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Abstract
Large Language Models (LLMs) have driven
substantial progress in artificial intelligence in
recent years, exhibiting impressive capabilities
across a wide range of tasks, including mathe-
matical problem-solving. Inspired by the suc-
cess of subgoal-based methods, we propose a
novel framework called SEquential subGoal
Optimization (SEGO) to enhance LLMs’ abil-
ity to solve mathematical problems. By es-
tablishing a connection between the subgoal
breakdown process and the probability of solv-
ing problems, SEGO aims to identify better
subgoals with theoretical guarantees. Address-
ing the challenge of identifying suitable sub-
goals in a large solution space, our framework
generates problem-specific subgoals and ad-
justs them according to carefully designed cri-
teria. Incorporating these optimized subgoals
into the policy model training leads to signifi-
cant improvements in problem-solving perfor-
mance. We validate SEGO’s efficacy through
experiments on two benchmarks, GSM8K and
MATH, where our approach outperforms ex-
isting methods, highlighting the potential of
SEGO in AI-driven mathematical problem-
solving.

1 Introduction

In recent years, the emergence of Large Language
Models (LLMs) has marked a significant milestone
in the field of artificial intelligence. Models such as
ChatGPT and LLaMA have demonstrated remark-
able capabilities across diverse tasks. Within this
context, addressing mathematical problems has at-
tracted considerable interest from researchers, as
it serves as a prominent showcase of the reasoning
capabilities inherent in LLMs. Reasoning involves
a multitude of aspects, among which the ability to
decompose the overall problem into smaller, more
manageable subproblems (i.e., subgoals) is particu-
larly essential for effective problem-solving.

∗ This work was done during an internship at Tencent AI
Lab.

In this paper, we draw inspiration from the suc-
cessful application of subgoal-based methods in
both RL and LLMs (Zhang et al., 2020; Zhao et al.,
2023) and introduce a novel framework called
SEGO (SEquential subGoal Optimization). Intu-
itively, a good subgoal should serve as a bridge
to solving a bigger problem, such that breaking
down the problem into these subgoals makes the
subproblems easier to solve, thereby increasing the
likelihood of solving the entire problem. SEGO
quantifies this intuition by establishing a theoret-
ical connection between the subgoal breakdown
process and the probability of solving the problem
(Eq. 6). Concretely, we construct a lower bound
on the probability of solving the complete prob-
lem using a proposal distribution considering a
specific subgoal. We then employ a method in-
spired by annealed importance sampling (Neal,
2001) to efficiently navigate through vast search
spaces, seeking the subgoal corresponding to the
theoretically optimal proposal distribution, while
ensuring the process doesn’t get trapped in sub-
optimal subgoals (§3.2). By incorporating these
sequentially optimized subgoals into the training of
the policy model, we achieve significant improve-
ments in solving mathematical problems.

To empirically validate the efficacy of SEGO,
we conducted experiments on two primary bench-
marks: GSM8K (Cobbe et al., 2021) and
MATH (Hendrycks et al., 2021). Our approach
demonstrated marked superiority against existing
methods with comparable model sizes, highlight-
ing the potential of SEGO in advancing the field
of AI-driven mathematical problem-solving. We
hope that our findings can open up new avenues
for future research on the applicability of LLMs to
complex tasks in diverse domains (Yao et al., 2022;
Liu et al., 2023).
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2 Preliminaries

2.1 Problem Formulation

This study focuses on a goal-conditioned reinforce-
ment learning (RL) framework, consisting of goal
space (G), state space (S), action space (A), transi-
tion probability (P), and reward function (R). The
transition probability P(s′|s,a) indicates the prob-
ability of transitioning from a current state s to a
new state s′ after an action a. The reward function
R(s, g) gives a reward of 1 if the goal g is reached
at state s, and 0 otherwise. The policy π(a|s, g)
maps state-goal pairs to actions in A.

Building on the goal-conditioned RL framework,
in mathematical problem-solving, an action de-
notes a step in the solution process, while the state
comprises cumulative actions. The (sub-)goal is
the specific problem targeted for resolution. The
transition probability, P(s′|s, a), uniquely assigns
a probability of 1 to the state s′ = [s; a] where [; ]
represents sequence concatenation, and 0 to all oth-
ers. The reward function R(s, g) evaluates whether
state s correctly solves the goal g. In this work,
we employ a program-aided approach (Gao et al.,
2023; Chen et al., 2022; Drori et al., 2022) to form
the solution. For illustration, consider the goal g as
“Calculate sin(30◦)”. Here, a state s could be “im-
port math; def solve(): angle = math.radians(30);”,
and an action a, “return math.sin(angle)”. This
work aims to create a policy network that predicts
trajectories for new goals. It uses a demonstration
dataset D = {τ : (g; s0,a0, . . . , sℓ,aℓ)}, where
τ represents a trajectory of length ℓ with states st
and actions at at every timestep. The special state,
ŝ, consists solely of essential imports and function
definitions. The task is to predict a trajectory, start-
ing from ŝ and aligned with a given goal g. This is
formulated as:

p(τ | ŝ, g) =
ℓ∏

t=0

π(at | st, g) · P(st+1 | at, st),

with s0 = ŝ.

(1)

2.2 Subgoal-based Reinforcement Learning

The main idea behind subgoal-based RL involves
decomposing a challenging task into two more
manageable sub-tasks, each of which can be ad-
dressed by the existing policy (Li et al., 2022). In
subgoal-based RL, a typical approach consists of
three phases: subgoal collection, trajectory sam-
pling, and training, which together form a cyclical
process.

The subgoal collection phase is central to this
framework and follows a “generate-select” pipeline.
Specifically, for a challenging goal g, the process
generates a variety of potential subgoals, each
paired with its respective state. A suitable sub-
goal, gw, and its state, sw1, are then selected based
on criteria that vary among different algorithms (Li
et al., 2022; Zhang et al., 2021; Chane-Sane et al.,
2021). These criteria typically ensure that the cho-
sen subgoal is attainable from the initial state and
facilitates achieving the final goal. For example,
the subgoal might be “Calculate the radian value of
30◦” with the state “import math; def solve(): angle
= math.radians(30);”. In the trajectory sampling
phase, trajectories τ1 and τ2 are drawn from the dis-
tributions p(τ |ŝ, gw) and p(τ |sw, g) respectively.
The final training phase utilizes these trajectories to
optimize the policy network, thereby enhancing the
ability to achieve both subgoals and the ultimate
goal.

3 Method

This work addresses challenges in subgoal-based
RL, focusing on the suboptimality of generated sub-
goals and their selection process’s lack of theoreti-
cal guarantees. We introduce the SEGO framework,
which innovates beyond the traditional “generate-
select” pipeline. SEGO employs a “generate-
(sequentially) optimize-select” approach (Figure 1),
encompassing a policy network, subgoal generator,
subgoal optimizer, reward network, and value net-
work. Notably, only the policy network is used in
the testing phase.

The “generate-(sequentially) optimize-select”
pipeline starts with initial subgoal generation, fol-
lowed by sequential optimizations. In each itera-
tion, a new subgoal is proposed and evaluated for
its increased likelihood of achieving the goal. Im-
proved subgoals are retained for further refinement.
This results in a collection of refined subgoals, from
which the most suitable are selected based on spe-
cific criteria.

SEGO presents substantial advantages: (1) Its
sequential optimization aligns generated subgoals
more closely with an optimal subgoal distribution.
(2) It accurately calculates subgoal weights based
on an unbiased estimate of the probability of reach-
ing a goal from a given state.

1In this work, the subscript “w” denotes “waypoint”, which
is used interchangeably with “subgoal”.
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Figure 1: An overview of the “generate-(sequentially) optimize-select” pipeline. Within this pipeline, the symbols f ,
h, r, and vπ correspond to the subgoal generator, subgoal optimizer, reward network, and value network, respectively.
The terms g, sw, and gw denote the intended goal, the subgoal state, and the subgoal. The pipeline initiates by
generating a diverse set of subgoals. Each subgoal is then optimized in sequence. The process ends with the
selection of the most appropriate subgoal.

Road Map. We start by discussing the initializa-
tion fine-tuning in §3.1, which includes setting up
key components and preparing initial training data.
Next, we detail subgoal-based fine-tuning in §3.2,
the core of our framework. This section explains
the “generate-(sequentially) optimize-select” pro-
cess and how the resultant data updates various
component parameters. The overall algorithm is
outlined in §3.3.

3.1 Initialization Fine-tuning
The SEGO framework employs the following key
components: policy network, subgoal generator,
subgoal optimizer, reward network, and value net-
work, all of which are implemented using large
language models (LLMs) (Touvron et al., 2023a,b;
Rozière et al., 2023). We defer the training de-
tails of these components after an overview of their
implementation. More details about these compo-
nents are provided in Appendix B.

Policy Network. The policy network π(a | s, g)
processes the current state and goal, represented as
token sequences, to predict actions. This network
employs standard decoding methods like greedy
search or top-k sampling (Holtzman et al., 2019).

Subgoal Generator and Subgoal Optimizer.
The subgoal generator f , represented as sw, gw =
f(s, g), breaks complex tasks into simpler sub-
tasks, transforming the current state and goal into
a subgoal and its associated state. This method

ensures manageable progression towards the ul-
timate goal. The subgoal optimizer h, denoted
as s′w, g

′
w = h(sw, gw, s, g), refines these sub-

goals and states to improve goal decomposition
efficiency.

Reward Network and Value Network. The re-
ward network r(s, g) evaluates if the current state
achieves the goal, acting as a surrogate for the
actual reward function R. The value network
vπ(s, g), a regression model, assesses the success
probability from a given state under policy π.

Training of the SEGO components begins with a
goal collection, Dg = {g}, and a trajectory dataset,
D = {τ : (g; s0,a0, s1,a1, . . .)}, created using
GPT-3.5-turbo.2 This dataset comprises various
mathematical problem-solving trajectories. The
policy network is trained with triplets (g, si,ai)
from D to predict action ai for a given state si and
goal g. For each trajectory, a state st is randomly
chosen, and GPT-3.5-turbo predicts the intermedi-
ate subgoal gw and its state sw. This step trains
the subgoal generator to predict subgoals and their
states from (st, g). GPT-3.5-turbo also introduces
slight modifications to gw and sw, producing g̃w

and s̃w. The subgoal optimizer is trained to restore
(gw, sw) from these corrupted versions, consider-
ing the current state st and goal g.

After initializing the policy network, it gener-

2Further details regarding the trajectory dataset are elabo-
rated in Appendix C.
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Algorithm 1 SEGO: Sequential Subgoal Optimization
Requires: π, f , h, r, vπ: policy network, subgoal generator, subgoal optimizer, reward network, value network, respectively.

Kmax: maximum iterations for subgoal-based fine-tuning.
Dg: a collection of goals (or mathematical problems).

1: Construct the trajectory dataset D using GPT-3.5-turbo and Dg .
2: Initialize and fine-tune π, f , h, r, and vπ with Dg and D.
3: k ← 0.
4: while k < Kmax do
5: Dp,Dv ← ∅. ▷ Prepare datasets Dp for policy and Dv for value network training.
6: for τ ∈ D do ▷ Each τ is a trajectory in the form (g; s0,a0, . . . , st,at, . . .).
7: Generate a diverse set of subgoals via Eq.2.
8: Optimize each subgoal using Eq.3 and Eq.4.
9: Select a subgoal via Eq.5.

10: Sample new trajectories τ1 and τ2 utilizing the selected subgoal.
11: Calculate ᾱ and form a triplet (g, st, ᾱ). ▷ ᾱ estimates the probability of achieving g from st under π.
12: Update Dp ← Dp ∪ {τ1, τ2}, Dv ← Dv ∪ {(g, st, ᾱ)}.
13: Train policy network π with Dp and value network vπ with Dv .
14: k ← k + 1.

ates trajectories for each goal in Dg, with goals
linked to human-annotated answers. Trajectories
leading to correct answers are positive examples,
{τ : (g : s0,a0, . . . , sℓ,aℓ)}, and those miss-
ing the correct answers are negative examples,
{τ : (g : s̃0, ã0, . . . , s̃ℓ, ãℓ)}. The reward net-
work is trained to classify the final state-goal pair
(sℓ, g) as positive and (s̃ℓ, g) as negative. Simulta-
neously, the value network trains to approximate to
1 for (st, g) and 0 for (s̃t, g), where st and s̃t are
randomly selected from their respective sets.

3.2 Subgoal-based Fine-tuning

The policy network, when only fine-tuned at the
initialization phase, struggles with complex prob-
lems (Luo et al., 2023). Inspired by recent advance-
ments in subgoal-based RL (Li et al., 2022; Zhang
et al., 2021; Chane-Sane et al., 2021) and annealed
importance sampling (Neal, 2001), we introduce
a fine-tuning stage that emphasizes decomposing
tasks into subgoals. Additionally, it evolves from
the traditional “generate-select” pipeline to a more
advanced “generate-(sequentially)optimize-select”
approach.

Subgoal Collection. For each trajectory τ :
(g; s0,a0, s1,a1, . . .) ∈ D, this phase aims to gen-
erate a subgoal pair (sw, gw) that decompose g into
more manageable subtasks. The procedure starts by
generating N independent pairs of initial subgoals,
denoted as {(s(i,1)w , g

(i,1)
w )}Ni=1. Subsequently, each

pair (s(i,1)w , g
(i,1)
w ) proceeds through a sequential

optimization process, which yields a sequence of
subgoal pairs: {(s(i,1)w , g

(i,1)
w ), . . . , (s

(i,η)
w , g

(i,η)
w )},

where η represents the maximum number of itera-
tions within the sequential optimization.

Within each trajectory τ , a state st is randomly
selected from the set {s0, s1, . . .}. Subsequently,
the subgoal generator is tasked with producing a
series of subgoals, defined as follows:

s(i,1)
w , g(i,1)

w = f(st, g), for i = 1, . . . , N (2)

To ensure the generation of diverse subgoals, a
top-k sampling strategy (Holtzman et al., 2019) is
implemented.

The pipeline then progresses to a sequential opti-
mization process. At the j-th iteration, the subgoal
optimizer proposes a potentially improved subgoal
pair, which is defined as:

s(i,j)
w , g(i,j)

w = h(s(i,j−1)
w , g(i,j−1)

w , st, g),

for i = 1, . . . , N (3)

To ensure the improvement of the new sub-
goal pair (s

(i,j)
w , g

(i,j)
w ) over its predecessor

(s
(i,j−1)
w , g

(i,j−1)
w ), it is necessary to establish a rig-

orous criteria for evaluation. To do that, a criteria
is derived from a theoretical perspective to guaran-
tee an unbiased estimation, as detailed in Proposi-
tion 4.3. Formally, the criteria is defined as:

∆ =βj−1 log
p(s

(i,j)
w , g(i,j)

w | st, g; f)

p(s
(i,j−1)
w , g

(i,j−1)
w | st, g; f)

+ (1− βj−1) log

(
vπ(s

(i,j)
w , g)

vπ(s
(i,j−1)
w , g)

× vπ(st, g
(i,j)
w )

vπ(st, g
(i,j−1)
w )

×
exp

(
r(s

(i,j)
w , g(i,j)

w )
)

exp
(
r(s

(i,j−1)
w , g

(i,j−1)
w )

)




+ log
p(s

(i,j−1)
w , g(i,j−1)

w | s(i,j)
w , g(i,j)

w , st, g;h)

p(s
(i,j)
w , g

(i,j)
w | s(i,j−1)

w , g
(i,j−1)
w , st, g;h)

(4)

7547



where the sequence of weights βj satisfies 1 =
β0 > β1 > . . . > βη = 0. If ∆ ≤ 0,
the subgoal pair at the j-th step is redefined
as (s

(i,j−1)
w , g

(i,j−1)
w ); otherwise, (s(i,j)w , g

(i,j)
w ) is

maintained. Intuitively, as the coefficient βj ap-
proaches 0, the criteria increasingly emphasizes
the comparison between the values of two sub-
goals within the optimal distribution (Proposi-
tion 4.2), represented in logarithmic form. Specif-
ically, vπ(sw, g) and vπ(s, gw) serve as proxies
for pπ(g | sw) and pπ(gw | s), respectively. This
comparison favors the subgoal that better aligns
with the optimal distribution, thus incrementally
steering the subgoal optimization towards more
theoretically effective choices. The final term in ∆
acts as a regularization factor.

The weight α(i) associated with each subgoal
pair (s(i,η)w , g

(i,η)
w ) is defined as follows:

logα(i) =

η∑

j=1

[
(βj − βj−1) log p(s

(i,j)
w , g(i,j)

w | st, g; f)

+ (βj−1 − βj)

(
log vπ(s(i,j)

w , g)

+ log vπ(st, g
(i,j)
w ) + r(s(i,j)

w , g(i,j)
w )

)]

(5)

Subsequently, the subgoal pair (sw, gw) is se-
lected based on a softmax distribution over these
weights, i.e., (sw, gw) ∼ Softmax(logα(i)).

Trajectory Sampling and Component Training.
Upon obtaining a trajectory τ and the predicted
subgoal pair (sw, gw), the subsequent procedure
involves generating two new trajectories through
the policy network. These trajectories, denoted
as τ1 and τ2, are sampled from p(τ | st, gw) and
p(τ | sw, g) (defined in Eq.1), respectively. Within
these trajectories, for each triplet (g, si,ai), the
policy network is trained to predict the action ai

given the state si and the goal g.
As a byproduct of this sequential optimization

process, the average coefficient ᾱ = 1
N

∑N
i=1 α

(i)

acts as an unbiased estimator that correlates with
the probability of successfully achieving the goal
g from the state st when guided by the policy
network π (see Proposition 4.3). Leveraging this
byproduct, the value network is further trained to
regress towards ᾱ, using the state st and the goal g
as inputs.

3.3 SEGO: Sequential Subgoal Optimization
After completing the initialization phase, our ap-
proach involves repeated cycles of subgoal collec-

tion, trajectory sampling and component training.
This procedure leads to the development of our
final framework, SEGO, detailed in Algorithm 1.

Remarks. In this work, we concentrate on mathe-
matical problem-solving, yet our proposed method-
ology serves as a universal framework for tackling
a wide range of complex tasks that can be modeled
as goal-conditioned reinforcement learning prob-
lems (see §2.1), including code generation (Chen
et al., 2021) and commonsense reasoning (Clark
et al., 2018). To do that, one only needs to cus-
tomize the goal, action, and state space definitions
to suit the task specifics and adjust prompts for
trajectory generation and subgoal prediction using
GPT-3.5-turbo, aligning them with the specific re-
quirements of the task.

4 Theoretical Analysis
We begin by constructing a lower bound on the
probability of successfully solving the complete
problem. This is done through the consideration of
a proposal distribution focused on a specific sub-
goal. Letting pπ(·|·,g)(g | s) represent the probabil-
ity of achieving a goal g from a state s under policy
π(· | ·, g), we have the following proposition:

Proposition 4.1. The objective defined below con-
stitutes a lower bound on the probability of reach-
ing the goal g from state s:

log pπ(·|·,g)(g | s) ≥ Eq(g
w

,s
w

|g,s)
[
log pπ(·|·,g)(g | sw)+

log pπ(·|·,g
w

)(gw | s) + r(sw, gw)− log q(sw, gw | s, g)
]
.

(6)

We provide the proof in Appendix A.1. Next, we
derive the analytical solution for the optimal sub-
goal distribution and obtain the following proposi-
tion.

Proposition 4.2. The optimal subgoal distribution
satisfies the following condition:

q⋆(sw, gw | s, g)

=
pπ(·|·,g)(g | sw)p

π(·|·,g
w

)(gw | s)exp(r(sw, gw))

Z
,

where Z =

∫∫
pπ(·|·,g)(g | s′

w)p
π(·|·,g ′

w

)(g′
w | s)

× exp(r(s′
w, g

′
w))ds

′
wdg

′
w.

(7)

We provide the proof in Appendix A.2. Proposi-
tion 4.2 reveals that the optimal subgoal should not
only be reachable from the starting point but also
aid in ultimately reaching the final goal. We fur-
ther investigate the ability of SEGO to provide an
unbiased estimate of the Z. Inspired by annealed
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Model Base Prompt Params GSM8K MATH

GPT-4 (OpenAI, 2023) - CoT - 92.0 42.5
PaLM-2 (Anil et al., 2023) PaLM CoT 540B 80.7 34.3
Minerva (Lewkowycz et al., 2022) PaLM CoT 540B 58.8 33.6

LLaMA2 (Touvron et al., 2023b) LLaMA2 CoT
7B 14.6 2.5
13B 28.7 3.9

WizardMATH (Luo et al., 2023) LLaMA2 CoT
7B 54.9 10.7
13B 63.9 14.0

MetaMath (Yu et al., 2023) LLaMA2 CoT
7B 66.5 19.8
13B 72.3 22.4

CodeLLaMA (Rozière et al., 2023) CodeLLaMA PoT
7B 25.2 14.2
13B 36.1 18.1

MAmmoTH-Coder (Yue et al., 2023) CodeLLaMA PoT
7B 59.4 33.4
13B 64.7 36.3

SEGO (ours) CodeLLaMA PoT 7B 68.7 36.8
13B 72.5 40.0

Table 1: Evaluation results on GSM8K and MATH. “CoT” and “PoT” represent chain-of-thoughts (Wei et al., 2023)
program-of-thoughts (Chen et al., 2022) respectively.

importance sampling (Neal, 2001), we arrive at the
following proposition:

Proposition 4.3. Let ᾱ be defined as ᾱ =
1
N

∑N
i=1 α

(i), wherein each α(i) adheres to the def-
inition in Eq.5. It follows that ᾱ constitutes an
unbiased estimator of Z.

We provide the full proof of the unbiasedness
in Appendix A.3. Proposition 4.3 reveals that the
training objective for the value network can be ap-
proximated as a proportional estimate of the proba-
bility of attaining the goal g from state s following
the current policy π.

5 Experiments
5.1 Dataset and Evaluation
Evaluation and Training Data. Our model is
evaluated using two datasets: GSM8K (Cobbe
et al., 2021) and MATH (Hendrycks et al., 2021).
GSM8K contains 8, 792 math word problems for el-
ementary students, with 1, 319 reserved for testing.
MATH, with 12, 500 problems (including 5, 000
for testing), focuses on advanced mathematics, fea-
turing questions from competitions like the AMC
and AIME. Data preprocessing follows the method-
ologies in the original papers to ensure consistent
evaluation. We provide the details of the training
data in Appendix D.

Evaluation Metric. We evaluate by comparing
the results of the solution generated by the policy
network in SEGO to the provided correct answers
within the datasets. For evaluation, we report the

accuracy, specifically focusing on the rate at which
the policy network correctly solves the problems
on the first attempt.

5.2 Baselines

Due to space constraints, details on the baselines
are available in Appendix D.

5.3 Main Results

As indicated in Table 1, our key findings include:
(1) SEGO’s performance on the GSM8K and
MATH datasets is notable. SEGO (7B) achieves
68.7% accuracy on GSM8K and 36.8% on MATH,
while SEGO (13B) reaches 72.5% and 40.0%, re-
spectively. These results surpass those of compa-
rable models, underscoring SEGO’s effectiveness
in mathematical problem-solving; and (2) The inte-
gration of finetuning and the Program of Thought
(PoT) approach substantially enhances model per-
formance, particularly in complex tasks. This is
evident in SEGO and MetaMath, where finetuning
aligns models with task specifics, and in compar-
isons involving CodeLLaMA and LLaMA2 on the
MATH dataset, showcasing PoT’s efficiency. Ad-
ditionally, incorporating Sequential Subgoal Opti-
mization into SEGO underlines the significance
of strategic planning in complex mathematical
problem-solving, resulting in notably improved ac-
curacy.
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Figure 2: The balance between the number of sequences (N ) and the length of sequences (η) on the test sets of
GSM8K and MATH.

Models GSM8K MATH

Ours 68.7 36.8

-Sequential 61.3 34.9
-Sequential & Subgoal 57.1 32.6
-Sequential & Subgoal & FT 25.2 14.2

Table 2: Ablation study results on GSM8K and MATH
datasets.

6 Analysis

6.1 Ablation Study
In our study, we conducted ablation experiments on
7B CodeLLaMA using SEGO and three variants to
assess each component’s impact: (1) -Sequential:
the sequential subgoal optimization is omitted. (2)
-Sequential & Subgoal: the subgoal-based finetun-
ing is omitted. (3) -Sequential & Subgoal & FT:
both subgoal-based finetuning and initialization
fine-tuning are omitted. Results in Table 2 show the
crucial role of sequential subgoal optimization in
SEGO, with its absence in the -Sequential variant
leading to reduced accuracy. The significant perfor-
mance drop in the -Sequential & Subgoal & FT
variant, comparable to the base 7B CodeLLaMA,
highlights the collective value of all components in
enhancing SEGO’s mathematical problem-solving
capabilities.

6.2 Analysis of Hyperparameters
In this section, we conduct a detailed examination
of the hyperparameters N and η, where N repre-
sents the number of sequences and η denotes the
length of each sequence, as defined in Proposi-
tion 4.3. All the experiments in this section are
anchored on the 7B CodeLLaMA to ensure consis-
tency in the results.

The balance between N and η. We begin by
exploring various combinations of N and η, illus-
trated in Figure 2, to comprehend the synergistic
effects of these parameters on the model’s perfor-
mance. The results on GSM8K and MATH reveal
that incrementing both N and η typically enhances
the model’s accuracy, achieving 68.7% on GSM8K
and 36.8% on MATH at N = 2 and η = 3. How-
ever, the enhancements appear to stabilize beyond
certain thresholds, indicating optimal points for
these parameters.

In-depth analysis of Hyperparameters N and
η. We further conduct an in-depth analysis of the
hyperparameters N and η, examining each one’s
individual impact by holding one constant and vary-
ing the other. The results are illustrated in Figure 3.
From the results, it is clear that when N = 2, the
model achieves peak accuracy at η = 3 for both
GSM8K and MATH, with no significant gains be-
yond this point. Similarly, with η = 3, optimal
accuracy is reached at N = 2, remaining stable
thereafter.

6.3 Analysis of Subgoal Evolution
Validity and Progression of Subgoals. To
deepen our understanding of subgoals during the
Reinforcement Learning phase, we analyze the evo-
lution of subgoal validity and its correlation with
the performance on the test set. A subgoal (i.e., gw

and sw) is deemed valid if both τ1 and τ2, sampled
with policies π(·|sw, g) and π(·|s, gw), yield cor-
rect solutions for goals g and gw respectively. Our
findings, illustrated in Figure 4 (Left), reveal a posi-
tive correlation between the progression of training
steps and the percentage of valid subgoals. This
increase in valid subgoals is paralleled by improve-
ments in accuracy on both GSM8K and MATH
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Figure 4: Left: Changes in the percentage of valid subgoals during the RL training. Right: Changes in hardness of
problems yielding valid subgoals.

datasets, suggesting that the validity of subgoals is
a crucial factor in enhancing the model’s problem-
solving capabilities.

Hardness of Problems Yielding Valid Subgoals.
To further our understanding of subgoals, we delve
into the relationship between the hardness of prob-
lems and the emergence of valid subgoals. This
analysis aims to reveal any trends in the difficulty
of problems that tend to yield valid subgoals, pro-
viding insights into the learning progression. The
hardness of each problem is labeled by ChatGPT,
with more details available in Appendix E. The
results, shown in Figure 4 (Right), reveal a correla-
tion between training progression and the model’s
ability to formulate valid subgoals for increasingly
intricate problems, underscoring its evolving so-
phistication and adaptability in problem-solving.

7 Related Works

Mathematical Reasoning with LLMs. Large
Language Models’ (LLMs) advancement in
mathematical reasoning is largely driven by
datasets like GSM8K (Cobbe et al., 2021) and
MATH (Hendrycks et al., 2021), with additional
resources like MAWPS (Koncel-Kedziorski et al.,
2016) and MWPToolkit (Lan et al., 2022) enhanc-
ing the field. Research focuses on two main ar-

eas: prompting strategies, involving techniques like
Chain-of-Thought (Wei et al., 2023), Progressive-
Hint Prompting (Zheng et al., 2023), bi-modal be-
havioral alignment (Zhao et al., 2024) and learn-
ing with verifications, using methods like outcome-
based verifiers (Cobbe et al., 2021). Our approach,
orthogonal to these methods, emphasizes adaptive
curricula with subgoals to improve LLMs’ mathe-
matical reasoning. Concurrently, MAmmoTH (Yue
et al., 2023) explores instruction finetuning in
LLMs for math problem-solving, a concept related
to our strategy. This can be considered as an imple-
mentation of the instruction finetuning stage within
our framework.

Subgoal-based RL. In reinforcement learning,
Subgoal Search is crucial for navigating complex
tasks, offering insights into subgoal benefits (Zhai
et al., 2022), hierarchical structures (Wen et al.,
2020), option selection (Jinnai et al., 2019a), and
temporal abstraction (Fruit et al., 2017). Research
focuses on exploring efficient strategies (Jinnai
et al., 2019b; Hartikainen et al., 2019; Pitis et al.,
2020; OpenAI et al., 2021) and enhancing plan-
ning through various algorithms (Eysenbach et al.,
2019; Parascandolo et al., 2020; Li et al., 2022;
Moro et al., 2022; Chane-Sane et al., 2021). It also
develops curricula for complex subgoals (Zhang
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et al., 2020, 2021). Our work addresses subgoal
learning in mathematical problem-solving, explor-
ing optimal subgoal identification within expansive
state spaces. Owing to space constraints, a de-
tailed discussion of related works is provided in
Appendix F.

8 Conclusion
In conclusion, this work presents SEGO, an in-
novative framework aimed at improving LLMs’
mathematical problem-solving abilities. Drawing
inspiration from subgoal-based RL, SEGO estab-
lishes a theoretical link between subgoal decompo-
sition and the probability of solving problems. It
enhances LLMs’ performance by generating and
refining problem-specific subgoals using theoret-
ically defined criteria. Empirical evaluations on
benchmark datasets GSM8K and MATH demon-
strate SEGO’s ability to outperform existing ap-
proaches of comparable model sizes.

Ethical Considerations

In accordance with the established Code of Ethics,
this research exclusively utilizes data and informa-
tion that is publicly accessible, thereby ensuring
that no private or confidential resources are en-
gaged.

Limitations

While SEGO represents a significant advancement
in the realm of mathematical problem-solving, sev-
eral limitations need further investigation to fully
harness its potential. These limitations include as-
pects such as the efficiency of SEGO, the scope
of problem difficulty it addresses, and potential
framework extensions:

(1) While SEGO demonstrates enhanced efficacy
in identifying subgoals compared to non-sequential
methods, there is room for improvement in effi-
ciency. This can be addressed through dynamic
resource allocation, such as adjusting the annealing
schedule in response to performance metrics or the
complexity of the problem at hand, alongside the
deployment of more sophisticated proposal distri-
bution mechanisms that more accurately mirror the
target distribution.

(2) Our evaluation benchmarks predominantly
include elementary to middle school-level prob-
lems. Exploring more complex problems, such as
those at the undergraduate level, is a promising
future direction.

(3) In the current SEGO framework, only the
policy network is retained during inference. An
intriguing future direction involves integrating the
subgoal generator/optimizer and the value network
to recursively decompose complex problems into
simpler subgoals.
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A Proofs

A.1 Proof of proposition 4.1
In this subsection, we establish the proof of Proposition 4.1

Proof. We start by considering the joint distribution p(g, sw, gw | s), which can be factorized as
pπ(·|·,g)(g | sw)pπ(·|·,gw)(gw | s)p(sw | gw).

The log-likelihood of reaching the goal g from s can be expressed as:

log pπ(·|·,g)(g | s) = logEq(gw,sw|g,s)

[
p(g, sw, gw | s)
q(gw, sw | g, s)

]

Expanding the expectation, we get:

log pπ(·|·,g)(g | s) = log

∫∫
q(gw, sw | g, s)p(g, sw, gw | s)

q(gw, sw | g, s)dgwdsw

Utilizing Jensen’s inequality, we establish a lower bound for the log-likelihood as follows:

log pπ(·|·,g)(g | s) ≥ Eq(gw,sw|g,s)
[
log pπ(·|·,g)(g | sw) + log pπ(·|·,gw)(gw | s)

+ log p(sw | gw)− log q(gw, sw | g, s)
]

Given that log p(sw | gw) = r(sw, gw) − log
(∑

s′w
exp(r(s′w, gw))

)
and that

log
(∑

s′w
exp(r(s′w, gw))

)
can be absorbed into the lower bound as a constant term, which

does not affect the optimization process, the lower bound L can be written as:

L = Eq(gw,sw|g,s)
[
log pπ(·|·,g)(g | sw) + log pπ(·|·,gw)(gw | s) + r(gw, sw)− log q(gw, sw | g, s)

]

(8)
This completes the proof of proposition 4.1. The underlying premise of this approach is predicated

on the assumption that the ratio of exponentiated rewards, exp(r(s,g))
exp(r(s′,g′)) , is equivalent to the ratio of the

probabilities p(s|g)
p(s′|g′) . In essence, this implies that the reward function r(s, g) is directly proportional to

the conditional probability p(s | g).

A.2 Proof of proposition 4.2
In this subsection, we establish the proof of Proposition 4.2

Proof. The optimization objective for finding q(gw, sw | g, s) is:

Eq(gw,sw|g,s)
[
log pπ(·|·,g)(g | sw) + log pπ(·|·,gw)(gw | s) + r(gw, sw)− log q(gw, sw | g, s)

]

Introducing a Lagrange multiplier λ, the Lagrangian J is constructed as:

J = Eq(gw,sw|g,s)
[
log pπ(·|·,g)(g | sw) + log pπ(·|·,gw)(gw | s) + r(gw, sw)

− log q(gw, sw | g, s)
]
+ λ

(∫
q(gw, sw | g, s)dgwdsw − 1

)

Differentiating J with respect to q(gw, sw | g, s) and setting it to zero yields:
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log pπ(·|·,g)(g | sw) + log pπ(·|·,gw)(gw | s) + r(gw, sw)− log q(gw, sw | g, s)− 1 + λ = 0

Simplifying, we get:

q(gw, sw | g, s) = exp(λ− 1)pπ(·|·,g)(g | sw)pπ(·|·,gw)(gw | s) exp(r(gw, sw))

To ensure q(gw, sw | g, s) is a valid probability distribution, it is normalized as:

q⋆(gw, sw | g, s) = pπ(·|·,g)(g | sw)pπ(·|·,gw)(gw | s) exp(r(gw, sw))∫∫
pπ(·|·,g)(g | s′w)pπ(·|·,g

′
w)(g′

w | s)exp(r(g′
w, s

′
w))dg

′
wds

′
w

The denominator serves as the normalizing constant, ensuring that q⋆(gw, sw | g, s) sums to one over
its domain, thereby satisfying the properties of a probability distribution.

This concludes the proof.

A.3 Proof of proposition 4.3
For the sake of clarity, we define ω as the tuple (gw, sw) and use q⋆(ω) as shorthand for q⋆(gw, sw | g, s0).
To rigorously proof this proposition, we define a series of functions and transition operators:

Definition 1. We introduce fj(·) for j ∈ {0, . . . , η} as a weighted blend of fη(·) and p(· | s, g; f) , given
by fj(ω) = fη(ω)

1−βjp(ω | s, g; f)βj . The sequence of weights βj satisfies 1 = β0 > β1 > . . . > βη =

0. Specifically, fη(ω) satisfies fη(ω)
Zf

= q⋆(ω) where Zf is the normalizing constant.

Definition 2. Let Tj(ω, ω
′) for j ∈ {1, . . . , η − 1} denote a transition operator, formulated as

Tj(ω, ω
′) = p(ω′ | ω, s, g;h)min

(
1,

fj(ω
′)p(ω | ω′, s, g;h)

fj(ω)p(ω′ | ω, s, g;h)

)
.

Then the process of sequentially sampling subgoals is defined as follows:

Definition 3. Let the process start with the sampling of ω1 from f0(·). Sequentially, ω2 is derived
from ω1 via the transition operator T1, perpetuating this mechanism until ωη is obtained from ωη−1

through Tη−1. The joint distribution probability is articulated as g(ω1,...,ωη)
Zg

, wherein g(ω1, . . . , ωη) =

f0(ω1)T1(ω1, ω2) . . . Tη−1(ωη−1, ωη) and Zg is the normalization constant.

Finally, the weight α for each sequence is given by α =
∏η

j=1
fj(wj)

fj−1(ωj)
.

To establish the validity of the proposition, we begin by proving the essential lemmas:

Lemma 1. Let fj(ω) and Tj(ω, ω
′) be as specified in Definition 2. Define pj(ω) as

pj(ω) =
fj(ω)∫

fj(ω′) dω′ .

Then, the following detailed balance condition holds:

pj(ω)Tj(ω, ω
′) = pj(ω

′)Tj(ω
′, ω).

Proof. The proof can be divided into two cases:
Case 1: pj(ω′)p(ω | ω′, s, g;h) > pj(ω)p(ω

′ | ω, s, g;h)
Starting with pj(ω

′)Tj(ω
′, ω), we have:

pj(ω
′)Tj(ω

′, ω) =����pj(ω
′)((((((((
p(ω | ω′, s, g;h)

pj(ω)p(ω
′ | ω, s, g;h)

����pj(ω
′)((((((((
p(ω | ω′, s, g;h)

= pj(ω)p(ω
′ | ω, s, g;h)

= pj(ω)Tj(ω, ω
′).
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Case 2: pj(ω′)p(ω | ω′, s, g;h) ≤ pj(ω)p(ω
′ | ω, s, g;h)

Starting with pj(ω)Tj(ω, ω
′), we have:

pj(ω)Tj(ω, ω
′) =���pj(ω)((((((((

p(ω′ | ω, s, g;h)pj(ω
′)p(ω | ω′, s, g;h)

���pj(ω)((((((((
p(ω′ | ω, s, g;h)

= pj(ω
′)p(ω | ω′, s, g;h)

= pj(ω
′)Tj(ω

′, ω).

In both cases, we find that pj(ω)Tj(ω, ω
′) = pj(ω

′)Tj(ω
′, ω), thereby proving the lemma.

Lemma 2. Let fj(ω) and Tj(ω, ω
′) be as defined in Definition 2. Define the normalized distribution

pj(ω) as

pj(ω) =
fj(ω)∫

fj(ω′) dω′ .

Then, Tj(ω, ω
′) preserves the invariance of pj(ω), formally defined as

∫
Tj(ω

′, ω)pj(ω′) dω′ = pj(ω).

Proof. We proceed by leveraging the results from Lemma 1. Specifically, we have:

∫
Tj(ω

′, ω)pj(ω′) dω′ =
∫

Tj(ω, ω
′)pj(ω) dω′

= pj(ω)

∫
Tj(ω, ω

′) dω′

Given that
∫
Tj(ω, ω

′) dω′ = 1, we have
∫
Tj(ω

′, ω)pj(ω′) dω′ = pj(ω). This confirms that Tj(ω, ω
′)

preserves the invariance of pj(ω), thereby proving Lemma 2.

Now we give the proof of Proposition 4.3.

Proof. We first define the function f as follows:

f(ω1, . . . , ωη) =
fη(ωη)

fη−1(ωη)
Tη−1(ωη−1, ωη) . . .

f2(ω2)

f1(ω2)
T1(ω1, ω2)f1(ω1)

Given the definition of Zf , we have

Zf =

∫
fη(ω) dω

By Lemma 2, we have:
∫

Tj(ωj , ωj+1)fj(ωj) dωj = fj(ωj+1)

Thus, we can write:
∫

f(ω1, · · · , ωη)

Zf
dω1 · · · dωη

=

∫
fη(ωη)

Zf
dωη

∫
Tη−1(ωη−1, ωη)fη−1(ωη−1)

fη−1(ωη)
dωη−1 · · ·

∫
T1(ω1, ω2)f1(ω1)

f1(ω2)
dω1

=

∫
fη(ωη)

Zf
dωη

=1
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This implies that Zf is also the normalizing constant of f(ω1, . . . , ωη).
Since f0(·) is a distribution, it is evident that Zg = 1.
We have:

Eg(ω1,...,ωη)

[
1

N

∑
α

]
= Eg(ω1,...,ωη)

[
f(ω1, . . . , ωη)

g(ω1, . . . , ωη)

]

= Zf

[∫
f(ω1, . . . , ωη)

Zf
dω1 · · · dωη

]

= Zf

This concludes the proof of Proposition 4.3.

B More Implementation Details for Each Module

The framework of SEGO is composed of five components, each serving a distinct purpose to enhance the
system’s overall efficacy.

B.1 Policy Network
The policy network π(a | s, g) takes as input the current state and intended goal and returns an action.
Since the goal and the state can both be expressed as token sequences, we first concatenate these sequences
before feeding them into the policy network. This network is tasked with predicting the subsequent
action, also framed as a token sequence, utilizing standard decoding techniques like greedy search or
top-k sampling (Holtzman et al., 2019).

The training of the policy network is conducted through instruction finetuning, utilizing the following
instruction template:

Construct a Python script to address the given problem:
{problem}

### Response:
{solution}

In this template, problem and solution represent the goal g and the trajectory respectively. The
base model for this process is CodeLLaMA, and it undergoes full parameter finetuning to optimize its
performance. As the sequential subgoal optimization process progresses, the model is further trained by
utilizing self-generated successful trajectories. This prompt template is also employed to generate the
trajectory dataset using gpt-3.5-turbo-0613.

B.2 Subgoal Generator
The subgoal generator, represented as f , aims to decompose a complex task into two more manageable
sub-tasks. It works by taking the current state s and goal g, and outputting a pair consisting of a subgoal
and its corresponding state: sw, gw = f(s, g). This approach ensures that both the journey from the
current state to the subgoal and from the subgoal state to the intended goal become more tractable
sub-tasks. Crucially, the subgoal state sw is a valid solution of the subgoal gw, adhering to the premise
that a state is an aggregation of actions, each representing a step in the solution process.

The subgoal generator is trained through instruction finetuning, utilizing data collected from
gpt-3.5-turbo-0613. The instruction template is defined as:

Break down the given problem into a smaller task (a subproblem)
and devise a method to solve it, considering a provided partial
solution to the original problem as a starting point.

### Input:
{problem}
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{partial solution}

### Output:
{subproblem}{solution}[EOS]

This module, fundamentally built on the architecture of CodeLLaMA (Rozière et al., 2023), leverages
the capabilities of LoRA (Hu et al., 2021) for efficient finetuning. The primary objective is to accurately
predict {subproblem}{solution}[EOS] from its preceding context, realized through a causal
language modeling. This prompt template is also utilized to predict both the subgoal and the corresponding
state using gpt-3.5-turbo-0613.

B.3 Subgoal Optimizer

The subgoal optimizer, denoted as h, is designed to refine subgoal gw and its corresponding state sw. Its
objective is to yield improved subgoal g′

s and state s′w that more effectively contribute to decomposing
the overall intended goal: s′w, g

′
w = h(sw, gw, s, g). This component incorporates both the current state

s and the intended goal g as inputs, providing insights into the complexity of the intended goal and the
current status in the problem-solving process.

The subgoal optimizer is also trained through instruction finetuning, drawing upon data from
gpt-3.5-turbo-0613. The instruction template for this module is as follows:

Optimize the given subproblem to make it more manageable. Then,
develop a method to solve it, considering a provided partial solution
to the original problem as a starting point.

### Input:
{problem}

{partial solution}

{subproblem}{solution}

### Output:
{optimized subproblem}{optimized solution}[EOS]

This module, also built on CodeLLaMA, utilizes LoRA for efficient parameter finetuning. The aim here
is to accurately predict {optimized subproblem}{optimized solution}[EOS] from the
provided context, ensuring the outputs are coherent and contextually aligned.

B.4 Reward Network

The reward network, formulated as r(s, g), accepts a state s and a goal g as inputs and produces a score
to evaluate whether the goal has been achieved in the current state. In mathematical problem-solving, this
essentially translates to determining if the state s—which is an aggregate of executed actions, with each
action representing a step towards the solution—is a valid solution for the problem posed by g. Given that
the actual reward function, R (described in §2.1), is applicable only to problems where a ground-truth
answer is available, the reward network serves as a surrogate that is crucial for evaluating sub-problems
encountered during the algorithm’s execution.

This model is built on the architecture of CodeLLaMA and employs LoRA to achieve efficient finetuning.
The reward model is trained through instruction finetuning, utilizing the following instruction template:

Does the provided solution accurately address the given problem?
{problem} {solution} {Y/N}.
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B.5 Value Network
The value network, represented as vπ(s, g), is a regression model that takes a state s and an intended goal
g as inputs, and outputs a score representing the likelihood of successfully achieving the goal from the
state under the policy network π.

This model is trained to approximate the estimated α̂, utilizing instruction finetuning. The instruction
template is defined as:

Determine the probability of resolving the problem, starting from
the partial solution: {problem} {partial solution}.

This model, built on the CodeLLaMA architecture, is finetuned using LoRA. It is noted that, during
each iteration of the sequential subgoal optimization process, a unique set of LoRA parameters is used
to avoid any potential discrepancies between iterations. This approach ensures that the value network
accurately reflects the real-time capabilities of the policy network.

C Details about Trajectory Dataset Creation

To construct the goal collection Dg in Alg. 1, we incorporate mathematical problems sourced from the
training subsets of three distinct datasets: GSM8k, MATH, and AQuA. For the generation of solutions
corresponding to each problem, we apply a prompt as follows:

### Instruction
Construct a Python script to address the given problem:
{problem}

### Response:
{solution}

In this format, “solution” is completed by GPT-3.5-turbo. The solution is subsequently broken down
into steps, with the i-th state in a trajectory comprising the first i steps, and the i-th action defined as the
(i+ 1)-th step.

In a trajectory, all states except the s0 which includes essential imports and function definitions (e.g.,
“import math; def solve():”) are considered intermediate states.

D Details about Experimental Setup

D.1 Training Data
For training SEGO, we use GSM8K, MATH, and AQuA (Ling et al., 2017) datasets. After filtering for
correct answers, the resulting training set includes 10, 374 samples from GSM8K, 10, 981 from MATH,
and 35, 355 from AQuA. These problems form the goal collection Dg in Alg. 1.

D.2 Baselines
Closed-Source Models. (1) GPT-4: A model that sets a standard in various academic domains, including
those that require intricate mathematical reasoning (OpenAI, 2023). (2) PaLM-2: A model that excels at
logical reasoning and multilingual tasks, demonstrating advanced capabilities in reasoning and solving
complex mathematical problems in multiple languages (Anil et al., 2023). (3) Minerva: A model
that specializes in quantitative reasoning, providing precise and comprehensive solutions to advanced
mathematical, scientific, and engineering problems (Lewkowycz et al., 2022).

Open-Source Models. (1) LLaMA2: A model that is trained on 2 trillion tokens of publicly accessible
data, exhibits outstanding capabilities in mathematical reasoning (Touvron et al., 2023a). (2) Wizard-
MATH: A model that enhances the mathematical reasoning capabilities of LLaMA2 by curating more
complex and diverse supervised finetuning data (Luo et al., 2023). (3) MetaMath: This model employs
a question bootstrapping technique, facilitating the generation of questions through both forward and
backward reasoning paths. It further enhances its capabilities by incorporating Large Language Models
(LLMs) to refine the phrasing of the question text (Yu et al., 2023). (4) CodeLLaMA: A model that
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excels in code-related tasks with implications in mathematical programming and algorithm synthesis,
demonstrating superior infilling capabilities and support for extensive input contexts in programming
tasks (Rozière et al., 2023).3 (5) MAmmoTH-Coder: This model leverages a training dataset that
incorporates both chain-of-thought (CoT) and program-of-thought (PoT) rationales, thereby not only
facilitating the utilization of various tools but also accommodating diverse thought processes for solving
distinct mathematical problems (Yue et al., 2023).

D.3 Implementation Details
We maintain model consistency by employing CodeLLaMA as the base model for both the policy
network and auxiliary modules, including the subgoal generator, subgoal Optimizer, reward network,
and value network. Efficient finetuning of the auxiliary modules is achieved through the utilization of
LoRA (Hu et al., 2021), configured with parameters r = 16, lora_alpha = 32, and lora_dropout = 0.05,
targeting the “q_proj” and “k_proj” modules. The learning rates are set at 1e − 5 and 1e − 4 for the
policy and auxiliary modules, respectively, with a uniform batch size of 32. When collecting data
from gpt-3.5-turbo-0613, we set temperature and top_p as 0.8 and 1.0 respectively. All models
go through an initial training phase of 4, 800 steps. Subsequently, a sequential optimization process
is conducted, with the number (N) and length (η) of sequences set as 2 and 3 respectively, and the
temperature and top_p for the Subgoal GeneratorOptimizer and the policy network configured at 0.2
and 0.95 respectively. This optimization is performed three times, each lasting 1, 200 steps, and when
η = 3, the parameters β1 and β2 are precisely set at 0.33 and 0.66 respectively. Rigorous contamination
checking, as delineated by OpenAI (2023), is executed to verify the purity of our test sets for GSM8K and
MATH. During the test phase, a greedy search strategy is employed.

E The Annotation of Problem Hardness

We employ the following prompt to automatically annotate the difficulty with gpt-3.5-turbo-0613:

Please assign a score between 1 and 5 to the following question,
indicating its level of difficulty and complexity. A higher score
should be given to denote greater difficulty and complexity.

Please provide only the score, without any additional explanations
or reasons.

### Input:
{question}

### Output:

F More Discussions about Related Works

Mathematical Reasoning with LLMs. The exploration of mathematical reasoning in Large Language
Models (LLMs) has been significantly influenced by the development of datasets such as GSM8K (Cobbe
et al., 2021) and MATH (Hendrycks et al., 2021), serving as crucial benchmarks for assessing machine
learning models in mathematical domains. GSM8K encompasses a variety of grade school math problems,
while MATH compiles challenging competition mathematics problems. The introduction of extensive
datasets (Koncel-Kedziorski et al., 2016; Ling et al., 2017; Talmor et al., 2018; Geva et al., 2021) and
platforms like MWPToolkit (Lan et al., 2022) has enriched the field. This exploration is systematically
categorized into two main domains: prompting strategies and learning with verifications. In the realm of
prompting strategies, a variety of methods have been conceptualized to enhance the reasoning capabilities
of LLMs. Techniques such as Chain-of-Thought Prompting (Wei et al., 2023; Wang et al., 2022),
Progressive-Hint Prompting (Zheng et al., 2023), Least-to-Most Prompting (Zhou et al., 2022), and

3For CodeLLaMA, we ensure consistency with our models by employing identical decoding methods and prompts during
implementation, while for the other models, we refer to the results reported in their respective papers.
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bi-modal behavioral alignment (Zhao et al., 2024) have been instrumental in progressively guiding
LLMs to accurate conclusions and facilitating the generation of intermediate reasoning steps. Moreover,
methodologies like Complexity-Based Prompting (Fu et al., 2023) and Self-Consistency(Wang et al.,
2022) exploit higher reasoning complexity and diverse reasoning paths, respectively, to realize significant
advancements in multi-step reasoning tasks. Within learning with verifications, the emphasis is on
optimizing the mathematical proficiencies of LLMs through the integration of verifiers. Strategies like
outcome-based verifiers (Cobbe et al., 2021), step-aware verifiers (Li et al., 2023; Lightman et al., 2023),
and learning from partially-correct solutions (Ni et al., 2023) have been deployed to bolster reliability
and precision in mathematical reasoning. While the aforementioned domains have significantly advanced
mathematical reasoning within LLMs, our approach is orthogonal to these categories. We concentrate on
the formulation of adaptive curricula, emphasizing the incorporation of subgoals, to facilitate nuanced
learning pathways and enhance the model’s mathematical reasoning capabilities. A parallel and notably
concurrent work, MAmmoTH (Yue et al., 2023), investigates the impact of instruction finetuning to
empower large language models with mathematical problem-solving capabilities. This can be considered
as an implementation of the instruction finetuning stage within our framework.

Subgoal-based RL. Subgoal Search is a central component in reinforcement learning, essential for
empowering AI systems to navigate through complex, extensive tasks effectively. This concept has
played a vital role in uncovering important aspects such as the benefits of recognizing and rewarding
subgoals (Zhai et al., 2022), the proper structuring of Markov decision processes for hierarchical reinforce-
ment learning (Wen et al., 2020), the difficulties in selecting the most suitable options for planning (Jinnai
et al., 2019a), and the incorporation of temporal abstraction in RL (Fruit et al., 2017). The practical
research in this field mainly focuses on exploring and creating subgoals for planning and developing
learning curricula for subgoals. Exploration is aimed at finding the best or most efficient strategies, using
diverse approaches like reducing cover time (Jinnai et al., 2019b), understanding dynamical distances (Har-
tikainen et al., 2019), increasing entropy (Pitis et al., 2020), and applying asymmetric self-play (OpenAI
et al., 2021). In the area of subgoal planning, a variety of algorithms have been developed to refine
decision-making processes. For example, SoRB (Eysenbach et al., 2019) utilizes RL to develop a graph
for subgoal sequences, DC-MCTS (Parascandolo et al., 2020) employs learned subgoal proposals to
divide tasks, PAIR (Li et al., 2022) combines online RL with offline supervised learning, and (Moro et al.,
2022) improve MCTS with Hindsight Experience Replay for goal-oriented planning. Moreover, the work
by (Chane-Sane et al., 2021) provides concise insights into improving goal-conditioned reinforcement
learning by conceptualizing imagined subgoals, adding a fresh viewpoint to the field. Research in cur-
riculum learning has developed innovative methods to construct curricula that systematically escalate the
complexity of subgoals, thereby improving the speed and quality of learning (Zhang et al., 2020, 2021).
The exploration of subgoal learning in the realm of complex mathematical problem-solving represents a
largely unexplored field. Our work delves into the inherent challenges of applying subgoal learning in
mathematical contexts, specifically, the difficulty in identifying the optimal subgoal within expansive state
spaces, and introduces a theoretical framework to navigate these challenges.

G Details about Time-complexity

This section presents the analysis of time-complexity for the sequential subgoal optimization process (see
§3.2). For each example, the frequency of module invocation is shown in Table 3.

We acknowledge that the primary computational cost in our method stems from the decoding process
conducted by the subgoal generator or optimizer. This process indeed requires significantly more
time compared to the computation involved in calculating scores. Notably, as shown in §6.2, our
method outperforms other approaches that produce more subgoals without sequential optimization, while
maintaining a comparable computational budget. This result indicates the effectiveness of SEGO in
identifying vital subgoals.
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Modules Times

Value Network (score calculation) 2×N × η
Reward Network (score calculation) N × η
Subgoal Generator (score calculation) N × η
Subgoal Optimizer (score calculation) 2×N × η

Subgoal Generator (decoding) N
Subgoal Optimizer (decoding) N × (η − 1)

Table 3: The frequency of module invocation in the sequential subgoal optimization process.

H Analysis on Whether GPT-3.5-turbo Serves as an Upper Bound

This study seeks to explore the hypothesis that GPT-3.5-turbo represents a performance ceiling for SEGO.
Moreover, it examines the applicability of SEGO when paired with more advanced foundational models,
specifically employing Mistral, a language model with 7 billion parameters noted for its exceptional
performance and efficiency (Jiang et al., 2023). In our experimental setup, both SEGO and GPT-3.5-turbo
leverage a program-of-thought (Chen et al., 2022) rationale to ensure a fair comparison. The results are
presented in Table 4.

Models GSM8K MATH

GPT-3.5-turbo 77.2 37.5

SEGO (with CodeLLaMA-13b) 72.5 40.0
SEGO (with Mistral-7b) 77.9 40.3

Table 4: Comparison of model performance across GSM8K and MATH benchmarks.

The results suggest that SEGO’s performance potential is not limited by the upper limits of GPT-
3.5-turbo. This point is particularly supported by the results in the MATH benchmark, where SEGO
configurations utilizing Mistral-7b and CodeLLaMA-13b models significantly surpass the performance of
GPT-3.5-turbo. This performance differential is predominantly attributed to the subgoal-based fine-tuning
phase within SEGO, which enables the policy network to generate novel solutions that exceed the upper
limits of GPT-3.5-turbo.

I Performance of Various Components

This section delves into the performance evaluation of key components within the SEGO framework.

Reward Network. The efficacy of the reward network was gauged through its performance on a binary
classification task, aimed at determining the feasibility of achieving a goal state from a given state, as
inferred from the reward scores. The classification accuracy achieved by the reward network is 62.8%.

Value Network. The performance of the value network was evaluated based on the metric recall1@10,
which reflects the network’s ability to accurately identify viable subgoals from a set of ten candidates.
The criteria for subgoal validity are detailed in §6.3. The results of this evaluation are presented in Table
5, illustrating the value network’s performance improvements post after subgoal-based fine-tuning.

Models recall1@10

Value network (after initial fine-tuning) 36.1%
Value network (after subgoal-based fine-tuning) 52.7%

Table 5: Performance of the value network
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Subgoal Generator and Optimizer. The assessment extended to the subgoal generator and the inte-
grated approach combining subgoal generation with optimization. This combined method, denoted as
“subgoal generator + optimizer”, involves initially generating a subgoal followed by its refinement via
the subgoal optimizer. The efficacy of these approaches, particularly in generating valid subgoals, is
summarized in Table 6.

Models Percentage of valid subgoals

subgoal generator 27.4%
subgoal generator + optimizer 29.5%

Table 6: Performance of the subgoal generator and optimizer.

J Case Study

Problem: A four-digit code can consist of the digits 0 ~ 9 except that it does not contain the digits 1, 2, and 4 at all. If repeated 
digits are allowed, what is the probability that it has at least one even digit?

Sub-problem: A four-digit code can consist of the digits 0 ~ 9 except that it does not contain the digits 1, 2, and 4 at all. If repeated 
digits are allowed, what is the probability that it has at least one even digit?
Solution:
def solve() -> float:

total_codes = 0  # Total number of possible codes
codes_with_even_digit = 0  # Number of codes with at least one even digit

# Iterate through all four-digit codes
for i in range(10000):

code = str(i).zfill(4)  # Convert the code to a four-digit string

# Check if the code contains only digits 0, 3, 5, 6, 7, 8, and 9
if all(digit in ['0', '3', '5', '6', '7', '8', '9'] for digit in code):

total_codes += 1

return total_codes

Full solution:
def solve() -> float:

total_codes = 0  # Total number of possible codes
codes_with_even_digit = 0  # Number of codes with at least one even digit

# Iterate through all four-digit codes
for i in range(10000):

code = str(i).zfill(4)  # Convert the code to a four-digit string

# Check if the code contains only digits 0, 3, 5, 6, 7, 8, and 9
if all(digit in ['0', '3', '5', '6', '7', '8', '9'] for digit in code):

total_codes += 1

# Check if the code has at least one even digit
if any(digit in ['0', '6', '8'] for digit in code):

codes_with_even_digit += 1

# Calculate the probability as the ratio of codes with even digit to total codes
probability = codes_with_even_digit / total_codes
return probability

Figure 5: A case from the training data.

In this section, we delve into a specific example to illustrate the efficacy of our model, depicted
in Figure 5. In this figure, the elements labeled as the problem, sub-problem, and solution (of the
sub-problem) correspond to the final goal, intermediate goal, and intermediate state, respectively. The
sub-problem showcased is derived through the sequential subgoal optimization process. Additionally, we
provide the full solution, which is derived from the solution of the sub-problem. This case study indicates
the model’s capability to search for a suitable sub-problem that ultimately facilitates the derivation of the
accurate solution to the final goal.
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