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Abstract

Recent language model (LM) advancements
have showcased impressive zero-shot voice
conversion (VC) performance. However, exist-
ing LM-based VC models usually apply offline
conversion from source semantics to acous-
tic features, demanding the complete source
speech and limiting their deployment to real-
time applications. In this paper, we introduce
StreamVoice, a novel streaming LM-based
model for zero-shot VC, facilitating real-time
conversion given arbitrary speaker prompts
and source speech. Specifically, to enable
streaming capability, StreamVoice employs a
fully causal context-aware LM with a temporal-
independent acoustic predictor, while alter-
nately processing semantic and acoustic fea-
tures at each time step of autoregression which
eliminates the dependence on complete source
speech. To address the potential performance
degradation from the incomplete context in
streaming processing, we enhance the context-
awareness of the LM through two strategies:
1) teacher-guided context foresight, using a
teacher model to summarize the present and fu-
ture semantic context during training to guide
the model’s forecasting for missing context; 2)
semantic masking strategy, promoting acoustic
prediction from preceding corrupted semantic
and acoustic input, enhancing context-learning
ability. Notably, StreamVoice is the first LM-
based streaming zero-shot VC model without
any future look-ahead. Experiments demon-
strate StreamVoice’s streaming conversion ca-
pability while achieving zero-shot performance
comparable to non-streaming VC systems.

1 Introduction

Voice conversion (VC) aims to transfer a speaker’s
voice to that of another speaker without changing
the linguistic content. This technique has been de-
ployed in many real-world applications, such as
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Figure 1: The concept of the streaming zero-shot VC
employing the widely used recognition-synthesis frame-
work (Sun et al., 2016), where only the encoder of
ASR is involved. StreamVoice is built on this popu-
lar paradigm.

movie dubbing, privacy protection, pronunciation
correction, etc. With the help of neural semantic
features, such as the bottleneck feature (BNF) from
an automatic speech recognition (ASR) system,
converting source speech from arbitrary speakers in
the wild has been successfully achieved (Sun et al.,
2016). Meanwhile, converting to an arbitrary tar-
get speaker with only one utterance of this speaker,
called zero-shot VC, has also been researched re-
cently (Qian et al., 2019; Wang et al., 2023c). How-
ever, most existing zero-shot VC models are de-
signed for offline systems, which are insufficient
to meet the recent growing demands of streaming
capability in real-time VC applications, such as live
broadcasting and real-time communication (RTC).
In this study, we focus on the streaming zero-shot
VC as illuminated in Fig. 1.

Disentangling speech into different components,
e.g., semantic content and speaker timbre, plays
an important role in the zero-shot VC task (Chou
and Lee, 2019; Wang et al., 2023d, 2021; Qian
et al., 2019). Recently, benefiting from the power-
ful LM framework and the scaling up of training
data, LM-based VC models (Wang et al., 2023c;
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Yang et al., 2023; Zhu et al., 2023) with built-in
in-context learning ability can learn the context
relations between source and target speaker’s ut-
terances to capture fine-grained speaker timbre,
achieving impressive zero-shot VC performance.
However, demanding the complete source speech
utterance limits these LM-based VC models to real-
time scenarios; thus, they can only be used in of-
fline applications. While several non-LM-based
methods (Yang et al., 2022; Wang et al., 2023a)
have been proposed for streaming zero-shot VC,
the performance fails to generalize well to unseen
speakers with high speaker similarity and speech
naturalness, mainly due to the limited model ca-
pacity to scale up training data, and also the per-
formance degradation caused by the missing future
information in streaming scenario.

Inspired by the success of LM-based models in
zero-shot VC, we aim to explore the feasibility of
LMs for the streaming VC scenario. An intuitive
way is to follow the popular recognize-synthesis
framework shown in Fig. 1, in which speech is
represented in semantic BNF and acoustic features
respectively extracted by a streaming ASR and an
audio codec. Then, the LM-based VC model under-
takes the transformation of semantic information
into acoustic features with the target speaker’s tim-
bre. However, the development of the LM-based
model in streaming zero-shot VC is hampered by
two primary challenges.

• Streamable architecture: streaming models
typically produce immediate output upon receiv-
ing current input without reliance on future time
steps. Current LM-based VC models perform the
conversion only when they get a full-utterance of
source speech, which fails to meet the demands
of streaming applications. The widely adopted
multi-stage language modeling for multi-layer
codec prediction introduces complexity to sys-
tem design, posing a potential risk of cumulative
errors. Additionally, the dependency models of
the streaming pipeline also impact the design
and performance of the VC model.

• Performance gap: unlike non-streaming mod-
els, streaming models must process frame-wise
or chunked input causally on the fly without fu-
ture information, facing missing context and po-
tential performance degradation. This missing
hinders the streaming VC model from achieving
high-quality conversion. In addition, as shown
in Fig. 1, the VC model relies on the semantic

feature BNF from ASR to achieve conversion,
which makes semantic features very important.
However, streaming ASR exhibits inferior per-
formance compared to its non-streaming coun-
terpart, leading to the BNF carrying low-quality
semantic information but more speaker infor-
mation. In addition to the inherent unavailable
future reception, this low-quality semantic input
makes achieving high-quality conversion more
difficult. The goal of zero-shot VC amplifies the
challenges faced by our streaming VC model.

In this work, we propose StreamVoice, a stream-
ing LM-based model for high-quality zero-shot
VC. Specifically, StreamVoice has a streamable ar-
chitecture that integrates a single-stage language
model that casually generates acoustic codecs with
the collaboration of an acoustic predictor. Alter-
nating input of semantic and acoustic features at
each time step ensures seamless streaming behav-
ior. Two methods are introduced to enhance the
context-awareness of the LM to mitigate the per-
formance gap caused by missing contextual infor-
mation. 1) We incorporate a teacher-guided con-
text foresight, where the VC model is taught by a
teacher non-streaming ASR to infer the present and
future semantic information summarized by the
teacher, which is then used to enhance the acoustic
prediction. 2) To enhance the context learning from
the input history, semantic masking encourages
acoustic prediction from the preceding acoustic
and corrupted semantic input, which also implic-
itly creates an information bottleneck to reduce the
source speaker’s information.

Experiments demonstrate StreamVoice’s ability
to convert speech in a streaming manner with high
speaker similarity for both seen and unseen speak-
ers while maintaining performance comparable to
non-streaming VC systems. As the first LM-based
zero-shot VC model without any future look-ahead,
the total pipeline only has 124 ms latency to per-
form the conversion, 2.4x faster than real-time on
a single A100 GPU without engineering optimiza-
tions. Converted samples can be found in https:
//kerwinchao.github.io/StreamVoice/.

2 Related Works

Zero-shot Voice Conversion. Zero-shot VC im-
poses stringent demands on speech decoupling and
capturing speaker timbre. Many studies specifically
design many disentanglement approaches, incor-
porating intricate structures (Chou and Lee, 2019),
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loss functions (Wang et al., 2021), and training
strategies (Ebbers et al., 2021), to achieve speech
decoupling. Rather than embedding explicit dis-
entanglement designs in VC training, some ap-
proaches (Gu et al., 2021) leverage a speaker ver-
ification (SV) model for speaker representation,
while linguistic content is extracted using ASR or
self-supervised learning (SSL) models (Sun et al.,
2016; Choi et al., 2021). To enhance speaker tim-
bre capturing, some fine-grained speaker model-
ing methods have also been explored (Yin et al.,
2021; Wang et al., 2023d). Recent successes of lan-
guage models in generative tasks have prompted
the exploration of LM-based models in zero-shot
VC, yielding impressive results. Using the pre-
trained model to decouple speech, the LM-based
VC model (Wang et al., 2023c; Yang et al., 2023;
Zhu et al., 2023) captures fine-grained speaker tim-
bre from the speaker prompt and then performs
the conversion. However, current LM-based VC
models are inapplicable to streaming scenarios,
constraining their real-world utility. This paper
addresses this gap by investigating the zero-shot ca-
pabilities of language models specifically tailored
for streaming scenarios.
Streaming Voice Conversion. Despite the high-
quality conversion achieved by non-streaming VC
models, their non-streamable structure and reliance
on full-utterance input hamper them for real-time
streaming applications. For streaming, causal pro-
cessing and the structure of the streaming pipeline
are crucial considerations. Streaming models are
compelled to process frame-wise or chunked in-
put on the fly, devoid of access to future informa-
tion, leading to performance degradation compared
to non-streaming counterparts. To address this, a
common approach (Hayashi et al., 2022; Kameoka
et al., 2021; Ning et al., 2023, 2024) involves the
integration of a teacher model to guide the train-
ing of the streaming model or the distillation of
knowledge from a non-streaming model. Chen et
al. (2023b) focus on selecting BNF with minimal
semantic information loss through layer-wise analy-
sis, while Chen et al. (2022) incorporate adversarial
training to enhance the quality of semantic features.
Beyond streaming VC, some efforts have recently
been towards streaming zero-shot VC. For instance,
VQMIVC (Wang et al., 2021), designed for the non-
streaming application, is modified to be streamable
by Yang et al. (2022). ALO-VC (2023a) constructs
a streaming system using an SV model, a stream-
ing PPG extractor, and a pitch extractor. However,

current streaming zero-shot VC, designed for low-
resource devices, has limited model capacity with
poor generalization to unseen speakers, leading
to inferior similarity and naturalness. Motivated
by LM’s successes in zero-shot VC, we design a
streamable LM in streaming scenarios. To tackle
distinctive challenges in streaming VC, we enhance
the context awareness of the LM to improve con-
version quality.
Language Model-based Speech Generation. Re-
cent advancements in LMs within natural language
processing have showcased potent generation ca-
pabilities, influencing the development of LMs in
speech generation. By employing codec (Zeghi-
dour et al., 2021) or other SSL models (Chung
et al., 2021), speech and audio can be efficiently to-
kenized into discrete units, facilitating low-bitrate
audio representation and semantic extraction. This
progress allows speech generation to utilize LM
frameworks seamlessly. Taking audio generation
as a conditional language modeling task, Audi-
oLM (2023) employs hierarchical language mod-
eling for acoustic prediction from coarse to fine
units. VALL-E (2023b) and SpearTTS (2023) ex-
tend LMs for zero shot-TTS, which can clone a
human’s voice with prompt tokens from a short
recording. For zero-shot VC, LM-VC (2023c) em-
ploys task-oriented optimizations to this task. And
some studies (Zhu et al., 2023; Yang et al., 2023)
leverage multitask objectives and datasets, achiev-
ing high-quality conversion. Despite this progress,
existing LM-based VC models usually apply offline
processing, demanding complete utterance from
the source speech, which hinders their suitability
for real-time streaming applications. In contrast
to prior studies, we explore the zero-shot capabil-
ity of the LM-based VC for streaming scenarios.
With the enhancement of context awareness, the
proposed LM-based VC model achieves results
comparable to non-streaming LM-based VC.

3 StreamVoice

3.1 Overview

As shown in Fig. 2, the development of
StreamVoice follows the recognition-synthesis
framework. In this framework, speech is first rep-
resented as semantic features s = {s1, s2, ...sTs}
and acoustic features a = {a1, a2, ..., aTa} by a
pre-trained streaming ASR model and a speech
codec model respectively. Here, Ts and Ta de-
note the sequence length. Before inputting to

7330



Source SpeechTarget Speaker Speech

Semantic Extraction
(Streaming ASR)

Codec Encoding
(Streaming Codec)

Codec Decoding 
(Streaming Codec)

s~ sa~
1s~ 1a~ 2s~ 2a~ 3s~ 3a~

Speaker Prompt

1s 1â 2s
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Figure 2: The overall architecture for StreamVoice.

StreamVoice, s and a are aligned to the same length
T . StreamVoice incorporates a context-aware lan-
guage model and an acoustic predictor to perform a
single language modeling process. With the seman-
tic and acoustic features {s̃, ã} of speech from the
target speaker as speaker prompt, the LM leverages
the semantic information s1:t of source speech to
autoregressively predict the hidden output ch. In
each autoregression time-step of the LM, the acous-
tic predictor transforms the hidden output ch to the
codec feature â of the converted speech. Finally,
the codec model reconstructs the waveform from
the predicted codec feature. In the following sec-
tions, we will introduce how to build a streamable
LM for VC and how to ensure the high-quality
conversation of this streaming VC.
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Figure 3: The architecture for context-aware LM.

3.2 Streamable Architecture

To perform streaming VC, a streamable architec-
ture is necessary. In StreamVoice, the language
model is carefully designed to perform full causal

processing in the VC task, and the acoustic predic-
tor is designed to achieve frame-wise prediction
without dependency on temporal information.

3.2.1 Fully Casual Language Model
As shown in Fig. 3, inspired by the success of the
LM-based VC model, we intend to achieve stream-
ing zero-shot VC by language models. In previ-
ous LM-based VC models (Wang et al., 2023c),
the demand of the complete semantic feature s
from source speech to achieve conversion hinders
the deployment for real-time application, which
can be formulated as p(at|s1:Ts ,a1:t−1) for each
time step. To achieve streaming, any components
of the LM cannot rely on future information. As
shown in Fig. 3, decoder-only LM with unidirec-
tional attention can easily fit the requirement of
casual generation. To eliminate the dependency of
the complete semantic input, semantic and acous-
tic features {s,a} are first aligned with each other
to the same sequence length T and then they are
alternatively inputted to the LM, forming a cross-
embedding like {s1, a1, s2, a2, ..., sT , aT }. With
these modifications, the LM can achieve streaming
processing, modeling p(at|s1:t,a1:t−1).

To be specific, the semantic feature s obtained
via an ASR model comprises a sequence of em-
beddings, denoted as {s1, s2, ..., sT }. On the other
hand, the codec tokens obtained from an L-layer
codec are discrete units represented by a ∈ RT×L.
To obtain the acoustic embedding sequence, the
codec tokens from each layer undergo separate
embedding into the embedding space, and then
they are concatenated along the embedding dimen-
sion, resulting in the fused acoustic embedding.
Both the fused acoustic embedding and semantic
features are transformed into the same dimension
using linear layers. Subsequently, they are alter-
nately inputted into the language model, forming
the cross-embedding.
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3.2.2 Acoustic Predictor
As the preceding LM has essentially encoded con-
tent and speaker into its output ch, the acoustic
predictor can be designed in temporal irrelevant
to transform ch into acoustic codec space, which
means the predictor can be easily applied in the
streaming scenario. Given that the speech can be
represented in acoustic features by neural codec in
either continuous or discrete forms, we investigate
the incorporation of both features in StreamVoice,
which are performed by continuous projection and
discrete projection, respectively.

Continuous Projection. Following Shen et
al. (2024), the D-dimensional quantized latent vec-
tor a ∈ RT×D encoded by the codec model is used
as the continuous acoustic representation. The pre-
diction of the continuous representation involves
employing a stack of linear layers, as shown in
Fig. 4. The continuous projection loss is calculated
as the L2 distance between the predicted acoustic
feature â and the ground-truth acoustic feature a,
which is defined as:

LCont = ||a− â||22. (1)

Discrete Projection. In general, the codec
is designed with multi-layer quantizers to com-
press original speech into L-layer discrete indices
a ∈ RT×L at a low bitrate. Most LM-based
work (Wang et al., 2023b,c) stacks multiple LMs
to predict discrete features, making the pipeline
complicated and unsuitable for the streaming sce-
nario. In contrast, StreamVoice adopts a stream-
lined multi-layer codec prediction method inspired
by MQTTS (Chen et al., 2023a). This method, free
from temporal dependencies, can seamlessly inte-
grate into the streaming process of the language
model. Specifically, a single-layer transformer is
used to model the hierarchical conditional distribu-
tion of codecs. As depicted in the right of Fig. 4, at
time t, the transformer employs the ch as the start-
ing condition and sequentially generates alt from
layer 1 to L. Remarkably, this generation process is
independent of the preceding or the future ch, ren-
dering it well-suited for the demands of a streaming
scenario. Notably, in the proposed StreamVoice,
we mainly incorporate the discrete projection to
achieve acoustic prediction. The discrete projec-
tion loss can be described as:

LDisc = −log
T∏

t=1

L∏

l=1

p(al
t|a1:t−1,

m s1:t, t, a
1:l−1
t ). (2)

3.3 Context-aware Enhancement

Due to the disadvantage of the causality in the
streaming framework, streaming models face miss-
ing future reception and potential performance
degradation compared to the non-streaming model,
while the low-quality semantic input from the
streaming ASR, as we mentioned in Section 1,
makes achieving high-quality conversion more
challenging. To address these issues, a context-
aware enhancement method is proposed, which can
alleviate incomplete contextual information arising
from the semantic input and the absence of future
information. Specifically, we introduce context-
masked autoregressive prediction in the LM to en-
hance the capture of historical context from the
given semantic input. Meanwhile, a teacher-guided
context foresight is proposed to ensure the model
can imagine the future context based on that of its
historical context.

Context-masked Autoregressive Prediction.
As shown in the left of Fig. 3, the LM is achieved
by the multi-layer Transformer with unidirec-
tional attention, following the implementation of
LLaMA (Touvron et al., 2023). To enhance con-
textual awareness from the given semantic input,
semantic masking is introduced in the LM to en-
courage acoustic prediction from the corrupted se-
mantic. Specifically, within a sequence of seman-
tic tokens s = {s1, s2, ...sT }, we randomly se-
lect several indices as start indices at a ratio r,
and spans of l steps are masked by [M]. After
masking, LM takes the corrupted semantic feature
ms as input and performs autoregression. With
this method, an information bottleneck is also im-
plicitly created in the semantic feature to reduce
speaker information. Moreover, during training, we
do not explicitly use a speech clip as the speaker
prompt. Instead, LM leverages the previous se-
quence {s1:t−1,a1:t−1, st} as prompts to autore-
gressively generate hidden representation ht for
further acoustic prediction. Notably, when the cur-
rent input is at, the corresponding output is skipped
and does not involve further steps.

Teacher-guided Context Foresight. As previ-
ously discussed, the absence of future information
resulting in the loss of contextual information leads
to a decline in the conversion performance. In-
spired by the effective representation learning ex-
hibited by autoregressive predictive coding (2019)
(APC), we introduce teacher-guided context fore-
sight guided by a non-streaming ASR to enhance
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the autoregression output, as presented in the right
of Fig. 3. This allows the model to learn a context
vector containing envisioned future information.
Specifically, the context representation c is first de-
rived by linear prediction from the hidden features
h, which is generated by the LM through historical
context. Subsequently, this ct is encouraged to dis-
cover more general future context information by
minimizing the L2 distance not only with k seman-
tic features from future time steps st+1, ..., st+k

but also with the current semantic st. This dual
minimization approach contributes to precise con-
tent delivery and enhances the ability to forecast
future context. The loss can be summarized as

LTF =
1

T − k

T−k∑

1

∥ct − Concat(st, st+1, ..., st+k)∥22
(3)

where Concat(·) denotes the concatenation of fea-
tures along the dimensional axe. Unlike the original
APC, which operates between the input and output
of an autoregressive model, our approach employs
a non-streaming ASR model as a teacher to provide
semantic information s for guiding this foresight
process. This is done to tackle the inherent chal-
lenge of obtaining high-quality semantic features
from the streaming ASR. After dimensional trans-
formations, the context representation c is then
combined with h to form the context-enhanced ch,
which is then fed into the acoustic predictor.

Furthermore, since the semantic feature {s, s}
still may contain speaker-related information. To
further ensure the speech decoupling, the bottle-
neck regulator (Qian et al., 2019), which squeezes
out speaker information by reducing dimension
size with a linear layer, is applied in s and c.

3.4 Training & Inference Procedure
Training. During training, the context-enhanced
language model and acoustic predictor are trained
together. The total loss can be described as
Ltotal = LTF + LCont for continuous codec or
Ltotal = LTF + LDisc for discrete version.
Streaming Inference. We use the semantic and
acoustic features from a short speech clip of the
target speaker as the speaker prompt. Since this
clip is randomly selected, which may contain un-
finished pronunciation at the end of the clip, we
pad a silence clip after the speaker recording before
the conversion process to prevent the unexpected
continuation. With this prompt, StreamVoice can
stream convert the source speech. In discrete pro-
jection, we use greedy decoding to choose the

codec token with the highest probability. Be-
sides, to ensure the real-time streaming inference
of StreamVoice, we employ the key-value cache in
LM to reduce redundant calculations. In practice,
since the beginning and end of the source speech
can be determined by ASR or voice activity de-
tection (VAD), we don’t employ techniques, such
as window attention or slide attention, to handle
the input. StreamVoice’s performance decreases
when the long input exceeds the maximum training
length. Notably, these techniques can be easily in-
tegrated into our framework, providing flexibility
for future extensions.

4 Experiments

4.1 Experimental Setup

Corpus. A mixed dataset comprising 1,500 hours
of Aishell3 (Shi et al., 2021) and an internal Chi-
nese dataset are used to train StreamVoice and Au-
diodec (Wu et al., 2023). The internal dataset con-
tains recordings from 2679 Chinese speakers, while
we use utterances from 200 speakers in Aishell3.
To extract semantic features, we incorporate a
streaming ASR Fast-U2++ (Liang et al., 2023),
which is implemented by WeNet (Yao et al., 2021)
and trained on WenetSpeech (Zhang et al., 2022).
For zero-shot testing, a set of 400 testing pairs is
selected from DIDISpeech (Guo et al., 2021) and
EMIME (Wester, 2010), each with a source and
target speaker utterance. For evaluation of seen
speakers, eight speakers from Aishell3 are selected
to form 160 conversion pairs. And 3s speech utter-
ance is used as a speaker prompt in inference. The
duration of testing utterances is between 3s and 7s.
Implement Details. We use open-sourced code1

of Audiodec, which has 4 quantizer layers with a
1024 codebook size and 64 codebook dimension,
representing a 24kHz waveform in 20ms frame
length. The Fast-U2++ uses an 80ms chunk size
to perform streaming inference and compresses a
16kHz waveform into a semantic feature with a
40ms frame length. StreamVoice contains 101M
parameters. For context-enhanced LM, we employ
the variant of Transformer, LLaMA (Touvron et al.,
2023), with 6 layers and 8 heads. The hidden and
intermediate sizes are 1024 and 4096. We use the
officially released code2 to implement the acoustic
predictor, which uses a layer Transformer decoder
with a hidden size 256, feed-forward hidden size

1https://github.com/facebookresearch/AudioDec
2https://github.com/b04901014/MQTTS

7333



1024, and 4 heads. In semantic masking, mask ratio
r ranges from 0.01 to 0.02, and span l is set to 10.
The foresight step k is set to 4. The bottleneck reg-
ulator compresses feature dimensions by 6 times.
During training, the max training length is set to
12s. StreamVoice is trained using 8 V100 GPUs
with a batch size of 7 utterances per GPU for 700k
steps. We use the AdamW optimizer with a learn-
ing rate of 5 × 10−4. Exponential decay updates
the learning rate after each epoch, using a decay
ratio of 0.986.
Evaluation Metrics. The mean opinion score
(MOS) subjectively measures speech naturalness
(NMOS) and speaker similarity (SMOS), which
are calculated with 95% confidence intervals. We
randomly select 120 testing pairs for subjective
evaluations involving a group of 15 listeners. For
objective evaluations, a neural network-based sys-
tem with open-source implementation3 is used to
measure speech quality (WV-MOS). Character er-
ror rate (CER) measured by an ASR model4 indi-
cates the speech intelligibility. Speaker similarity
(SSIM) is calculated by an SV model (Desplanques
et al., 2020) to determine if the converted speech
matches the target speaker. Real-time factor (RTF)
and latency indicate the streaming performance.

Method
Quality Similarity

NMOS ↑ WVMOS ↑CER ↓ SMOS ↑ SSIM ↑
GT (origin) - 3.61 6.29 - 0.803
Non-streaming Topline
LM-VC 3.80±0.09 3.74 8.93 3.78±0.08 0.742
NS-StreamVoice 3.87±0.07 3.68 8.51 3.73±0.11 0.755
Streaming Model
C-StreamVoice 3.72±0.10 3.49 10.2 3.67±0.09 0.729
StreamVoice 3.83±0.09 3.63 9.43 3.74±0.08 0.740

Table 1: Zero-shot performance (unseen speakers)

4.2 Experiments Results

4.2.1 Zero-shot Evaluation
To evaluate the zero-shot VC performance, one
recent LM-based zero-shot VC system, LM-
VC (Wang et al., 2023c), is selected as the topline
system. Besides, a variant of StreamVoice, referred
to as NS-StreamVoice, using a non-streaming ASR
for semantic extraction, is also compared. We
implement the proposed system StreamVoice in-
tegration discrete projection, while C-StreamVoice

3https://github.com/AndreevP/wvmos
4https://github.com/wenet-

e2e/wenet/tree/main/examples/wenetspeech

also involves the evaluation since speech can repre-
sented in continuous form by codec model. Table. 1
presents both subjective and objective results. Com-
pared with the non-streaming topline LM-VC, our
proposed StreamVoice can achieve close results
regarding subjective NMOS and SMOS, while a
performance gap still exists. Similar results are also
observed in objective results. The non-streaming
StreamVoice even surpasses the topline model in
certain aspects, indicating the effectiveness of our
streamable architecture for zero-shot VC. Addition-
ally, C-StreamVoice exhibits inferior performance
compared to the discrete version, which can con-
tribute to the over-smoothness in speech genera-
tion (Ren et al., 2022) and the mismatch between
the ground truth and predicted features.

As illustrated in Table. 2, the RTF of the entire
pipeline is below 1, which meets the real-time re-
quirement. Consisting of chunk-waiting latency
(80ms) and model inference latency, the overall
pipeline latency is 124.3 ms. If using a V100 GPU,
StreamVoice can obtain an RTF of 0.56, and the
overall latency reaches 137.2 ms. Importantly, un-
like previous streaming VC, our VC model is en-
tirely causal without any future look-ahead, high-
lighting its powerful modeling capability. These
results show that StreamVoice can achieve high-
quality zero-shot VC in streaming scenarios.

RTF Latency (ms)
ASR Encoder 0.13 10.4
Codec Decoder 0.004 0.3
StreamVoice 0.42 33.6
Overall 0.554 44.3+80=124.3

Table 2: Speed tested on an A100 80G GPU. Latency is
obtained by multiplying RTF by 80ms chunk size.

Method Quality Similarity
NMOS ↑ WVMOS ↑ CER ↓ SMOS ↑ SSIM ↑

GT (origin) - 3.65 6.29 - 0.729
Non-streaming Topline
NS-VC 3.85±0.09 3.71 8.39 3.92±0.08 0.744
Streaming Model
IBF-VC 3.71±0.09 3.48 9.52 3.67±0.10 0.687
DualVC2 3.80±0.10 3.57 10.2 3.85±0.09 0.703
StreamVoice 3.82±0.09 3.50 10.0 3.82±0.10 0.694

+ Tuning 3.78±0.08 3.52 10.4 3.87±0.10 0.714

Table 3: In-dataset performance (seen speakers)

4.2.2 In-dataset Evaluation
To get further insight into StreamVoice, we con-
ducted an in-dataset evaluation on eight seen speak-
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ers, as shown in Table. 3. A non-streaming VC
system (Tian et al., 2020) achieving any2many
VC, is selected, referred to as NS-VC. Also, IBF-
VC (Chen et al., 2022) and DualVC2 (Ning et al.,
2024) are recently proposed streaming models for
any2many VC. As observed, a performance gap ex-
ists between the strong non-streaming topline and
streaming models. Among the streaming models,
StreamVoice, designed for the zero-shot scenario,
delivers similar results to systems designed for in-
dataset speakers, even though StreamVoice uses
a smaller chunk size of 80ms in streaming ASR,
achieving lower ASR performance. In contrast,
IBF-VC and DualVC2 employ 160ms chunk size of
ASR for streaming VC. It indicates StreamVoice’s
good conversion ability. With available utterances
of target speakers, fine-tuning yields superior per-
formance. This indicates our system can be easily
applied to various scenarios with or without the
utterances of target speakers.

Method WVMOS ↑ CER ↓ SSIM ↑
StreamVoice 3.63 9.43 0.740

w/o Teacher-guided Context Foresight
w/o LTF (st) 2.56 76.8 0.59
w/o LTF (st+1:t+k) 3.39 13.7 0.728

w/o Semantic Masking 3.47 13.0 0.715
w/o Bottleneck Regulator 3.59 9.21 0.718

Table 4: Results of ablation studies.

4.3 Ablation Study
As presented in Table 4, we conducted several ab-
lations studies. In w/o teacher-guided context fore-
sight, we discard the prediction of current and fu-
ture semantic information, forming two ablations
w/o LTF (st) and w/o LTF (st+1:t+k). As can be
seen, a noticeable decrease occurs in all evaluation
metrics when the LTF (st+1:t+k) is discarded, espe-
cially in WVMOS and CER. This indicates that this
foresight improves performance in capturing the
linguistic content. But when only integrating con-
text from future semantics, the model w/o LTF (st)
faces severe performance loss. It shows that only
using future information interferes with delivering
current linguistic content. In w/o semantic masking,
we observe a performance decrease in all evaluation
metrics when the semantic masking is discarded.
This indicates that StreamVoice, trained with se-
mantic masking, effectively enhances contextual
learning from the preceding input while improving
speaker timbre capturing. Furthermore, the results

of dropping the bottleneck regulator show that its
integration effectively prevents the source speaker
information contained in the semantic feature from
leaking into the converted speech, with little effect
on speech quality.

Type of ASR WVMOS ↑ CER ↓ SSIM ↑
Non-streaming ASR 3.68 8.51 0.755
Streaming ASR (Moritz et al., 2019)
+ 0ms Future Look-ahead 3.19 91.7 0.674
+ 160ms Future Look-ahead 3.48 10.6 0.727

Streaming ASR (Fast-U2++ (Liang et al., 2023))
Chunk (80ms) 3.63 9.43 0.740
Chunk (160ms) 3.69 9.16 0.744

Table 5: Analysis of dependency on different ASR.

4.4 Discussion: Dependency Analysis
In this section, we will explore the dependency
relations between the selection of ASR and codec
and the performance of StreamVoice.

ASR. To investigate the impact of ASR on
StreamVoice, three representative ASR systems,
including non-streaming ASR 4, widely used CTC-
based streaming ASR (Moritz et al., 2019), and
the recently proposed streaming Fast-U2++ (Liang
et al., 2023), are selected to perform semantic ex-
traction. As can be seen in Table 5, StreamVoice
using semantic features of non-streaming ASR out-
performs those using streaming ASR. This discrep-
ancy may be attributed to the inherent performance
gap between non-streaming and streaming ASR
models, resulting in different semantic extraction
abilities. Besides, without future look-ahead in
StreamVoice, using semantic features from (Moritz
et al., 2019) cannot achieve reasonable conversion,
while we introduce a 160ms future look-ahead in
StreamVoice, i.e., modeling p(at|a1:t−1, s1:t+m, t)
with m future look-ahead, yield good conversion re-
sults. This issue may arise from delayed CTC spike
distributions and token emission latency existing
in streaming ASR (Liang et al., 2023), leading to
semantic information shifting. Benefiting from the
low emission latency of Fast-U2++, StreamVoice
can perform conversion without future look-ahead.
With a longer chunk size employed in Fast-U2++,
StreamVoice can obtain better results while reach-
ing a larger latency of 270ms. A trade-off still
exists between performance and speed.

Codec. In StreamVoice, we employ a low-
latency streaming codec Audiodec (Wu et al.,
2023). As presented in Table. 6, we validate the
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Type of Audiodec WVMOS ↑ CER ↓ SSIM ↑ RTF
w/ 2kbps Audiodec 3.63 9.43 0.740 0.42
w/ 8kbps Audiodec 3.61 9.38 0.738 0.61
Large w/ 8kbps Audiodec 3.68 9.12 0.751 0.90

Table 6: Analysis of dependency on Audiodec with
various bitrate.

performance of StreamVoice using codecs with dif-
ferent bitrates, including 2kbps and 8kbps, where
higher bitrate codecs achieve superior reconstruc-
tion quality to lower bitrate ones. The 2kbps
Audiodec utilizes 4 layers of quantization and
represents audio with a frame length of 20ms,
while the 8kbps Audiodec employs 8 layers with a
frame length of 10ms. Using the configuration of
StreamVoice mentioned in Section 4.1, the results
in different bitrates of codec models show no ob-
vious differences. When increasing the number of
transformer layers in the codec predictor, forming
Large w/ 8kbps Audiodec, conversion performance
using 8kbps codec improves noticeably, but result-
ing in slower inference. This result shows that the
design of StreamVoice depends on the codec con-
figuration, affecting both conversion quality and
inference speed.

5 Conclusions

This paper introduces StreamVoice, a novel LM-
based zero-shot VC system designed for streaming
scenarios. Specifically, StreamVoice employs a
single-stage framework encompassing a context-
aware LM and an acoustic predictor. The casual
design of the model’s input and structure ensures
compliance with streaming behavior. To address
performance degradation caused by missing com-
plete contextual information in streaming scenarios,
context-aware LM adopts teacher-guided context
foresight to make the model able to forecast the
current and future information given by a teacher.
Besides, semantic masking is introduced in LM
to enhance context learning from historical input
and facilitate better disentanglement. Finally, an
acoustic predictor collaborates with the LM to gen-
erate the target speech. Experiments demonstrate
that StreamVoice achieves streaming zero-shot VC
while maintaining performance comparable to non-
streaming VC systems.

6 Limitations

We have to point out that StreamVoice still has
limitations. In our configuration, StreamVoice

needs a GPU, such as V100 and A100, to achieve
real-time streaming inference. The design of
streaming VC heavily relies on the ASR and the
speech codec as mentioned in Section 4.4. Be-
sides, StreamVoice also faces the out-of-domain
problem, which causes performance degradation
for utterances with accents, strong emotions, or un-
seen recording environments. Our future work will
first use more training data with diversity coverage
to explore StreamVoice’s modeling ability. Also,
we will focus on optimizing our streaming pipeline,
such as high-fidelity codec with low bitrate and
unified streaming model.

7 Ethics Statement

Since StreamVoice can convert source speech to
desired speakers, it may carry potential risks of mis-
use for various purposes, such as spreading fake
information or phone fraud. To prevent the abuse of
the VC technology, many studies have focused on
synthetic speech detection (Yi et al., 2022). Mean-
while, we also encourage the public to report the
illegal usage of VC to the appropriate authorities.
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