
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 7293–7307
August 11-16, 2024 ©2024 Association for Computational Linguistics

CQIL: Inference Latency Optimization with Concurrent
Computation of Quasi-Independent Layers

Longwei Zou1, Qingyang Wang2, Han Zhao3,
Jiangang Kong3, Yi Yang3, Yangdong Deng1

1Tsinghua University, 3DiDi Global Inc,
2BNU-HKBU United International College

zoulw22@mails.tsinghua.edu.cn, q030026149@mail.uic.edu.cn
{zhaohan,kongjiangang,yangyiian}@didiglobal.com

dengyd@tsinghua.edu.cn

Abstract
The fast-growing large scale language models
are delivering unprecedented performance on
almost all natural language processing tasks.
However, the effectiveness of large language
models are reliant on an exponentially increas-
ing number of parameters. The overwhelming
computation complexity incurs a high infer-
ence latency that negatively affects user expe-
rience. Existing methods to improve inference
efficiency, such as tensor parallelism and quan-
tization, target to reduce per-layer computing
latency, yet overlook the cumulative latency
due to the number of layers. Recent works on
reducing the cumulative latency through layer
removing, however, lead to significant perfor-
mance drop. Motivated by the similarity of
inputs among adjacent layers, we propose to
identify quasi-independent layers, which can
be concurrently computed to significantly de-
crease inference latency. We also introduce
a bypassing technique to mitigate the effect
of information loss. Empirical experiments of
the proposed approach on the LLaMA models
confirm that Concurrent Computation of Quasi-
Independent Layers (CQIL) can reduce latency
by up to 48.3% on LLaMA-33B, while main-
taining a close level of performance. 1

1 Introduction

Large Language Models (LLMs) are offering un-
precedented power to deliver remarkable perfor-
mance across diverse tasks of natural language
processing. The exceptional performance, how-
ever, comes at the cost of increasing model size
and, consequently, higher inference latency. For
example, the per-token inference time for GPT-4 is
approximately three times longer than that of GPT-
3.5, according to measurements from the OpenAI
API 2. Such a high latency has a direct impact on

1Code is available at https://github.com/Photooon/CQIL
2Note that latency can vary depending on time and loca-

tion; the reported times is based on observations at the authors’
location.

0 6 12 18 24 300
6

12
18
24
30

La
ye

r

2.7B

0 6 12 18 24 300
6

12
18
24
30

7B

0 8 16 24 32
Layer

0
8

16
24
32

La
ye

r
13B

0 12 24 36 48
Layer

0
12
24
36
48

33B

0.2

0.4

0.6

0.8

1.0

Figure 1: Similarity of inputs across layers in LLaMA-
1 models. Sub-figure with title "2.7B" represents the
similarity of inputs in Sheared-LLaMA-2.7B(Xia et al.,
2023). It highlights that adjacent layers have highly sim-
ilar input. Notably, such similarity of inputs becomes
increasingly evident in larger models at deeper layers,
suggesting the quasi-independence of deeper layers and
the potential for parallel computation.

user experience, highlighting the urgent need to
mitigate inference delays of LLMs.

LLMs typically consist of a large number of
sequentially connected layers with identical struc-
tures. For better illustration, we analyze the in-
ference latency of LLMs along two dimensions:
per-layer latency and the cumulative latency due
to all layers. Existing low-latency inference meth-
ods, like tensor parallelism, quantization (Dettmers
et al., 2022; Xiao et al., 2023), and unstructured
pruning (Han et al., 2016; Frantar and Alistarh,
2023; Sun et al., 2023) and low-rank factorization
(Lan et al., 2020; Lv et al., 2023), primarily focus
on minimizing per-layer latency. Meanwhile, there
are works, such as structured pruning (Ma et al.,
2023; Xia et al., 2023) and dynamic early existing
(Xin et al., 2020), proposed to address the cumula-
tive latency through removing and/or dynamically

7293



omitting layers. These approaches, unfortunately,
often result in considerable performance degrada-
tion and potential loss of learned knowledge (Geva
et al., 2021). Therefore, it’s critical to develop ef-
fective methods that can reduce the latency related
to the total number of layers while preserving the
model performance.

This work is inspired by the observation that ad-
jacent layers in LLMs share significantly similar
inputs. Such similarity suggests the possibility of
substituting a layer’s input with that of a certain
preceding layer without significantly altering its
output. Such layers sharing input are designated as
quasi-independent layers in this work. As a result,
the computing dependency between adjacent layers
can be eliminated and thus unleash the potential of
parallel computation. We introduce a framework
of Concurrent Computation of Quasi-Independent
Layers (CQIL), to reduce LLM inference latency
by parallelizing the computation across layers with
similar inputs. Additionally, we develop a bypass-
ing technique to transmit the output of attention
modules among input-aligned layers, with the pur-
pose of minimizing the information loss. Extensive
experiments demonstrate reductions of inference
latency by up to 48.3% on the LLaMA-33B model,
with a minor impact on performance. We also
discuss the implication of CQIL in the context of
ensembles, which may offer deeper insights into
the fundamental characteristic of LLMs.

The major contributions of this work are as fol-
lows. First, we propose CQIL, a novel approach to
enhance the inference efficiency of LLMs through
concurrent computation of quasi-independent lay-
ers, effectively addressing the challenge posed by
the increasing number of layers. Second, our
method enables the adaptation of pre-trained LLMs
into ensemble-like models with minimal perfor-
mance loss, which may provide deeper insights for
layers’ characters in LLMs. Third, We effectively
reduce the inference latency of LLaMA models,
with minimal impact on the model performance.

2 Related Work

Efficient Inference Approaches Model com-
pression techniques, such as pruning (Frantar and
Alistarh, 2023; Sun et al., 2023; Ma et al., 2023;
Xia et al., 2023), quantization (Dettmers et al.,
2022; Xiao et al., 2023), low-rank factorization
(Lan et al., 2020; Lv et al., 2023), and knowledge
distillation (Hinton et al., 2015; Sanh et al., 2019;

Jiao et al., 2020; Sun et al., 2020), reduce infer-
ence latency by trimming parameters in the model.
Methods like dynamic early exit (Xin et al., 2020)
and speculative decoding (Leviathan et al., 2023;
Chen et al., 2023) leverage intermediate layer out-
put and output from smaller models to predict the
final outcome ahead of time. Flash Attention (Dao
et al., 2022) enhances the efficiency of attention
computation by carefully orchestrating computa-
tion and memory usage. These methods are orthog-
onal to our approach, allowing for potential inte-
gration for a higher level of improvement. Notably,
we test the combination of the pruning approach
with our method, detailed in Section 5.6.

Parallelism Beyond removing the model’s pa-
rameters, latency reduction and throughput en-
hancement can also be achieved through parallel
computation strategies. Typically, parallelism in
LLM computation includes data parallelism (Rajb-
handari et al., 2020), pipeline parallelism (Harlap
et al., 2018; Huang et al., 2019), and tensor par-
allelism. Among these, only tensor parallelism
addresses the inference latency by distributing lay-
ers computation across multiple GPUs. Similar to
tensor parallelism, our method employs additional
GPUs to decrease latency. Therefore, we conducted
comparison experiments in Section 5.5. Results
show that, compared with tensor parallelism, our
method consistently reduces latency across various
batch size, making it more amenable to the sce-
nario of online inference. In addition, our approach
is orthogonal to tensor parallelism and we could
achieve further acceleration by integrating tensor
parallelism with CQIL.

Transformers with Parallel Architecture Pre-
vious works have explored the acceleration of pre-
training phases through the parallelization of trans-
former architectures. GPT-J (Wang and Komat-
suzaki, 2021) and PaLM (Chowdhery et al., 2022)
achieve efficiency improvements by parallelizing
the attention and feedforward modules within trans-
former layers, allowing concurrent computation
for the beginning projection in these two modules.
Other research efforts (Gao et al., 2020; Wang et al.,
2023) have enhanced model performance by ex-
panding model width through parallel layers design,
and still focus on the pre-training stage. Our work
applies concurrent computation of layers to a pre-
trained LLMs, aiming at reducing latency while
maintaining model performance. Our approach
thus differs from existing methods that focus on

7294



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Layer

1
3
7

k

6.0

7.5

>9

Figure 2: Sensitivity of Input Substitution. We individually replace the input of layer l with that of the layer l − k
and evaluate the perplexity. A darker block indicates a higher perplexity and diminished performance. When k ≥ l,
there is no corresponding layer for l − k, therefore these parts are left blank in the figure. The original perplexity is
around 6. The drawing shows that both bottom and top layers (bottom refers to the direction close to the embedding
layer) are sensitive to the input substitution, whereas the majority of middle layers are relatively insensitive.

pre-training transformers with parallel architecture
in terms of both motivation and methodology.

3 Preliminary

In this section, we present a systematic investiga-
tion that motivates the design of the proposed ap-
proach introduced in Section 4. Our discussion pro-
ceeds under the assumption of pre-layer normaliza-
tion, which is adopted by most LLMs (Brown et al.,
2020; Zhang et al., 2022b; Touvron et al., 2023).
In following experiments, we utilize the LLaMA-1
(Touvron et al., 2023) and Sheared-LLaMA-2.7B
(Xia et al., 2023) models, with the input samples
randomly selected from the RedPajama (Computer,
2023) dataset. We first investigate the similarity of
inputs across layers in LLMs, which suggests the
quasi-independence of deeper layers and the poten-
tial for parallel computation. Second, we explore
the effect of substituting a layer’s input with that
of its preceding layers, which aids in identifying
potential layers for parallel processing with minor
performance degradation.

3.1 Similarity of Layer Input

For a LLM with L layers, we define the input to the
layer l as xl ∈ RB,T,H , where B, T , and H denote
batch size, token count, and hidden dimension size,
respectively. The output from the layer l is denoted
as xl+1 = xl+Fl(xl). We employ cosine similarity
to quantify the similarity of inputs between layers.

Figure 1 reveals the similarity of inputs across
layers in LLaMA models with different parame-
ter sizes. The following two primary observations
emerge from our experiment results. First, input
similarity intensifies with increasing depth within
the model, attributed to the cumulative effect of
pre-layer normalization, which makes the input dif-
ference Fl−1(xl−1) between adjacent layers l − 1

and l increasingly negligible compared with the cu-
mulative value xl = x1+F1(x1)+...+Fl−1(xl−1).
Second, larger models exhibit more obvious simi-
larity of inputs, suggesting that layers in such mod-
els are quasi-independent and parallel computation
may be more readily available in such models.

While prior research (Zhang et al., 2023; Din
et al., 2023) has identified output similarity across
layers to facilitate inference efficiency through
pruning, our approach is based on a different moti-
vation with a more systematic perspective. Experi-
mental results of previous works indicate that layer
pruning often result in substantial performance de-
clines. For instance, although the Sheared-LLaMA-
1.3B model has a similar hidden dimension size
to that of the Sheared-LLaMA-2.7B, it contains
eight fewer layers and consequently results in sig-
nificantly performance drop on downstream tasks.
Contrary to removing layers, our approach seeks to
parallelize layer computation to reduce inference
latency while preserving the model performance.
In addition, our method is orthogonal to pruning
techniques and the compatibility is further demon-
strated in Section 5.6.

We then empirically assess the effect of substitut-
ing each layer’s input with that of preceding layers,
facilitating the identification of layers suitable for
parallel computation.

3.2 Sensitivity of Input Substitution

As shown in Figure 1, adjacent layers have similar
inputs. It is thus appealing to identify possible lay-
ers for parallel computation, i.e., quasi-independent
layers. In this section, we substitute the input of
a layer with that of preceding layers to evaluate
the sensitivity of each layer and thus justify the
feasibility of quasi-independent layers. Specifi-
cally, the output of the model can be written as

7295



(a) Pipeline (b) CQIL (c) CQIL with Bypassing

G
PU

1
G

PU
2

GPU1 GPU2 GPU1 GPU2

B
ypassing

Figure 3: The proposed method. (a-c) depict the pipeline inference as well as the CQIL with and without the
bypassing technique. The pipeline inference represents the standard setup, where layers are processed sequentially.
In contrast, CQIL substitutes the input for layer 2 with that of layer 1, enabling concurrent computation across two
GPUs for latency reduction. Given that both layers produce attention outputs concurrently, and the attention output
of layer 1 serves as an input for layer 2 in the original model, the bypassing technique transmits the attention output
from GPU1 to GPU2, minimizes the information loss and improves the model performance.

xL+1 = x1 +F1(x1) + ...Fl(xl) + ...FL(xL). For
layer l, we replace the input of Fl with xl−k, which
is the input of layer l − k, and keep other terms
unchanged. This process is repeated for every layer
individually, assessing their adaptability to input
changes through perplexity measurements on val-
idation set. When perplexities of the original and
the input-substituted models are similar, it is feasi-
ble to concurrently compute these two layers.

As illustrated in Figure 2, our substitution trials
with the LLaMA-7B model indicate that the input
for a majority of the middle layers can be effec-
tively replaced by those of their immediate prede-
cessors while maintaining a similar performance. It
is observed that both the bottom and top layers are
sensitive to input changes. The bottom layers dis-
play less input similarity compared to subsequent
layers. In addition, substitution in bottom layers
leads to a propagation of errors from substituted in-
puts through subsequent layers, thereby amplifying
their susceptibility to input changes. The top lay-
ers, due to their direct connection with the output
distribution, also experience a notable impact on
performance if their input are substituted.

The empirical findings suggest that most mid-
dle layers offer a tolerance for input substitution.
In other words, it is feasible to relax the comput-

ing dependence by using the same input to quasi-
independent layers, revealing the potential of paral-
lel computation for latency reduction.

4 Methodology

4.1 Problem Statement

Given a LLM with pre-layer normalization, we can
formulate the computation of layer l as Eq. 1 and
Eq. 2. ATTN and FFN represent the attention and
feedforward modules in each layer. n denotes the
number of heads, and dk specifies the dimension
size of each head.

xl+1 = xl + ATTNl(xl) + FFNl(xl + ATTNl(xl))
(1)

ATTN(x) = MHA(Norm(x))

MHA(x) = Concat(head1, ..., headn)W
O

headi = Attention(xWQ
i , xW

K
i , xW V

i )

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V

FFN(x) = W 2f(W 1(Norm(x)) + b1) + b2

(2)

7296



Algorithm 1: Concurrent Computation of
Quasi-Independent Layers
Input : input x1, model with L layers,

group size p, start layer s, end
layer e and bypassing distance d.

Output :output xL
1 for l = 1 → s, step=1 do
2 al = xl + ATTNl(xl)
3 xl+1 = al + FFNl(al)

4 end
5 for l = s+ 1 → e, step=p do
6 reqs1, reqs2, attns = [], [], []
7 for i = 0 → p− 1, step=1 do
8 reqs1.add(non_block_exec(
9 al+i,attn = ATTNl+i(xl), gpu=i))

10 end
11 for i = 0 → p− 1, step=1 do
12 reqs1[i].wait()
13 attns.add(al+i,attn)
14 bp = sum(attns[−min(d, i) + 1 :])
15 reqs2.add(non_block_exec(
16 al+i,ffn = FFNl+i(xl + bp),

gpu=i))
17 end
18 xl+p = xl
19 for i = 0 → p− 1, step=1 do
20 reqs2[i].wait()
21 xl+p = xl+p + al+i,attn + al+i,ffn

22 end
23 end
24 for l = e+ 1 → L, step=1 do
25 al = xl + ATTNl(xl)
26 xl+1 = al + FFNl(al)

27 end

Our objective is to replace the input xl in Eq. 1
with xi, i < l. This substitution implicitly enables
the parallel computation of layers l and i and thus
reduces the inference latency.

4.2 Layer Partition and Parallelism

Considering a LLM with L layers, we partition
layers into K groups G1, G2, ..., GK . Within each
group, layers share the same input, allowing for
concurrent computation of them. The computation
for group Gk, where 1 ≤ k ≤ K, can be formal-
ized as shown in Eq. 3. ATTN and FFN operations
within each summation in this equation are exe-
cuted in parallel. Specifically, when the size of
each group is 1, Eq. 3 reverts to the sequential

computation in Eq. 1.

xGk+1
= xGk

+
∑

l∈Gk

ATTNl(xGk
)

+
∑

l∈Gk

FFNl(xGk
+ ATTNl(xGk

))

(3)

The number of potential partition schemes can
be considerable. Therefore, we employ a straight-
forward approach to divide layers into groups.
Specifically, with a maximum group size of p, start
layer s, and end layer e, we sequentially arrange
layers from s to e into groups of size p, while orga-
nizing remaining layers into groups of size 1. For
instance, the LLaMA-7B model with 32 layers, can
be segmented into groups as {1} → {2} → ... →
{8} → {9, 10} → {11, 12} → ... → {29, 30} →
{31} → {32}, with p = 2, s = 9, e = 30. Such
partitioning strategy helps prevent low GPU utiliza-
tion and significant performance degradation from
parallelizing the bottom and top layers. Algorithm
1 further expound the concurrent computation pro-
cess. Hyperparameter p is determined according to
the number of GPUs. The choice of hyperparame-
ters s, e depends on balancing performance against
acceleration, discussed further in Section 5.4.

4.3 Bypassing

The transformer layer includes an attention mod-
ule and a feedforward module. Notably, par-
allel computation of p layers in group Gk al-
lows concurrent accesses to attention module out-
puts ATTNl(xGk

), l ∈ Gk. We could transfer
ATTNl(xGk

) to the feedforward module of layer j,
j > l and j ∈ Gk, thereby minimizing information
loss. We designate such a approach as bypassing
by following the terminology of computer archi-
tecture. We define the bypassing distance d as the
maximum of j−l. With bypassing, the formulation
for Gk+1 becomes Eq. 4.

xGk+1
= xGk

+
∑

l∈Gk

ATTNl(xGk
)

+
∑

l∈Gk

FFNl(xGk
+ ATTNl(xGk

)

+
∑

l′∈Gk,1≤l−l′≤d

ATTNl′(xGk
))

(4)

7297



Table 1: Downstream tasks performance and latency reduction. p = 1 refers to the original model. Results indicate
that our method effectively reduce the inference latency of LLaMA models, while preserving the model performance.
Additionally, as the model size and the number of GPUs increases, CQIL achieves further latency reductions.

Model Partition Strategy Commonsense&Reading Comprehension
p s e SciQ PIQA WinoGrande ARC-E ARC-C HellaSwag

LLaMA-7B
1 1 32 93.0 79.2 70.0 72.9 44.8 76.2
2 13 30 90.8 78.3 69.0 70.1 41.3 73.5
4 15 30 89.5 76.0 68.3 65.5 39.6 71.0

LLaMA-13B
1 1 40 91.3 80.1 72.8 74.8 47.6 79.1
2 11 38 89.3 79.4 69.6 72.1 44.9 76.8
4 15 38 90.7 78.8 70.2 71.0 43.7 75.5

LLaMA-33B
1 1 60 94.6 82.3 76.0 79.0 52.1 82.6
2 11 58 94.5 80.4 71.8 76.1 51.5 80.9
4 19 58 94.0 79.4 74.7 75.0 50.1 80.8

Model Partition Strategy Continued LM World Knowledge Downstream Tasks Latency
p s e LogiQA BoolQ LAMBADA MMLU (5) Average Score Reduction

LLaMA-7B
1 1 32 30.0 75.1 73.5 35.1 65.0 0%
2 13 30 29.0 74.4 72.9 32.9 63.2 27.0%
4 15 30 29.5 72.6 69.9 33.2 61.5 36.0%

LLaMA-13B
1 1 40 32.0 77.9 76.2 46.7 67.8 0%
2 11 38 29.3 74.6 73.7 40.7 65.0 34.0%
4 15 38 30.3 76.8 73.7 43.1 65.4 43.2%

LLaMA-33B
1 1 60 31.8 82.6 77.6 58.2 71.7 0%
2 11 58 28.9 80.5 76.9 50.5 69.2 38.6%
4 19 58 30.1 81.0 75.4 52.0 69.3 48.3%

Moreover, the number of transmissions for by-
passing is d(2p− d− 1)/2. To avoid communi-
cation bottlenecks, we set d = 1 across all exper-
iments unless otherwise specified. The effect of
bypassing distances are detailed in Section 5.3.

4.4 Fine-tuning

Without additional training, models with concur-
rent computation of quasi-independent layers main-
tain a close level of performance to the original. To
achieve better performance, we fine-tune the model
using LoRA(Hu et al., 2022) on the pre-training
dataset. Fine-tuning with just 0.5B tokens is suf-
ficient to almost reach the original performance,
suggesting that middle layers in original LLMs
may inherently function as ensembles. We discuss
such implication further in Section 6. We believe
that continual pre-training with more tokens will
yield further performance enhancements. However,
due to computational resource constraints, we leave
the continual pre-training for the model with CQIL
as future work.

5 Experiment

5.1 Experimental Setup

Model configurations and Dataset We apply
CQIL on Sheared-LLaMA-1.3B, Sheared-LLaMA-
2.7B (Xia et al., 2023), LLaMA-7B, LLaMA-13B
and LLaMA-33B (Touvron et al., 2023). Con-

current computation of layers are implemented
with Pytorch distributed communication package
(Paszke et al., 2019) and Huggingface Transform-
ers library (Wolf et al., 2019). We use RedPa-
jama (Computer, 2023), the replicated dataset of
LLaMA1 models, as the training dataset, and adopt
the same data mixture used for training LLaMA1.
We construct a held-out validation dataset with 500
sequences of 2,048 tokens.

Baselines Our method is orthogonal to most ex-
isting works on efficient inference, making it hard
to be directly compared with them. Given that
both tensor parallelism and our strategy employ
additional GPUs to reduce latency, we evaluate the
relative efficiency of our method against tensor par-
allelism. The effectiveness of tensor parallelism
implementations can vary significantly. Based on
empirical assessments, we select the DeepSpeed
inference library (Rajbhandari et al., 2020) as the
benchmark for tensor parallelism. DeepSpeed in-
ference library partitions attention and feedforward
projection matrices and computes them distribu-
tively, which has proven to reduce latency in our
testing environment. Furthermore, we explore com-
bination of our method and the pruning technique,
showing further potential for latency reduction.

Training We fine-tune models using LoRA on
Nvidia A100 GPUs (80GB). Details of fine-tuning
are demonstrated in Appendix C.

7298



Table 2: Effect of bypassing. The performance on down-
stream tasks gradually improves as d increases. Due
to the communication cost, there is a slight decline in
latency reduction as d grows.

Bypassing Downstream Tasks Latency
Distance (d) Average Score Reduction

0 60.9 35.9%
1 61.2 35.7%
2 61.4 35.6%
3 61.5 34.9%

Evaluation We evaluate the downstream tasks
performance with lm-evaluation-harness package
(Gao et al., 2023). We evaluate 0-shot accuracy of
SciQ (Welbl et al., 2017), PIQA (Bisk et al., 2020),
Winogrande (Sakaguchi et al., 2020), ARC Easy,
ARC Challenge (Clark et al., 2018), HellaSwag
(Zellers et al., 2019), LogiQA (Liu et al., 2020),
BoolQ (Clark et al., 2019), and LAMBADA (Pa-
perno et al., 2016). We show accuracy of 5-shot
MMLU (Hendrycks et al., 2021). For the latency,
we measure the inference speed on a machine with
8 Nvidia A100 GPUs connected by NVLink and
report the average latency reduction across batch
sizes ranging from 1 to 256.

5.2 Downstream Tasks Performance and
Latency Reduction

Table 1 shows that our method maintains a
close level of performance to that of the origi-
nal model while achieving significant latency re-
duction. LLaMA-13B and LLaMA-33B utilizing
p = 4 outperform those with p = 2, attributed to
employing a larger s which keeps more bottom lay-
ers unchanged. With p = 4, our method processes
four layers in parallel, achieving further latency im-
provements over p = 2. Additionally, as the model
size increases, our method demonstrates further la-
tency reductions. This improvement is attributed
to the increased quasi-independence of layers ob-
served in larger models.

5.3 Effect of Bypassing

Table 2 elucidates the effect of bypassing distances
on LLaMA-7B with p = 4, s = 14, e = 29. The
results suggest that increasing bypassing distance
d leads to a gradual improvement of performance,
attributed to diminished information loss. Mean-
while, there’s a slight decrease in latency reduction
as the communication cost rises with larger d. How-
ever, even at d = 3, the additional communication

Table 3: Trade-Off between performance and accelera-
tion. Model performance and latency reduction consis-
tently vary along with s and e.

p s e
Downstream Tasks Latency

Average Score Reduction

2

13 30 63.2 27.0%
9 60.6 32.4%
11 62.0 30.3%
15 63.7 23.4%
17 63.9 21.0%

24 63.4 18.0%
26 63.3 20.9%
28 63.3 23.9%
32 62.8 26.9%

cost associated with the bypassing method is still
minor in our testing environment. We also recog-
nize that the communication cost depends on the
speed of links between GPUs. Therefore, we sug-
gest to select d based on the inference environment.

5.4 Trade-Off between Performance and
Acceleration

CQIL involves three hyperparameters, p, s, and
e. The selection of p is based on the number of
available GPUs. Choices for s and e depend on
balancing performance against acceleration. As
shown in Table 3, the performance on downstream
tasks and latency reduction vary consistently along
with s and e. A larger s and a smaller e, thereby
more layers are unchanged, lead to improved per-
formance and decrease in latency. We suggest to
select s and e according to the balance between
performance and latency reduction.

5.5 Comparison with Tensor Parallelism

Both tensor parallelism and our method utilize ad-
ditional GPUs to reduce latency. Therefore, we
assess the latency reduction ratio between these
two approaches. Given that DeepSpeed inference
framework involves optimizations beyond tensor
parallelism, it is challenging to make a direct com-
parison of latency. Therefore, we first measure the
latency of both methods using a single GPU un-
der various batch sizes, then evaluate the relative
latency reduction ratio with an increasing number
of GPUs. The comparison is carried out on the
LLaMA-13B model, which is sufficiently large for
tensor parallelism to be applied across four GPUs.
The maximum batch size of tensor parallelism is
64 due to the limit of available GPU memory.

7299



1 2 4 8 16 32 64 128 256
Batch Size

0%

20%

40%

60%

80%
La

te
nc

y 
Re

du
ct

io
n 

(R
at

io
)

TP, GPU Num=2
TP, GPU Num=4
CQIL, GPU Num=2
CQIL, GPU Num=4

Figure 4: Comparison with Tensor Parallelism. CQIL
achieves consistent latency reduction on all batch sizes,
benefiting the online inference.

As shown in Figure 4, tensor parallelism does
not significantly accelerate the inference for small
batch sizes. In contrast, CQIL consistently offers la-
tency reductions for LLaMA-13B, making it more
amenable to the scenario of online inference. More-
over, tensor parallelism is complementary to our
approach, allowing for the parallel computation
of bottom layers, which are sensitive to input sub-
stitution. Integrating tensor parallelism with our
approach may reduce the latency further. Due to
time constraints, we leave the integration of tensor
parallelism with CQIL for future work.

5.6 Combined with Pruning
Pruning has been extensively studied as an efficient
technique to accelerate model inference. Recently,
Xia et al. (2023) has proposed targeted structured
pruning to produce efficient LLMs. Our method
is orthogonal to pruning and thus possible to be
integrated with it. Table 4 presents the result of ap-
plying CQIL on the Sheared-LLaMA-2.7B model
with p = 2, s = 13, e = 30, and Sheared-LLaMA-
1.3B with p = 2, s = 13, e = 22. Results show
that our approach achieves further latency reduc-
tion for pruned models, proving its effectiveness.

6 Discussion

Currently, the explanation of the effectiveness of
transformer based LLMs can be classified into two
views, pipeline (Tenney et al., 2019; Jawahar et al.,
2019; Geva et al., 2021) and ensemble (Veit et al.,
2016; Greff et al., 2017; Bhojanapalli et al., 2021).
Based on following observations, our research sug-

Table 4: Combined with Pruning. CQIL achieves fur-
ther latency reduction while maintaining minimal down-
stream tasks performance drop.

Model Downstream Tasks Latency
Average Score Reduction

LLaMA-7B 65.0 0%
Sheared-LLaMA-2.7B 58.8 55.1%

CQIL-Sheared-LLaMA-2.7B 57.4 66.0%
Sheared-LLaMA-1.3B 53.1 74.5%

CQIL-Sheared-LLaMA-1.3B 52.7 78.5%

gests that LLMs works as a combination of both
pipeline and ensemble mechanisms.

First, our findings reveal that the bottom layers of
LLMs display distinct input/output characteristics,
rendering them challenging to be parallelized. On
the other hand, the middle and top layers demon-
strate considerable similarity in their inputs, mak-
ing it possible for straightforward conversion to
parallel execution without sacrificing the model
performance. This observation is compatible with
previous work (Zhang et al., 2022a), proving the
increased robustness in higher layers within the
transformer architecture.

In other words, our contributions substantiate
that LLMs employ a pipeline mechanism at lower
levels and an ensemble strategy at higher levels,
particularly through the successful parallelization
of the middle and upper layers. This work thus pro-
vide further evidence to deepen our comprehension
on the internal mechanism of LLMs.

7 Conclusion

In this paper, we propose an efficient concurrent
computation framework on quasi-independent lay-
ers that are pervasive in LLMs with the purpose
of reducing inference latency while maintaining
model performance. To mitigate the potential in-
formation loss resulting from input alignment and
improve the performance, we develop the bypass-
ing technique, transmitting attention outputs among
input-aligned layers. Our experimental results jus-
tify the effectiveness of CQIL method. In the future,
we will apply CQIL on even larger models and im-
plement the integration of tensor parallelism with
our approach to achieve further latency reductions.

Limitations

This work has three primary limitations. First,
CQIL requires additional GPUs to reduce the in-
ference latency, limiting its application in the envi-
ronment equipped with only a single GPU. Second,

7300



not every layer in LLMs could be computed con-
currently, especially for layers at the bottom and
top. These layers are computed on a single GPU,
leaving remaining GPUs ignored. To efficiently
utilize all GPUs, we suggest to apply tensor paral-
lelism for these layers. Due to time constraints, the
integration of tensor parallelism and our approach
is leaved for future work. Finally, the computing
FLOPS remain unchanged. Therefore, from an
energy consumption perspective, CQIL does not
result in electricity savings.

References
Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,

Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin,
Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu,
Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren,
Xuancheng Ren, Chuanqi Tan, Sinan Tan, Jianhong
Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang
Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang, Jian
Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi
Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang,
Yichang Zhang, Zhenru Zhang, Chang Zhou, Jin-
gren Zhou, Xiaohuan Zhou, and Tianhang Zhu. 2023.
Qwen technical report. CoRR, abs/2309.16609.

Srinadh Bhojanapalli, Ayan Chakrabarti, Daniel Glas-
ner, Daliang Li, Thomas Unterthiner, and Andreas
Veit. 2021. Understanding robustness of transformers
for image classification. In 2021 IEEE/CVF Interna-
tional Conference on Computer Vision, ICCV 2021,
Montreal, QC, Canada, October 10-17, 2021, pages
10211–10221. IEEE.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng
Gao, and Yejin Choi. 2020. PIQA: reasoning about
physical commonsense in natural language. In The
Thirty-Fourth AAAI Conference on Artificial Intelli-
gence, AAAI 2020, The Thirty-Second Innovative Ap-
plications of Artificial Intelligence Conference, IAAI
2020, The Tenth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2020, New
York, NY, USA, February 7-12, 2020, pages 7432–
7439. AAAI Press.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Process-
ing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irv-
ing, Jean-Baptiste Lespiau, Laurent Sifre, and
John Jumper. 2023. Accelerating large language
model decoding with speculative sampling. CoRR,
abs/2302.01318.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, Parker Schuh, Kensen Shi,
Sasha Tsvyashchenko, Joshua Maynez, Abhishek
Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin-
odkumar Prabhakaran, Emily Reif, Nan Du, Ben
Hutchinson, Reiner Pope, James Bradbury, Jacob
Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat,
Sunipa Dev, Henryk Michalewski, Xavier Garcia,
Vedant Misra, Kevin Robinson, Liam Fedus, Denny
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim,
Barret Zoph, Alexander Spiridonov, Ryan Sepassi,
David Dohan, Shivani Agrawal, Mark Omernick, An-
drew M. Dai, Thanumalayan Sankaranarayana Pil-
lai, Marie Pellat, Aitor Lewkowycz, Erica Moreira,
Rewon Child, Oleksandr Polozov, Katherine Lee,
Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov,
and Noah Fiedel. 2022. Palm: Scaling language mod-
eling with pathways. CoRR, abs/2204.02311.

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019. Boolq: Exploring the surprising
difficulty of natural yes/no questions. In Proceedings
of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, NAACL-HLT 2019,
Minneapolis, MN, USA, June 2-7, 2019, Volume 1
(Long and Short Papers), pages 2924–2936. Associa-
tion for Computational Linguistics.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the AI2 reasoning challenge. CoRR,
abs/1803.05457.

Together Computer. 2023. Redpajama: an open dataset
for training large language models.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra,
and Christopher Ré. 2022. Flashattention: Fast and
memory-efficient exact attention with io-awareness.
In Advances in Neural Information Processing Sys-
tems 35: Annual Conference on Neural Information
Processing Systems 2022, NeurIPS 2022, New Or-
leans, LA, USA, November 28 - December 9, 2022.

Tim Dettmers, Mike Lewis, Younes Belkada, and
Luke Zettlemoyer. 2022. Llm.int8(): 8-bit ma-
trix multiplication for transformers at scale. CoRR,
abs/2208.07339.

Alexander Yom Din, Taelin Karidi, Leshem Choshen,
and Mor Geva. 2023. Jump to conclusions: Short-

7301

https://doi.org/10.48550/ARXIV.2309.16609
https://doi.org/10.1109/ICCV48922.2021.01007
https://doi.org/10.1109/ICCV48922.2021.01007
https://doi.org/10.1609/AAAI.V34I05.6239
https://doi.org/10.1609/AAAI.V34I05.6239
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.48550/ARXIV.2302.01318
https://doi.org/10.48550/ARXIV.2302.01318
https://doi.org/10.48550/ARXIV.2204.02311
https://doi.org/10.48550/ARXIV.2204.02311
https://doi.org/10.18653/V1/N19-1300
https://doi.org/10.18653/V1/N19-1300
http://arxiv.org/abs/1803.05457
http://arxiv.org/abs/1803.05457
https://github.com/togethercomputer/RedPajama-Data
https://github.com/togethercomputer/RedPajama-Data
http://papers.nips.cc/paper_files/paper/2022/hash/67d57c32e20fd0a7a302cb81d36e40d5-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/67d57c32e20fd0a7a302cb81d36e40d5-Abstract-Conference.html
https://doi.org/10.48550/ARXIV.2208.07339
https://doi.org/10.48550/ARXIV.2208.07339
https://doi.org/10.48550/ARXIV.2303.09435


cutting transformers with linear transformations.
CoRR, abs/2303.09435.

Elias Frantar and Dan Alistarh. 2023. Sparsegpt: Mas-
sive language models can be accurately pruned in
one-shot. In International Conference on Machine
Learning, ICML 2023, 23-29 July 2023, Honolulu,
Hawaii, USA, volume 202 of Proceedings of Machine
Learning Research, pages 10323–10337. PMLR.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman,
Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li,
Kyle McDonell, Niklas Muennighoff, Chris Ociepa,
Jason Phang, Laria Reynolds, Hailey Schoelkopf,
Aviya Skowron, Lintang Sutawika, Eric Tang, An-
ish Thite, Ben Wang, Kevin Wang, and Andy Zou.
2023. A framework for few-shot language model
evaluation.

Peng Gao, Chiori Hori, Shijie Geng, Takaaki Hori, and
Jonathan Le Roux. 2020. Multi-pass transformer for
machine translation. CoRR, abs/2009.11382.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer
Levy. 2021. Transformer feed-forward layers are key-
value memories. In Proceedings of the 2021 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, EMNLP 2021, Virtual Event / Punta Cana,
Dominican Republic, 7-11 November, 2021, pages
5484–5495. Association for Computational Linguis-
tics.

Klaus Greff, Rupesh Kumar Srivastava, and Jürgen
Schmidhuber. 2017. Highway and residual networks
learn unrolled iterative estimation. In 5th Inter-
national Conference on Learning Representations,
ICLR 2017, Toulon, France, April 24-26, 2017, Con-
ference Track Proceedings. OpenReview.net.

Andrey Gromov, Kushal Tirumala, Hassan Shapourian,
Paolo Glorioso, and Daniel A. Roberts. 2024. The
unreasonable ineffectiveness of the deeper layers.
CoRR, abs/2403.17887.

Song Han, Huizi Mao, and William J. Dally. 2016. Deep
compression: Compressing deep neural network with
pruning, trained quantization and huffman coding. In
4th International Conference on Learning Represen-
tations, ICLR 2016, San Juan, Puerto Rico, May 2-4,
2016, Conference Track Proceedings.

Aaron Harlap, Deepak Narayanan, Amar Phanishayee,
Vivek Seshadri, Nikhil R. Devanur, Gregory R.
Ganger, and Phillip B. Gibbons. 2018. Pipedream:
Fast and efficient pipeline parallel DNN training.
CoRR, abs/1806.03377.

Dan Hendrycks, Collin Burns, Steven Basart, Andy
Zou, Mantas Mazeika, Dawn Song, and Jacob Stein-
hardt. 2021. Measuring massive multitask language
understanding. In 9th International Conference on
Learning Representations, ICLR 2021, Virtual Event,
Austria, May 3-7, 2021. OpenReview.net.

Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean.
2015. Distilling the knowledge in a neural network.
CoRR, abs/1503.02531.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. Lora: Low-rank adaptation of
large language models. In The Tenth International
Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022. OpenReview.net.

Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan
Firat, Dehao Chen, Mia Xu Chen, HyoukJoong Lee,
Jiquan Ngiam, Quoc V. Le, Yonghui Wu, and Zhifeng
Chen. 2019. Gpipe: Efficient training of giant neural
networks using pipeline parallelism. In Advances
in Neural Information Processing Systems 32: An-
nual Conference on Neural Information Processing
Systems 2019, NeurIPS 2019, December 8-14, 2019,
Vancouver, BC, Canada, pages 103–112.

Ganesh Jawahar, Benoît Sagot, and Djamé Seddah.
2019. What does BERT learn about the structure of
language? In Proceedings of the 57th Conference of
the Association for Computational Linguistics, ACL
2019, Florence, Italy, July 28- August 2, 2019, Vol-
ume 1: Long Papers, pages 3651–3657. Association
for Computational Linguistics.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao
Chen, Linlin Li, Fang Wang, and Qun Liu. 2020.
Tinybert: Distilling BERT for natural language un-
derstanding. In Findings of the Association for Com-
putational Linguistics: EMNLP 2020, Online Event,
16-20 November 2020, volume EMNLP 2020 of Find-
ings of ACL, pages 4163–4174. Association for Com-
putational Linguistics.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. ALBERT: A lite BERT for self-supervised
learning of language representations. In 8th Inter-
national Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30,
2020. OpenReview.net.

Yaniv Leviathan, Matan Kalman, and Yossi Matias.
2023. Fast inference from transformers via spec-
ulative decoding. In International Conference on
Machine Learning, ICML 2023, 23-29 July 2023,
Honolulu, Hawaii, USA, volume 202 of Proceedings
of Machine Learning Research, pages 19274–19286.
PMLR.

Jian Liu, Leyang Cui, Hanmeng Liu, Dandan Huang,
Yile Wang, and Yue Zhang. 2020. Logiqa: A chal-
lenge dataset for machine reading comprehension
with logical reasoning. In Proceedings of the Twenty-
Ninth International Joint Conference on Artificial
Intelligence, IJCAI 2020, pages 3622–3628. ijcai.org.

Xiuqing Lv, Peng Zhang, Sunzhu Li, Guobing Gan, and
Yueheng Sun. 2023. Lightformer: Light-weight trans-
former using svd-based weight transfer and parame-
ter sharing. In Findings of the Association for Com-
putational Linguistics: ACL 2023, Toronto, Canada,

7302

https://doi.org/10.48550/ARXIV.2303.09435
https://proceedings.mlr.press/v202/frantar23a.html
https://proceedings.mlr.press/v202/frantar23a.html
https://proceedings.mlr.press/v202/frantar23a.html
https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.5281/zenodo.10256836
http://arxiv.org/abs/2009.11382
http://arxiv.org/abs/2009.11382
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.446
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.446
https://openreview.net/forum?id=Skn9Shcxe
https://openreview.net/forum?id=Skn9Shcxe
https://doi.org/10.48550/ARXIV.2403.17887
https://doi.org/10.48550/ARXIV.2403.17887
http://arxiv.org/abs/1510.00149
http://arxiv.org/abs/1510.00149
http://arxiv.org/abs/1510.00149
http://arxiv.org/abs/1806.03377
http://arxiv.org/abs/1806.03377
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ
http://arxiv.org/abs/1503.02531
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://proceedings.neurips.cc/paper/2019/hash/093f65e080a295f8076b1c5722a46aa2-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/093f65e080a295f8076b1c5722a46aa2-Abstract.html
https://doi.org/10.18653/V1/P19-1356
https://doi.org/10.18653/V1/P19-1356
https://doi.org/10.18653/V1/2020.FINDINGS-EMNLP.372
https://doi.org/10.18653/V1/2020.FINDINGS-EMNLP.372
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=H1eA7AEtvS
https://proceedings.mlr.press/v202/leviathan23a.html
https://proceedings.mlr.press/v202/leviathan23a.html
https://doi.org/10.24963/IJCAI.2020/501
https://doi.org/10.24963/IJCAI.2020/501
https://doi.org/10.24963/IJCAI.2020/501
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.656
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.656
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.656


July 9-14, 2023, pages 10323–10335. Association for
Computational Linguistics.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. 2023.
Llm-pruner: On the structural pruning of large lan-
guage models. CoRR, abs/2305.11627.

Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang,
Hongyu Lin, Yaojie Lu, Xianpei Han, and Weipeng
Chen. 2024. Shortgpt: Layers in large language
models are more redundant than you expect. CoRR,
abs/2403.03853.

Denis Paperno, Germán Kruszewski, Angeliki Lazari-
dou, Quan Ngoc Pham, Raffaella Bernardi, Sandro
Pezzelle, Marco Baroni, Gemma Boleda, and Raquel
Fernández. 2016. The LAMBADA dataset: Word
prediction requiring a broad discourse context. In
Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics, ACL 2016,
August 7-12, 2016, Berlin, Germany, Volume 1: Long
Papers. The Association for Computer Linguistics.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Köpf, Edward Z.
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Pytorch: An
imperative style, high-performance deep learning li-
brary. In Advances in Neural Information Processing
Systems 32: Annual Conference on Neural Informa-
tion Processing Systems 2019, NeurIPS 2019, De-
cember 8-14, 2019, Vancouver, BC, Canada, pages
8024–8035.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase,
and Yuxiong He. 2020. Zero: memory optimizations
toward training trillion parameter models. In Pro-
ceedings of the International Conference for High
Performance Computing, Networking, Storage and
Analysis, SC 2020, Virtual Event / Atlanta, Georgia,
USA, November 9-19, 2020, page 20. IEEE/ACM.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2020. Winogrande: An adver-
sarial winograd schema challenge at scale. In The
Thirty-Fourth AAAI Conference on Artificial Intelli-
gence, AAAI 2020, The Thirty-Second Innovative Ap-
plications of Artificial Intelligence Conference, IAAI
2020, The Tenth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2020, New
York, NY, USA, February 7-12, 2020, pages 8732–
8740. AAAI Press.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of BERT: smaller, faster, cheaper and lighter. CoRR,
abs/1910.01108.

Yixin Song, Zeyu Mi, Haotong Xie, and Haibo
Chen. 2023. Powerinfer: Fast large language
model serving with a consumer-grade GPU. CoRR,
abs/2312.12456.

Mingjie Sun, Zhuang Liu, Anna Bair, and J. Zico Kolter.
2023. A simple and effective pruning approach for
large language models. CoRR, abs/2306.11695.

Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu,
Yiming Yang, and Denny Zhou. 2020. Mobilebert:
a compact task-agnostic BERT for resource-limited
devices. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
ACL 2020, Online, July 5-10, 2020, pages 2158–2170.
Association for Computational Linguistics.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019.
BERT rediscovers the classical NLP pipeline. In
Proceedings of the 57th Conference of the Associa-
tion for Computational Linguistics, ACL 2019, Flo-
rence, Italy, July 28- August 2, 2019, Volume 1: Long
Papers, pages 4593–4601. Association for Computa-
tional Linguistics.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurélien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models. CoRR,
abs/2302.13971.

Andreas Veit, Michael J. Wilber, and Serge J. Belongie.
2016. Residual networks behave like ensembles of
relatively shallow networks. In Advances in Neural
Information Processing Systems 29: Annual Con-
ference on Neural Information Processing Systems
2016, December 5-10, 2016, Barcelona, Spain, pages
550–558.

Ben Wang and Aran Komatsuzaki. 2021. GPT-J-
6B: A 6 Billion Parameter Autoregressive Lan-
guage Model. https://github.com/kingoflolz/
mesh-transformer-jax.

Dong Wang, Zixiang Wang, Ling Chen, Hongfeng Xiao,
and Bo Yang. 2023. Cross-parallel transformer: Par-
allel vit for medical image segmentation. Sensors,
23(23):9488.

Johannes Welbl, Nelson F. Liu, and Matt Gardner. 2017.
Crowdsourcing multiple choice science questions.
In Proceedings of the 3rd Workshop on Noisy User-
generated Text, NUT@EMNLP 2017, Copenhagen,
Denmark, September 7, 2017, pages 94–106. Associ-
ation for Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
and Jamie Brew. 2019. Huggingface’s transformers:
State-of-the-art natural language processing. CoRR,
abs/1910.03771.

7303

https://doi.org/10.48550/ARXIV.2305.11627
https://doi.org/10.48550/ARXIV.2305.11627
https://doi.org/10.48550/ARXIV.2403.03853
https://doi.org/10.48550/ARXIV.2403.03853
https://doi.org/10.18653/V1/P16-1144
https://doi.org/10.18653/V1/P16-1144
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://doi.org/10.1109/SC41405.2020.00024
https://doi.org/10.1109/SC41405.2020.00024
https://doi.org/10.1609/AAAI.V34I05.6399
https://doi.org/10.1609/AAAI.V34I05.6399
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108
https://doi.org/10.48550/ARXIV.2312.12456
https://doi.org/10.48550/ARXIV.2312.12456
https://doi.org/10.48550/ARXIV.2306.11695
https://doi.org/10.48550/ARXIV.2306.11695
https://doi.org/10.18653/V1/2020.ACL-MAIN.195
https://doi.org/10.18653/V1/2020.ACL-MAIN.195
https://doi.org/10.18653/V1/2020.ACL-MAIN.195
https://doi.org/10.18653/V1/P19-1452
https://doi.org/10.48550/ARXIV.2302.13971
https://doi.org/10.48550/ARXIV.2302.13971
https://proceedings.neurips.cc/paper/2016/hash/37bc2f75bf1bcfe8450a1a41c200364c-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/37bc2f75bf1bcfe8450a1a41c200364c-Abstract.html
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
https://doi.org/10.3390/S23239488
https://doi.org/10.3390/S23239488
https://doi.org/10.18653/V1/W17-4413
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771


Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi
Chen. 2023. Sheared llama: Accelerating language
model pre-training via structured pruning. CoRR,
abs/2310.06694.

Guangxuan Xiao, Ji Lin, Mickaël Seznec, Hao Wu,
Julien Demouth, and Song Han. 2023. Smoothquant:
Accurate and efficient post-training quantization for
large language models. In International Conference
on Machine Learning, ICML 2023, 23-29 July 2023,
Honolulu, Hawaii, USA, volume 202 of Proceedings
of Machine Learning Research, pages 38087–38099.
PMLR.

Ji Xin, Raphael Tang, Jaejun Lee, Yaoliang Yu, and
Jimmy Lin. 2020. Deebert: Dynamic early exiting
for accelerating BERT inference. In Proceedings of
the 58th Annual Meeting of the Association for Com-
putational Linguistics, ACL 2020, Online, July 5-10,
2020, pages 2246–2251. Association for Computa-
tional Linguistics.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a
machine really finish your sentence? In Proceedings
of the 57th Conference of the Association for Compu-
tational Linguistics, ACL 2019, Florence, Italy, July
28- August 2, 2019, Volume 1: Long Papers, pages
4791–4800. Association for Computational Linguis-
tics.

Chiyuan Zhang, Samy Bengio, and Yoram Singer.
2022a. Are all layers created equal? J. Mach. Learn.
Res., 23:67:1–67:28.

Kaiyan Zhang, Ning Ding, Biqing Qi, Xuekai Zhu, Xin-
wei Long, and Bowen Zhou. 2023. Crash: Clustering,
removing, and sharing enhance fine-tuning without
full large language model. In Proceedings of the
2023 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2023, Singapore, De-
cember 6-10, 2023, pages 9612–9637. Association
for Computational Linguistics.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona T. Diab, Xian Li, Xi Victoria Lin,
Todor Mihaylov, Myle Ott, Sam Shleifer, Kurt Shus-
ter, Daniel Simig, Punit Singh Koura, Anjali Srid-
har, Tianlu Wang, and Luke Zettlemoyer. 2022b.
OPT: open pre-trained transformer language mod-
els. CoRR, abs/2205.01068.

Yukun Zhu, Ryan Kiros, Richard S. Zemel, Ruslan
Salakhutdinov, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. 2015. Aligning books and movies:
Towards story-like visual explanations by watching
movies and reading books. In 2015 IEEE Interna-
tional Conference on Computer Vision, ICCV 2015,
Santiago, Chile, December 7-13, 2015, pages 19–27.
IEEE Computer Society.

A Attention-FFN Parallelism

Given that both the attention and feedforward mod-
ules use pre-layer normalization, aligning their in-

Table 5: Pre-training Parallel Architecture.

Model LAMBADA PTB WikiText103
GPT2 70.8 139.4 56.2

CQIL-FT-GPT2 84.6 156.2 73.5
CQIL-Pretrained-GPT2 84.5 189.1 81.4

puts is feasible. However, the computation times
for these two modules usually do not match, lead-
ing to one GPU being underutilized if they are pro-
cessed concurrently on separate GPUs. Therefore,
attention-ffn parallelism is not employed in our
study. Nevertheless, parallelism between the atten-
tion and feedforward modules holds potential for
acceleration, especially when two computational
resources are available but their speeds differ. For
example, Song et al. (2023) proposes to utilize
both CPU and GPU for LLMs inference on per-
sonal computers. The formulation of attention-ffn
parallelism is shown in Eq.5.

xl+1 = xl + ATTNl(xl) + FFNl(xl) (5)

Our empirical experiments show that, the atten-
tion and feedforward modules can be computed
concurrently in most layers. Specifically, we paral-
lelize attention and feedforward modules for layers
ranging from 13 to 30 in the LLaMA-7B model and
achieve an average downstream task score of 63.7
(compared to the original model’s score of 65.0).
Such parallelism may enhance the efficiency of
existing CPU-GPU collaborative inference frame-
works, paving the way for further acceleration.

B Pre-training Parallel Architecture

Our work focuses on converting pre-trained LLMs
into a model with parallel layers. An alternative
strategy is to pre-train an architecture with parallel
layers from scratch, potentially yielding compa-
rable results and latency improvements. We ex-
plored this direction through experiments. We
first pre-trained a 12 layers GPT-2(Radford et al.,
2019) model with 100K steps on Wikipedia and
BookCorpus(Zhu et al., 2015) datasets. Then the
model was converted to the parallel architecture
with p = 2, s = 3, e = 12 and fine-tuned with 5K
steps. Meanwhile, we pre-trained the parallel archi-
tecture with 105K steps from scratch. We evaluate
zero-shot perplexities on LAMBADA, PTB and
WikiText103 as the performance of downstream
tasks. Results in Table 5 indicate that training a
parallel architecture from scratch does not achieve

7304

https://doi.org/10.48550/ARXIV.2310.06694
https://doi.org/10.48550/ARXIV.2310.06694
https://proceedings.mlr.press/v202/xiao23c.html
https://proceedings.mlr.press/v202/xiao23c.html
https://proceedings.mlr.press/v202/xiao23c.html
https://doi.org/10.18653/V1/2020.ACL-MAIN.204
https://doi.org/10.18653/V1/2020.ACL-MAIN.204
https://doi.org/10.18653/V1/P19-1472
https://doi.org/10.18653/V1/P19-1472
http://jmlr.org/papers/v23/20-069.html
https://aclanthology.org/2023.emnlp-main.597
https://aclanthology.org/2023.emnlp-main.597
https://aclanthology.org/2023.emnlp-main.597
https://doi.org/10.48550/ARXIV.2205.01068
https://doi.org/10.48550/ARXIV.2205.01068
https://doi.org/10.1109/ICCV.2015.11
https://doi.org/10.1109/ICCV.2015.11
https://doi.org/10.1109/ICCV.2015.11


the downstream task performance attained by fine-
tuning the transferred model. This performance gap
may arise from the enhanced fitting capabilities in-
herent to deeper models during pre-training. The
finding underscores the critical role of transitioning
from pre-trained LLMs to the parallel architecture.

C Details of Fine-tuning

Table 6: Fine-tuning Details.

Model p s e
Learning LoRA

Rate Rank
Sheared-LLaMA-1.3B 2 13 22 1e-5 2
Sheared-LLaMA-2.7B 2 13 30 1e-5 2

LLaMA-7B 2 13 30 1e-5 2
4 15 30 1e-5 32

LLaMA-13B 2 11 38 1e-4 64
4 15 38 1e-4 64

LLaMA-33B 2 11 58 1e-5 64
4 19 58 1e-5 64

We fine-tune all models with context length
of 2,048, weight decay of 0.1, batch size of 32,
dropout probability of 0, warmup steps of 0 and
steps of 8000. The learning rate is constant and
Adam optimizer is used. For simplicity, lora al-
pha is always equal to lora rank. We fine-tune all
linear matrices without biases in attention and feed-
forward modules. Mixed precision of bf16 and
DeepSpeed(Rajbhandari et al., 2020) framework
are used for fine-tuning. More details could be
found in Table 6.

D The Potential Performance
Degradation of Pruning

48121620242832
Model Depth

10

20

30

40

50

60

70

M
M

LU
 A

cc
ur

ac
y 

(%
)

CQIL (p=4)
CQIL (p=2)
ShortGPT
UIDL

Figure 5: MMLU (zero-shot) comparison with similar-
ity based pruning methods. Dashed gray line represents
the random guessing score.

48121620242832
Model Depth

10

20

30

40

50

60

AR
C-

C 
Ac

cu
ra

cy
 (%

)

CQIL (p=4)
CQIL (p=2)
ShortGPT
UIDL

Figure 6: ARC-Challenge (zero-shot) comparison with
similarity based pruning methods. Dashed gray line
represents the random guessing score.

48121620242832
Model Depth

10

20

30

40

50

60

70

80
He

lla
Sw

ag
 A

cc
ur

ac
y 

(%
)

CQIL (p=4)
CQIL (p=2)
ShortGPT
UIDL

Figure 7: HellaSwag (zero-shot) comparison with simi-
larity based pruning methods. Dashed gray line repre-
sents the random guessing score.

During the review phase of our manuscript, two
similarity based pruning methods(Men et al., 2024;
Gromov et al., 2024) were posted. The findings
reported in these studies indicate that the impact
on performance is negligible when pruning up to
half of the layers in LLMs. Considering the shared
motivation but distinct approaches of these meth-
ods, we conduct the comparative experiments to
demonstrate the potential problems of pruning.

Specifically, we applied the two layer pruning
methods for Qwen-7B(Bai et al., 2023). Subse-
quently, the pruned models were fine-tuned using
LoRA with rank of 64, constant learning rate of
1e-4, batch size of 32 context length of 2,048, and
steps of 8000. For CQIL, we set e = 30, d = 1

7305



Table 7: Downstream tasks performance of models without fine-tuning.

Model Partition Strategy Commonsense&Reading Comprehension
p s e SciQ PIQA WinoGrande ARC-E ARC-C HellaSwag

LLaMA-7B
1 1 32 93.0 79.2 70.0 72.9 44.8 76.2
2 13 30 89.8 77.3 67.6 68.4 41.3 54.9
4 15 30 87.4 75.7 65.7 63.1 41.0 70.5

LLaMA-13B
1 1 40 91.3 80.1 72.8 74.8 47.6 79.1
2 11 38 87.9 78.5 69.5 70.2 44.5 76.1
4 15 38 86.7 77.9 69.0 64.5 41.6 73.8

LLaMA-33B
1 1 60 94.6 82.3 76.0 79.0 52.1 82.6
2 11 58 90.8 78.5 70.7 68.9 46.2 77.2
4 19 58 90.8 79.3 72.6 70.7 47.3 78.7

Model Partition Strategy Continued LM World Knowledge Downstream Tasks
p s e LogiQA BoolQ LAMBADA MMLU (5) Average Score

LLaMA-7B
1 1 32 30.0 75.1 73.5 35.1 65.0
2 13 30 29.8 73.4 68.5 31.4 60.2
4 15 30 27.5 44.7 56.7 29.8 56.2

LLaMA-13B
1 1 40 32.0 77.9 76.2 46.7 67.8
2 11 38 31.6 73.2 69.4 39.3 64.0
4 15 38 28.6 63.7 60.1 44.6 61.1

LLaMA-33B
1 1 60 31.8 82.6 77.6 58.2 71.7
2 11 58 23.8 77.1 71.3 47.0 65.2
4 19 58 25.4 80.4 61.3 45.7 65.2

Table 8: Numerical values of input substitution experiments (Layer 1-16).

Layer 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
k=1 868.2 6.4 14.1 6.1 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0
k=3 16.3 13.7 11.2 6.2 6.2 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1
k=7 8.8 8.9 8.3 6.3 6.3 6.3 6.2 6.2 6.2

Table 9: Numerical values of input substitution experiments (Layer 17-32).

Layer 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
k=1 6.0 6.0 6.0 6.0 6.0 5.9 5.9 5.9 5.9 5.9 5.9 5.9 6.0 6.0 6.0 7.5
k=3 6.1 6.1 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.1 6.1 6.4 8.7
k=7 6.4 6.3 6.2 6.2 6.2 6.2 6.2 6.2 6.1 6.2 6.2 6.2 6.7 6.5 6.9 10.6

and progressively decrease the s to obtain models
with different depth. The CQIL applied models
are fine-tuned under identical settings. For ease of
reference, we denote these two approaches as Short-
GPT(Men et al., 2024) and UIDL(Gromov et al.,
2024), respectively. To assess the performance of
downstream tasks, the fine-tuned models are evalu-
ated on MMLU, ARC-Challenge and HellaSwag
datasets in a zero-shot setting.

The result, as illustrated in Figure 5, demon-
strates that the MMLU score has minimal degrada-
tion with the pruning of fewer than 9 layers, sug-
gesting the potential redundancy of LLMs. How-
ever, as shown in Figures 6 and 7, the performance
of pruned models consistently decline on other

benchmark datasets. These observations suggest
that while the MMLU dataset is substantial, it may
not fully capture the comprehensive capabilities or
knowledge inherent to LLMs. Consequently, we
argue for the necessity of retaining LLM layers to
maintain their true functional potential.

E Downstream Tasks Performance of
CQIL-Models without Fine-Tuning

Without additional training, models with CQIL still
preserve a close level of performance to the original.
Results without fine-tuning are shown in Table 7.

7306



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Layer

1
3
7

k

25.0
27.5
30.0
32.5

Figure 8: MMLU Sensitivity of Input Substitution. We individually replace the input of layer l with that of the layer
l − k and evaluate the MMLU score with zero-shot setting. A darker block indicates a lower MMLU score and
diminished performance. Note that the zero-shot MMLU score of the original model is 33.4.

F Additional Details of Input Substitution
Experiments

To clarify the details of Figure 2, we give the nu-
merical values of each substitution experiment in
Table 8 and 9. Moreover, we conducted the sen-
sitivity experiment on LLaMA-7B with MMLU
under zero-shot setting. The results in Table 8 are
similar to Figure 2, revealing that the majority of
middle layers are relatively insensitive.

G Additional Bypassing Experiments

Table 10: Effect of bypassing on LLaMA-7B with p =
2.

Bypassing Downstream Tasks Latency
Distance (d) Average Score Reduction

0 62.6 27.6%
1 63.2 27.0%

We conducted additional experiments for
LLaMA-7B with p = 2. The results in Table
10 confirm that bypassing technique improves the
performance on all LLaMA-7Bs with different p
values.

7307


