tol-
erance to absent experts, which can potentially
benefit other works on MoE optimization.

• We implement SwapMoE with popular infer-
ence frameworks and conduct extensive exper-
iments with large MoE models on consumer
devices. The results have demonstrated the ef-
fectiveness of our approach on natural language
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Figure 1: SwitchT-16: Naive on-demand expert loading
reduces memory, but also results in huge inference over-
head.

0.0 0.2 0.4 0.6 0.8 1.0
Latency components

MoE layers loading
MoE layers computing
MoE layers releasing
Other layers computing

Figure 2: SwitchT-16: Latency breakdown of MoE
model inference with layer-wise memory swapping.
The transmission of model weights consumes the major-
ity of the time.

processing tasks.

2 Background and Motivation

The sparse MoE (Shazeer et al., 2017) is the most
commonly used, in which only one or few (repre-
sented as k) experts are activated for each input.
Specifically, in a sparse MoE with k = 1, only the
i-th expert with max G(x)i is activated for input x,
and the output y = G(x)iEi(x).

The MoE structure is often accompanied by the
Transformer architecture (Liang et al., 2022; Zhang
et al., 2022), in which the input of each MoE layer
is a sequence of tokens and each token may choose
different experts in one MoE layer.

2.1 Limitations of Conventional Solutions
Existing methods for reducing the resource over-
head of MoE model inference include on-demand

Figure 3: Weight loading may block computation when
running MoE with layer-wise memory swapping. Due
to the large size of MoE layers and sparse computation,
loading the weights of a layer is always slower than
computing the layer, which slows down the inference
even if the weights are loaded asynchronously.
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Figure 4: The workflow of SwapMoE. Given an off-the-shelf MoE model and a memory-constrained consumer
device, we satisfy the constraint by executing the model with a smaller set of experts (Virtual Experts). The
Virtual Experts are selected, used and updated seamlessly at runtime, and the memory allocation for the experts is
determined at offline.

loading (Lane et al., 2016) (i.e. loading the pa-
rameters of MoE layers when they are needed and
release afterwards) and MoE model pruning (Chen
et al., 2022; Kudugunta et al., 2021) (i.e. cutting
the less important experts permanently).

While the on demand loading method can re-
duce the GPU memory usage during MoE model
inference without affecting model accuracy, it intro-
duces significant latency overhead with each MoE
layer parameter transmission via PCIe. In Figure 1,
running MoE models with on-demand loading in-
troduces 6.2x-8.9x higher latency. Meanwhile, the
transmission of a large amount of parameter data
can significantly impede the computation process.
As shown in Figure 2 and Figure 3, model parame-
ters transmission takes up most inference time and
significantly obstructs the model’s computational
process and may deplete IO resources.

The pruning-based method directly reduces the
model’s parameter and computational load, thereby
lowering the GPU memory usage and inference
latency during MoE model inference. However, it
greatly compromises the model’s performance due
to compromised the models’ capacity. For example,
when utilizing expert pruning to reduce memory
usage by 30% on SwitchT-32, the model’s accu-
racy decreased by 14%. SwapMoE combines the
advantages of both methods - we try to reduce the
latency overhead of memory saving while striving
to maintain the model accuracy at the same time.

2.2 Activation Locality in MoE Models

Data distribution locality is an important charac-
teristic in many AI applications, which refers to
the phenomenon that successive input samples are
distributionally similar or correlated. Firstly, each
inference process of the model produces a token,

Figure 5: (a) Original gating of MoE: all experts may
by used for inference; (b) Ours Masked Gating: only
Virtual Experts will be used.

and the successive tokens belong to the same sen-
tence. Secondly, AI models are usually deployed
in a fixed environment and used for serving an in-
dividual user or organization, the successive input
samples (e.g. conversations) are semantically close
to each other.

Since each expert in a MoE model is trained to
handle certain data distribution, there exists an op-
portunity to cache the most relevant experts in the
main memory at each time step, therefore reducing
the memory consumption. The data distribution
locality in AL applications further produces the
change to reuse the cached experts for successive
input samples, which can reduce the overhead of
parameter loading.

3 Our Design: SwapMoE

SwapMoE utilizes a two-phase holistic design, as
shown in Figure 4. In the online phase, the job of
SwapMoE is to efficiently identify, update, and use
a subset of experts (Virtual Experts) for memory-
constrained MoE inference. The job of the offline
phase is to obtain an optimal memory plan for
the online phase to facilitate efficient and accurate
MoE inference.
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Figure 6: Different loading strategy of Virtual Experts.
i) synchronously updating all experts after single sample
inference; ii) amortized asynchronous expert loading
across different samples.

3.1 Importantance-aware Virtual Experts
Selection & Inference

Firstly, we must wisely select the most important
experts and update them according to the data dis-
tribution to maintain accuracy with Virtual Experts-
based MoE inference. To address this problem, we
introduce the concept of the expert importance
score, which can be written as

importance(Ei, X) =

Xi∑

x

||x||∗||G(x)i||∗||Ei||,

(1)
where Xi is the set of tokens passed to expert Ei

during the inference process of X . This score only
involves simple magnitude computation thus can
be calculated efficiently.

As shown in Figure 5, we use Masked Gating to
redirect all inference requests to Virtual Experts.

3.2 Seamless Virtual Experts Update

Once we have the importance scores for all experts,
we can update Virtual Experts accordingly at run-
time by loading the important experts into the main
memory and the unimportant experts out. We intro-
duce two techniques to reduce overhead, including
amortized expert loading and asynchronous ex-
pert loading, as shown in Figure 6 (ii).

3.3 Fine-grained Expert Profiling

To facilitate efficient and accurate model inference,
it is necessary to know the performance of Virtual
Experts given a specific hardware and configuration
and determine what kind of configuration will lead
to better perfromance. We conduct fine-grained
expert profiling in advance, gather information re-
lated to hardware memory usage, inference latency,

accuracy, and IO bandwidth, and establish the re-
lationship between Virtual Experts configurations
and performance, Specifically, configurations are:

config = {frequency, num_experts}
num_experts = {#experts1, ...,#expertsL},

(2)

where frequency represents the update frequency
of the experts in the core, indicated as the number
of inputs between each pair of updates. #expertsi
denotes the number of experts to be retained in the
core for the i-th layer.

Problem Formulation. The primary objective
of offline planning is to identify the optimal config-
uration ˆconfig that meets memory constraints while
maximizing the model’s accuracy and minimizing
inference latency. Formally, the process can be
described as follows:

maximize Eaccuracy(config),

minimize Elatency(config),

s.t. Ememory(config) ≤ LIMITmemory,
(3)

where Eaccuracy, Ememory, and Elatency are used to
estimate the accuracy, memory footprint, and infer-
ence latency of a model under a specific configu-
ration. LIMITmemory represent the constraints on
main memory.

3.4 Profiling-guided Memory Planning
Section 3.1 and Section 3.2 have shown how the
Virtual Experts are selected and used for inference
at runtime. However, many questions remain unan-
swered. For example, how to distribute Virtual
Experts across different layers, how to allocate lim-
ited memory size to different layers, and how to
make the best use of limited memory bandwidth
and enabling frequent updates of experts without
blocking computations, etc. These questions are
crucial to satisfy the memory constraint and min-
imize accuracy loss. They are addressed through
a profiling-guided memory planning, which using
profiling information obtained from Section 3.3.

3.4.1 Expert I/O Frequency
The update frequency affects the usage of IO band-
width, and if too much data need to be transferred
through IO, it will cost a long time and block the
computation. In other words, when the experts
in Virtual Experts are no longer important for the
current sample, we need to promptly replace them
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with the latest important experts. A higher up-
date frequency is naturally preferable, but increased
frequency can escalate hardware IO resource con-
sumption, potentially even obstructing inference
computation and leading to increased latency. At
the same time, because a higher frequency is more
beneficial for dynamically maintaining the most
important experts, it is important to increase the
frequency as much as possible without blocking the
computation. Our strategy involves testing from a
low update frequency to a high update frequency
until we identify the inflection point at which the
update frequency affects the inference latency, al-
lowing us to select the optimal update frequency.

3.4.2 Layer Space Allocation

To allocate the limited memory budget to different
layers, allow layers with more memory to utilize
more Virtual Experts, find the optimal configura-
tion ( ˆconfig) that maximizes the model accuracy
while satisfying given memory constraints, we uti-
lize memory planner to obtain the optimal mem-
ory allocation scheme based on the previously ob-
tained performance model obtained from Eaccuracy,
Ememory, and Elatency in Section 3.3.

A naive method to find the optimal configuration
is to iterate over all possible configurations and
keep track of the best-performing one. However,
we found that this approach does not fully leverage
the modeled functions to find the optimal config-
uration due to the enormous search space. For
instance, the search space in a 12-layer SwitchT-16
would be 1216.

Consequently, we employ the genetic algo-
rithm (Holland, 1992) for the search process.
Specifically, we initialize a set of configurations
randomly, and iteratively update them based on
their performance metrics estimated with Eaccuracy,
Ememory and Elatency. In each iteration, we ran-
domly change one parameter in each configuration
and create new configurations by exchanging or
averaging existing configurations. The configura-
tions that violate resource constraints or yield sub-
optimal performance are removed. We observed
that certain layers in the model may have a more
significant impact on model performance. The ge-
netic algorithm can perceive this characteristic and
preserve experts that have a greater influence on
performance. In Section 4, we will illustrate some
configurations found by the algorithm.

4 Evaluation

4.1 Experimental Setup

Platforms. We use two devices: a Jetson Nano and
a Jetson AGX ORIN. The batch sizes are all set
to 1 as in common edge-side continuous serving
scenarios. We use different latency and memory
budgets to simulate different resource constraints.

Tasks, datasets and models. We evaluate the
performance of SwapMoE on two common DL
tasks:

Summarization aims to summarize long texts
into short texts. We select the most popular summa-
rization model, Switch Transformer (Fedus et al.,
2022) (16, 32, and 64 experts per layer, denoted as
SwitchT-16, SwitchT-32 and SwitchT-64) and use
the samsum dataset (Russakovsky et al., 2015) and
report Rogue-2 accuracy, where higher Rogue-2
accuracy means better.

Language modeling aims to predict the next
word given the previous words. We use GPT-
SAN (Artetxe et al., 2022) as the base model and
use the Wikipedia-japanese (wik, 2023) dataset for
evaluation. The performance of the language model
is measured by perplexity, where lower perplexity
means better.

The pre-trained weights of the Switch Trans-
formers and GPTSAN are obtained from the of-
ficial Huggingface Transformer repository. All
datasets can be downloaded from public websites.

Baselines. The basic baseline is original MoE
model. To show the superiority of SwapMoE,
we also compare it with the following baselines:
‘Pruning’ (keeping a certain portion of experts
with the largest magnitude ||Ei|| in each layer,
no switching in/out), ‘On demand’ (Huang et al.,
2023a) (keep a certain portion of experts in main
memory, load the requested expert from memory
on demand). ‘Pruning’ is akin to a simplified
version of pruning-based methods without train-
ing, while ‘On demand’ is a simplified version of
swapping-based approaches.

4.2 Overall Runtime Performance

Our approach offers good memory-latency trade-
offs. As shown in Figure 7, in terms of latency,
our approach and the ‘Pruning’ method exhibit
very similar memory-latency trade-offs. This indi-
cates that our approach, while ensuring minimal
model accuracy degradation, enables the model to
occupy less memory and achieve reduced inference
latency. Although the ‘On demand’ method can
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Figure 7: End-to-end latency achieved by SwapMoE and baselines under different memory budgets on Jetson AGX.
SwapMoE achieves similar latency with the pruned compact models while with much more parameters in use.

significantly reduce memory usage, its cost comes
in the form of high latency overhead.

Our approach also offers good memory-accuracy
tradeoffs. As shown in Figure 8a and Figure 8b,
SwapMoE creates a trade-off space that accommo-
dates various resource usages. Higher resource uti-
lization leads to better model performance and vice
versa; and, even if resource consumption reduces,
SwapMoE still maintains the model’s performance.
For example, in summarization task, SwapMoE re-
duces memory usage and latency by 37% and 18%
with only 0.012 Rouge-2 degradation on Jetson
AGX.

It is worth noting that SwitchT-64 cannot be di-
rectly deployed on Jetson Nano, as its hardware has
a maximum memory support of 4GB, while the in-
ference demand of SwitchT-16 exceeds 4GB. Nev-
ertheless, in Figure 8b, our approach significantly
outperforms the ’Pruning’ baseline. For instance,
on Jetson Nano, when reducing the memory foot-
print of SwitchT-64 from 14GiB to 2.6GB, Swap-
MoE achieves an accuracy that is 175% higher than
the baseline.

SwapMoE also outperforms the baselines,
demonstrating its effectiveness. Under the same
memory budget, it achieves better performance
than the baselines. For example, in SwitchT-32,
when the memory usage is 4.7GB, the Rugue score
of SwapMoE is 0.232, which is 8.76% higher than
the ’Pruning’ baseline. This is because we select
the most important experts based on the character-
istics of input samples, rather than simply pruning
the MoE model into a smaller but static model.
However, we cannot surpass the on-demand ap-
proach because it does not alter the model’s output.
However, its high latency makes it unsuitable for
edge scenarios where both latency and memory are
constrained.

4.3 Offline Planning Performance

SwapMoE can find optimal configurations that sat-
isfy given constraints while maximizing model per-

Method Constraints Achieved performance
Memory budget (GiB) Memory (GiB) Latency (s) Rogue-2

Original MoE \ 4.08 0.82 0.2

vExperts

2.0 1.64 0.45 0.21
3.0 2.74 0.65 0.22
3.5 3.58 0.76 0.23
4.0 3.99 0.80 0.23

Table 1: Performance of SwapMoE with SwitchT-16
under different memory constraints .

formance, as shown in Table 1. For example, when
given a memory budget of 2.0 GiB, the configu-
ration found by SwapMoE allows the model to
achieve an actual 1.64 GiB peak GPU memory us-
age and 0.82 s inference latency, satisfying the con-
straints while experiencing a 0.01 Rogue-2 score
increase compared to the original MoE model.

Furthermore, it is observed that as the constraints
become looser, SwapMoE can achieve higher ac-
curacy, and conversely, tighter constraints result
in lower accuracy. It found optimal configurations
under various constraints, respectively, to maxi-
mize the utilization of resources. For example, in
the summarization task, when the memory budget
changed from 3.5 GiB to 4 GiB, the actual peak
GPU memory and inference latency of the model
during runtime changed from 3.58 GiB and 0.76
s to 3.99 GiB and 0.80 s, respectively. The accu-
racy also changed from 0.23 to 0.2. However, our
method is not always able to satisfy the budget. For
example, in the summarization task with SwitchT-
16, when the memory budget is set to 3.5 GiB, the
actual peak memory usage and inference latency
achieved by the model are 3.58 GiB and 0.76 s,
respectively. This situation arises because the infer-
ence performance of the model itself is difficult to
predict accurately (Zhang et al., 2021), leading to
inaccurate performance modeling.

Additionally, we find that the distribution of Vir-
tual Experts across different layers differs in dif-
ferent tasks. In the language modeling task, Swap-
MoE tends to maintain more experts in the middle
layers, as shown in Figure 9 (a). This suggests that
for language models, the intermediate MoE layer
has a greater impact on model inference, as the in-
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Figure 8: The accuracy achieved by SwapMoE and the pruning baseline under different memory budgets on (a)
Jetson AGX and (b) Jetson Nano. SwapMoE achieves significantly higher accuracy than the baseline in almost all
cases.

Figure 9: Distribution of allocated memory across layers
under different memory budgets with SwitchT-16.
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Figure 10: Ablation study: performance of Swap-
MoE with different components replaced.

termediate layers have a more significant influence
on logical processing.

4.4 Robustness Analysis

In this experiment, we analyze the robustness of
SwapMoE across different usage scenarios.

Different number of Experts. SwapMoE can
be used for MoE models with different numbers
of experts. As shown in Figure 8a, SwapMoE
finds good performance-resource tradeoffs between
Switch Transformers (16, 32, and 64) with differ-
ent resource usage. And SwapMoE can reduce
the resource consumption of SwitchT-64 to a level
similar to that of SwitchT-32, while maintaining
comparable accuracy. This demonstrates that our
method can effectively prune large MoE models
into well-performing smaller models based on re-

source constraints, eliminating the need to store
multiple model sizes.

4.5 Ablation study

In Figure 10, we show the performance of Swap-
MoE when replacing one component from the sys-
tem. The experimental results indicate that the
absence of any component in SwapMoE leads to
performance degradation. In other words, all com-
ponents contribute to the performance of Swap-
MoE.

(1) ‘Simple scheduling’: change the scheduling
in SwapMoE component, remove amortized updat-
ing component, and calculate expert importance
score where experts with more tokens to inference
have higher scores. The perplexity of SwapMoE
is better than ‘simple scheduling’ because the im-
portance score obtained by our method is more
accurate via approximating the outputs of experts,
instead of simplely counting the number of tokens
dispatched to each expert.

(2) ‘Simple planning’: change the planning in
SwapMoE component to ‘simple planning’ and
adopt an even Virtual Experts distribution, meaning
that each MoE layer has an equal number of Virtual
Experts, and then selects the best from these search
spaces, where search space is very limited and does
not encompass the optimal solution. The perplexity
of SwapMoE is superior to ‘simple planning’ be-
cause the memory planner utilizes genetic search to
find the optimal configuration for SwapMoE from
a large configuration space. In contrast, ‘simple
planning’ cannot find a worse configuration than
SwapMoE due to the suboptimal search process.
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Memory External Memory IO Overhead (MiB/s)
Constraint (GiB) Consumed (GiB) Peak Mean

1.2 1.02 40 20
1.5 1.02 36 27
1.8 1.02 13 11

Table 2: The runtime overhead of SwapMoE.

4.6 Overhead

We report the overhead of SwapMoE in the object
detection task with the Swin-MoE model.

Offline planning overhead. The offline plan-
ning phase includes performance modeling and op-
timal configuration generation. Performance mod-
eling only needs to be done once for a MoE model,
which takes about 20 minutes. Optimal configura-
tion generation needs to be done with each different
resource constraint, which takes about 5 seconds.

Runtime overhead. The runtime overhead in-
cludes calculating expert importance score, expert
swapping, and different expert request handling
strategies. As shown in Table 2, the peak IO over-
head of SwapMoE is about 20 MiB/s, which is
negligible compared to the IO bandwidth between
the main memory and the external memory (e.g.,
10-30 GiB/s for GPU-CPU over PCIe and 300-600
MiB/s for CPU-SSD). This is because the design
of SwapMoE enables us to swap only a small num-
ber of experts. The “External Memory Consumed”
means the space needed in the external memory
(CPU memory or storage) to store the weights of
experts. We store the original MoE model param-
eters in external memory to reduce the usage in
main memory.

5 Related Work

Systems optimization for MoE model serving.
Common techniques for optimizing MoE model
serving include offloading and swapping memory.
Huang et al. (Huang et al., 2023a) propose to swap
the experts from GPU memory to CPU memory to
reduce the memory consumption of MoE models,
incurring high latency overhead. SE-MoE (Shen
et al., 2022) utilizes Ring Memory offloading to
reduce GPU memory consumption of MoE mod-
els. However, these methods are not suitable for
resource-constrained devices with dynamic latency
and memory constraints.

Optimization for dynamic DL model serving.
MoE is a type of dynamic neural networks. Many
approaches are introduced to enable or enhance
such dynamic DL model serving in general. Nim-
ble (Shen et al., 2021) is a system that optimizes,
compiles, and executes dynamic neural networks

on multiple platforms by using a dynamic type
system and a lightweight virtual machine runtime.
Model scaling approaches (Fang et al., 2018; Han
et al., 2021; Wen et al., 2023) propose to adjust the
model size/architecture on edge devices to meet
different resource constraints. Remix (Jiang et al.,
2021) proposes to use multiple models and dynami-
cally switch between them during the inference pro-
cess. Besides serving dynamic models, researchers
have also attempted to slice the static model to
dynamic components to achieve different resource-
performance tradeoffs (Hou et al., 2022; Zhang
et al., 2020). As compared with these approaches,
our design is fundamentally different because it is
based on the unique structure and characteristics of
MoE.

Efficient design of MoE models. Many ex-
isting approaches study the efficiency problem of
MoE models from the model design perspective.
GShard (Lepikhin et al., 2020) scales up Trans-
former with MoE and improves the quality and ef-
ficiency of multilingual machine translation. Task-
MoE (Kudugunta et al., 2021) extract subnet from
a large MoE model by a task-level routing strategy.
Chen et al. (Chen et al., 2022) propose to prune
non-professional experts according to the down-
stream task for efficient MoE deployment. MPoE
(Gao et al., 2022) proposes to build a parameter-
efficient MoE architecture by enforcing parameter
sharing between the experts. AutoMoE (Jawahar
et al., 2022) utilizes neural architecture search to
automatically design more efficient MoE models.
These methods need to modify and retrain the MoE
model to reduce resource consumption. They are
orthogonal to our approach and can use our method
to further reduce resource consumption.

6 Conclusion

This paper addresses the challenges of deploying
MoE models to resource-constrained edge devices.
We propose a framework called SwapMoE that
adaptively reduces the inference costs of MoE mod-
els based on the memory constraints while preserv-
ing the model accuracy. Experimental results have
demonstrated that our method can significantly re-
duce the inference costs of MoE models with rea-
sonable accuracy degradation. SwapMoE creates a
nice space of resource-accuracy trade-off of SoTA
large MoE models. Our work does not have ob-
vious ethical impacts, as we focusing on model
inference acceleration.
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7 Limitations

The tasks considered in this paper are relatively
limited, and the proposed method has not been eval-
uated across a wide range of tasks. Subsequently,
we will continue to expand our evaluation to other
NLP tasks. The paper did not test larger MoE mod-
els (e.g., those exceeding 70B parameters) due to
computational resource constraints. Instead, ex-
periments were conducted only on smaller Switch
Transformers models, demonstrating the effective-
ness of the proposed method.
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detailed profiling of the experts, encompassing the
inference memory footprint, latency, and loading
time. This is crucial as the overall cost is composed
of numerous experts within the Virtual Experts.

Expert memory footprint: We conducted a de-
tailed profiling of the memory footprint for the
inference of each individual expert within the MoE
layer. This includes the memory occupied by the
parameters of each expert and the memory occu-
pied by the activations generated during inference
computation. Expert inference latency: The ex-
pert inference latency encompasses both data trans-
mission and computation. We profiled the data
transmission and computation time for each expert.
Given that the parameters of each expert within
a layer are identical, we only need to profile one
expert per layer. Expert loading time: The load-
ing time for each expert refers to the time taken
for expert parameter transmission. As expert load-
ing involves the transmission of data in I/O, we
also need to profile the I/O resources to ensure that
computation does not get blocked during expert
loading.

With expert-level profiling data, we can obtain
the whole model performance, where the compu-
tational load during model inference is mainly re-
lated to the number of experts in the configuration:
the more experts there are, the larger the inference
latency and memory footprint will be, and vice
versa. While the expert’s inference latency and
memory differ across different hardware, we only
need to model it once for a given hardware to obtain
Ememory, and Elatency.

A.2 Accuracy Influence Modeling
Different distributions of Virtual Experts across
layers may lead to different influences to model
accuracy. To obtain the optimal configuration of
expert distribution, we must have the ability to effi-
ciently obtain the accuracy of each configuration.
Directly measuring this accuracy influences on the
target device is time-consuming because it requires
running the MoE model under different configura-
tions for multiple times. Since the configuration
space of expert distributions is large, measurement
is impractical. Therefore, we decide to use machine
learning to model the accuracy influence based on
profiling data.

Specifically, to obtain Eaccuracy, we first need to
collect a small amount of labeled profiling samples
from the target device that can reflect the data dis-
tribution of the deployment scenario. The samples

are then used to measure the accuracy of SwapMoE
under different configurations. Since the deployed
models will be used in the target environment for
a long time, it is feasible to collect such profiling
data. The data labeling can be done manually or
with an oracle model.

Next, we generate a set of random configura-
tions of Virtual Experts. For each configuration,
we use SwapMoE under the configuration to per-
form model inference with the profiling dataset. We
collect the corresponding Eaccuracy. Note that when
collecting Eaccuracy, SwapMoE is operated by the
runtime scheduler, which can refer to Section 3.1
and Section 3.2.

Finally, we learn the relation between Virtual Ex-
perts configurations and the model accuracy with a
small DNN (containing two fully-connected layers
with ReLU). The DNN is lightweight and sufficient.
It minimizes the residual sum of squares between
the actual accuracy and predicted Eaccuracy. The
training of this DNN is exceptionally fast, with
very low computational cost, typically converged
in just a few minutes (on Jetson Nano) with the
prediction error less than 1%.
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