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Abstract
Cross-prompt automated essay scoring (AES),
an under-investigated but challenging task that
has gained increasing popularity in the AES
community, aims to train an AES system that
can generalize well to prompts that are un-
seen during model training. While recently-
developed cross-prompt AES models have com-
bined essay representations that are learned
via sophisticated neural architectures with so-
called prompt-independent features, an intrigu-
ing question is: are complex neural models
needed to achieve state-of-the-art results? We
answer this question by abandoning sophis-
ticated neural architectures and developing a
purely feature-based approach to cross-prompt
AES that adopts a simple neural architecture.
Experiments on the ASAP dataset demonstrate
that our simple approach to cross-prompt AES
can achieve state-of-the-art results.

1 Introduction

Automated essay scoring (AES) is the task of as-
signing a single score (also known as the holis-
tic score) to an essay that summarizes its overall
quality. Traditional work on AES has focused on
within-prompt scoring, where an AES model is
trained on manually annotated essays written for a
given prompt and subsequently applied to essays
written for the same prompt. Although consider-
able success has been made on within-prompt scor-
ing, there is a key weakness associated with these
prompt-specific models. When they are applied to
essays written for a different prompt, their perfor-
mance often deteriorates considerably. Hence, in
practice, before they are applied to score essays
written for a new prompt, they need to be retrained
on scored essays written for the new prompt. How-
ever, manually scoring essays is a time-consuming
process and requires a lot of expertise.

To address the aforementioned weakness, re-
searchers have begun working on cross-prompt es-
say scoring, where the goal is to train a model on

annotated essays that are not written for the target
prompt and apply the resulting model to essays
written for the target prompt. In other words, the
goal of cross-prompt scoring is to train a model on
essays written for existing prompts so that it can
accurately score essays written for a new prompt
without the need to retrain it on essays from the
new prompt. Cross-prompt scoring is a very chal-
lenging task. To understand why, consider the task
of scoring essays written for the prompt “Write a
persuasive essay on why one should (or should not)
support Obamacare”. Intuitively, a high-scoring es-
say should provide evidence(s) that can adequately
support the claim of why one should (or should
not) support Obamacare. However, determining
whether an argument is persuasive could require
domain knowledge (in this case knowledge about
Obamacare), which the model may not possess in
the absence of training data for the new prompt.1

Research on cross-prompt scoring is still in its in-
fancy. The vast majority of the recently-developed
cross-prompt scoring models (e.g., Ridley et al.
(2021); Chen and Li (2023); Do et al. (2023)) are
composed of two parts: (1) learning a represen-
tation of an essay that is specific for the task of
AES by training Convolutional Neural Networks
(CNNs) and Long Short-Term Memory (LSTM)
networks using AES data; and (2) employing a set
of prompt-independent features derived from the
input essay. Designing prompt-independent fea-
tures is by no means the focus of cross-prompt
scoring research: the features being used in exist-
ing cross-prompt AES models were designed by
AES researchers in the pre-neural NLP era during
which the focus of AES research was on feature
engineering. The first part (learning a task-specific
essay representation) is what cross-prompt scoring

1While one could rely on large language models (LLMs)
for such background knowledge, this is not a general solution:
LLMs do not possess knowledge of events that took place
after the date on which they were trained.
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researchers have been trying to improve over the
past few years, resulting in AES models that have
become increasingly sophisticated.

Much of the recent work on AES, including
cross-prompt AES, has focused on improving per-
formance numbers. While improving performance
numbers is an important goal of AES research,
what is crucially missing is an understanding of
what has been improved. For instance, as men-
tioned above, state-of-the-art cross-prompt AES
models score essays by exploiting both a learned es-
say representation and a set of prompt-independent
features. Before continuing to develop increas-
ingly sophisticated AES models, we should per-
haps step back and ask an intriguing question: can
we achieve state-of-the-art results if we abandon
complex neural architectures and, like the AES re-
searchers in the pre-neural NLP era, adopt a purely
feature-based approach with a simple architecture?

Given the above discussion, our goal in this pa-
per is to gain a better understanding of the state of
the art in cross-prompt AES by answering the afore-
mentioned question. Unlike recently-developed
cross-prompt AES models, which focus on design-
ing increasingly sophisticated AES models to learn
essay representations, we abandon entirely the idea
of learning essay representations, focusing instead
on a purely feature-based approach where we em-
ploy a simple neural architecture in conjunction
with a feature set composed of features commonly
used in existing cross-prompt AES models as well
as our own features. Following previous work on
cross-prompt AES (e.g., Ridley et al. (2021), Chen
and Li (2023)), we evaluate our approach in two
settings that differ in terms of whether essay traits
(i.e., dimensions of essay quality such as ORGA-
NIZATION and MECHANICS) are exploited when
scoring an essay holistically. More specifically, in
the first setting, essays are scored based on a set
of input features, whereas in the second setting,
essays are scored based on both the features and
the automatically scored traits.

We evaluate our cross-prompt AES model on
a standard evaluation dataset for AES research,
ASAP, showing that when used in combination
with a simple feature selection method, our model
can achieve state-of-the-art results in the two eval-
uation settings mentioned above. We believe that
the key ramifications of our results are two-fold.
First, a purely feature-based approach for cross-
prompt AES with a simple neural architecture can
work at least as well as a sophisticated model that

focuses on learning an essay’s representation and
combining it with a set of features. Second, feature
selection plays a crucial role in our model despite
the simplicity of our feature selection method. Fur-
thermore, our results establish a new simple but
strong baseline against which future cross-prompt
AES models can be compared.

2 Related Work

In this section, we give a brief overview of related
work on within- and cross-prompt scoring. For a
detailed discussion of related work, we refer the
reader to the books and surveys recently published
in this area (e.g., Ke and Ng (2019), Beigman Kle-
banov and Madnani (2021), Li and Ng (2024a)).

2.1 Within-Prompt Scoring

Holistic scoring. Early approaches to heuristic
scoring are heuristic-based, where the holistic score
is typically computed as a weighted sum of the trait
scores (Attali and Burstein, 2006). Given the lack
of labeled data, the trait scores are also computed
heuristically, with a focus on the easier-to-compute
traits, such as those that are based on grammatical-
ity and structure rather than content. After training
data becomes available, researchers have focused
on hand-engineering the features that are to be used
to train classification or regression models for holis-
tic scoring (Larkey, 1998; Burstein et al., 1998;
Miltsakaki and Kukich, 2004; Yannakoudakis et al.,
2011). With the advent of the neural NLP era, AES
models have incorporated neural networks such as
CNNs and LSTM networks to automatically ex-
tract features from the essays (Taghipour and Ng,
2016; Dong et al., 2017; Hussein et al., 2020; Ku-
mar et al., 2022). More recently, many AES studies
have utilized pre-trained language models to ob-
tain essay embeddings, followed by fine-tuning the
models to optimize performance (Uto et al., 2020;
Cao et al., 2020; He et al., 2022; Wang et al., 2022).

Trait scoring. While early work on trait scoring
has focused on computing the easier-to-compute
traits in a heuristic manner (Attali and Burstein,
2006), later work has resorted to machine learn-
ing for scoring traits that are based on not only
grammaticality and structure but also content, such
as the clarity of the essay’s thesis and the persua-
siveness of the argument the essay makes (Hig-
gins et al., 2004; Persing et al., 2010; Persing and
Ng, 2013, 2014, 2015; Somasundaran et al., 2014;
Mathias and Bhattacharyya, 2018). More recently,
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research has shifted from scoring the traits inde-
pendently of each other to developing multi-task
learning models where the trait scores are predicted
jointly with the holistic score (He et al., 2022; Ku-
mar et al., 2022).

2.2 Cross-Prompt Scoring
Holistic scoring. In the pre-neural NLP era, AES
researchers have recast cross-prompt scoring as
domain adaptation (Phandi et al., 2015; Cummins
et al., 2016). In this setting, each essay prompt is
viewed as a “domain”, so that transfer learning tech-
niques can be employed to adapt a model trained
on the existing prompts (i.e., the “source domains”)
to a new prompt (i.e., the “target domain”). Note
that Phandi et al.’s approach and Cummins et al.’s
approach are both developed for a soft version of
cross-prompt scoring where a small number of la-
beled essays from the target prompt are available
for model training in addition to a large number of
essays from the source prompts.

Recent cross-prompt scoring models are neural-
based, aiming to learn a prompt-independent rep-
resentation from the training essays and combine
the resulting representation with a set of prompt-
independent features to holistically score an essay
written for a new prompt (Jin et al., 2018; Li et al.,
2020; Ridley et al., 2020). These models, unlike
the domain-adapted AES models, are not trained
on any essays written for the target prompt.
Joint holistic and trait scoring. Like in within-
prompt scoring, in cross-prompt scoring re-
searchers have also developed models based on
multi-task learning where the trait scores are jointly
predicted with the holistic score. Ridley et al.
(2021) propose an innovative approach that extends
a cross-prompt holistic scoring model (Ridley et al.,
2020) by (1) incorporating distinct decoding com-
ponents tailored to individual traits and (2) using
a cross-trait attention mechanism to capture poten-
tial interdependencies among traits. Chen and Li
(2023) propose a multi-trait scoring system utiliz-
ing contrastive learning, which is designed to learn
consistent essay representations across different
prompts. This approach captures features shared
by essays from different prompts, thereby helping
the model generalize well across prompts. Do et al.
(2023) introduce a prompt and trait relation-aware
cross-prompt essay trait scorer, which leverages
essay-prompt attention and topic-coherence fea-
tures to capture prompt adherence in essays, even
in the absence of labeled data.

3 Corpus

For model training and evaluation, we employ the
widely-used ASAP2 corpus and its and its exten-
sion, ASAP++ (Mathias and Bhattacharyya, 2018).

ASAP (Automated Student Assessment Prize),
which is released as part of a Kaggle competition
in 2012, is composed of essays manually anno-
tated with their holistic scores. The essays are
written for eight prompts, including two for per-
suasive essays, two for narrative essays, and four
for source-dependent essays. Different rubrics are
used for scoring prompts, and as a result, the score
ranges for different prompts can be different. For
instance, one prompt has a score range of 0 to 3,
while another prompt has a score range of 1 to 6.
The eight prompts and their statistics can be found
in Appendix A.

ASAP++ is an extension of ASAP where each
essay is additionally scored along different traits.
Eight traits are scored, including CONTENT (how
clear and focused the writing is and how well-
developed the main ideas are), WORD CHOICE

(how well the words convey the intended mes-
sage), ORGANIZATION (how well-organized the
essay is), PROMPT ADHERENCE (how adherent
the essay is to the prompt), SENTENCE FLUENCY

(whether the sentences in the essay are of high qual-
ity), CONVENTIONS (how well the essay demon-
strates standard writing conventions), NARRATIV-
ITY (how coherent and cohesive the response is),
and LANGUAGE (how good grammar and spelling
are). Note, however, that the traits that are used for
essays written for different prompts can be differ-
ent: some essays are scored along three traits while
some are scored along six traits. Additional infor-
mation on the traits can be found in Appendix B.

4 Approaches to Holistic Scoring

In this section, we describe our two feature-based
approaches to holistic scoring. The first one does
not exploit essay traits (Section 4.1), whereas the
second one does (Section 4.2).

4.1 Holistic Scoring without Traits
Below we describe our features and model.

4.1.1 Features
At a high level, the features we employ can be
divided into two broad categories: existing features
and our proposed features.

2https://www.kaggle.com/c/asap-aes
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4.1.1.1 Existing Features
The existing features we employ are taken from
two AES systems, Ridley et al.’s (2020) system
and Uto et al.’s (2020) system, as described below.
Ridley et al.’s (2020) features. These are a man-
ually curated set of 86 prompt-independent features
that include readability features (features computed
using different readability indices, such as the Cole-
man–Liau index), text complexity features (fea-
tures that capture syntactic complexity, such as
the number of clauses per sentence), text variation
features (features that capture variations in word
and part-of-speech usage, such as the number of
unique words), length-based features (any other
count-based features such as the total number of
words), and sentiment-based features (features that
encode document- and sentence-level sentiment,
such as the percentage of positive sentences).
Uto et al.’s (2020) features. Only three of the 25
features in Uto et al.’s feature set are not present
in Ridley et al.’s (2020) feature set: the number
of lemmas, the number of question marks, and the
number of exclamation marks. As we will see in
Section 4.3, Ridley et al. and Uto et al. employ
different feature normalization methods, so we use
all of Uto et al.’s features despite the overlap.

4.1.1.2 Our Proposed Features
Below are the additional features we propose.
Part-of-speech (POS) Bigram features. Hy-
pothesizing that POS bigrams can help a model
generalize to new prompts, we propose 902 fea-
tures, each of which encodes the count of a POS bi-
gram that appears in the training data. An example
of a useful POS bigram feature is “CC NN”, which
can capture the presence of phrases that signal the
elaboration of an idea, such as “for instance”.
Prompt Adherence features. Crucially missing
from our existing features are those that encode
whether an essay is adherent to the prompt for
which it is written. For this reason, we propose
four features that aim to measure an essay’s ad-
herence to its prompt. The first feature computes
the dot score between the embedding of an essay
and that of its prompt3. To compute the remaining
features, we (1) compute the dot score between the
embedding of each sentence in the essay and that of
the prompt, and (2) take the maximum, minimum,
and average dot scores to be the feature values.

3We use the all-mpnet-base-v2 model from Reimers
and Gurevych’s (2019) sentence-transformers package to ob-
tain embeddings.

Top-N Words features. None of the aforemen-
tioned features are word-based features. We hy-
pothesize that word-based features could be a use-
ful addition to the feature set. Note, however,
that word-based features may render the resulting
model prompt-specific. As a result, we strike a bal-
ance by employing a group of 300 features that are
computed based on the set of N words that appear
most frequently in the training data. For each word
w in this set, we collect three types of statistics as
features: (1) the count of w in an essay, (2) the
number of sentences in an essay that contains w,
and (3) the percentage of sentences in an essay that
contains w. We set N to 100 in our experiments.
Pronoun features. This is a group of 218 word-
based features that are specialized for pronouns.
Its design is motivated by our desire to investigate
whether writing quality is correlated with the fre-
quency with which certain types of pronouns are
used. Specifically, this group is composed of six
types of pronoun-related features: (1) the count of
each pronoun (e.g., the count of “I”), (2) the count
of pronouns belonging to each pre-defined pronoun
group (e.g., the count of first person pronouns),
(3) the number of sentences that contain each pro-
noun (e.g., the number of sentences that contain
“I”), (4) the number of sentences that contain pro-
nouns belonging to each pre-defined pronoun group
(e.g., the number of sentences that contain first per-
son pronouns), (5) the percentage of sentences that
contain each pronoun (e.g., the percentage of sen-
tences that contain “I”), and (6) the percentage of
sentences that contain pronouns belonging to each
pre-defined pronoun group (e.g., the percentage of
sentences that contain first person pronouns).

A description of each of these features can be
found in Appendix C.

4.1.1.3 Feature Analysis
To gain insights into which features are likely to
be useful for holistic scoring, we rank the features
based on the absolute average of the Pearson and
Spearman Correlation Coefficients computed be-
tween the feature values and the holistic scores on
the entire dataset. The top three features, which all
encode word variation, include the number of word
types and the number of word lemmas. The next
feature, which counts the number of syllables in
an essay, indirectly encodes essay length. This is
followed by a feature that encodes text readability
by counting the number of complex words. After
that, we have two more length-based features, one
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encoding the number of sentences and the other
the number of words. While these top-ranked fea-
tures appear to encode different aspects of an essay,
intuitively they are all positively correlated with
essay length. In other words, this analysis seems
to suggest that the length of an essay is a strong
indicator of its holistic score.

To gain further insights into which categories
of features are likely to be useful for holistic scor-
ing, we divide our features into nine categories.
The first five categories are defined in Ridley et al.
(2020) (see Section 4.1.1.1), whereas the last four
categories come from our proposed features (see
Section 4.1.1.2). These categories include: (1)
readability-based (RB) features, (2) text complex-
ity (TC) features, (3) text variation (TV) features,
(4) length-based (LB) features, (5) sentiment-based
(SB) features, (6) part-of-speech bigram (POSB)
features, (7) prompt adherence (PA) features, (8)
top-N words (TNW) features, and (9) pronoun
(PRO) features. Overall, the most useful categories
are TV and LB. They are followed by RB and PRO.
TC, TNW, and PA are of middling importance. The
least useful categories are SB and POSB.

The entire list of top-ranked features and their
associated categories can be found in Appendix D.

4.1.2 Model
We employ as our model a multi-layer neural net-
work, which takes as input a set of features and
outputs a holistic score. We train four models,
which differ in terms of the input features. Specif-
ically, to determine whether the features we pro-
posed provide any added value, we experiment with
two feature sets, the EXISTING features, which are
composed of only Ridley et al.’s and Uto et al.’s
features, and ALL features, which are composed of
the EXISTING features and all of our proposed fea-
tures. To determine whether feature selection can
improve model performance, we optionally apply
feature selection to automatically select features for
each of the two aforementioned feature sets. This
results in four feature sets: the EXISTING feature
set with and without feature selection, and the ALL

feature set with and without feature selection.
Given the large number of features in our fea-

ture set, we need to employ an efficient feature
selection method. For this reason, we choose to
filter features based on their Pearson and Spearman
Correlation Coefficients with the holistic scores as
computed on the training set. Given our hypothesis
that features with lower coefficients are less pre-

dictive of the holistic score, our feature selection
method discards a feature if the minimum of its
two coefficients is below a certain threshold.

4.2 Holistic Scoring with Traits

We experiment with two architectures when per-
forming holistic scoring with traits.

4.2.1 Joint Architecture
In virtually all recent approaches to exploiting traits
for holistic scoring, the trait scores and the holistic
score are predicted jointly in a multi-task learning
framework where the different tasks (i.e., holistic
scoring and trait scoring) interact via a shared rep-
resentation layer (see Section 2 for a discussion).
To enable an apples-to-apples comparison between
these approaches and ours, we experiment with an
architecture for joint holistic and trait scoring.

Our joint model is the same as the one described
in Section 4.1.2 except that the last layer of the net-
work contains nine (rather than one) output nodes.
Specifically, there is one output node for scoring
each of the eight traits described in Section 3 and
one output node for predicting the holistic score.

4.2.2 Pipeline Architecture
We also experiment with a pipeline architecture
that is composed of two steps. In the first step,
we score the traits. Then, in the second step, we
use the trait scores predicted in the first step as
input to predict the holistic score. Note that this
pipeline architecture is reminiscent of early heuris-
tic approaches to holistic scoring (e.g., e-rater (At-
tali and Burstein, 2006)), where a heuristic scorer
scores an essay holistically by taking the weighted
sum of the heuristically-computed trait scores. Re-
cent approaches have avoided adopting a pipeline
architecture because of the error propagation prob-
lem: since the results of trait scoring have generally
been poor, a model that relies solely on the noisily
predicted trait scores will unlikely yield accurate
prediction of the holistic score.

Next, we describe how the models involved in
our two-step pipeline approach are trained. Recall
that in the first step, we train trait-specific models
to predict trait scores. Specifically, we train one
model to predict the score for each trait. The way
each of these trait-specific models is trained is the
same as the way the holistic scoring model was
trained in Section 4.1.2. In particular, for each
trait, we train four models, one for each of the
four feature sets described in Section 4.1.2. In the
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second step, we train a model to predict holistic
scores. Specifically, we train two versions of this
model that also differ in terms of the input features.
In the first version, we use all and only the gold
trait scores as input. Note that while the gold trait
scores are used for model training, the predicted
trait scores will be used when the resulting model
is applied to a test essay. Hence, the success of this
model depends entirely on how accurately the traits
are scored in the first step. More specifically, the
more poorly the traits are scored in the first step, the
less likely the model in the second step will perform
well. To mitigate this error propagation problem,
we consider a second version of the model that we
train in the second step: we employ as features
not only the gold traits but also the features we
proposed in Section 4.1.1. This way the model
could be trained to be less dependent on the traits,
as it may choose to rely on not only the traits but
also the other features.

4.3 Implementation Details
Input normalization. In accordance with Ridley
et al. (2020), we apply min-max normalization to
their features within each prompt, scaling them to
the [0, 1] range. Following Uto et al. (2020), we
standardize their features within each prompt to
achieve a mean of 0 and a standard deviation of
1. For all other features and the input traits for the
holistic scoring model, we also standardize them
to have a mean of 0 and a standard deviation of 1.
Training details. All models are trained with two
hidden layers with sizes 128 and 64 respectively,
using ReLU as the activation function and mean
squared error (MSE) as the loss function. For the
multi-task learning models, the loss is the sum of
the MSE losses over all tasks. Since not all traits
are applicable to all prompts, any score predicted
for an inapplicable trait will not contribute to the
loss. Each neuron in the final output layer uses
the sigmoid activation function to predict a score
between 0 and 1. The predicted scores are then
scaled back to the valid score range accordingly.
All models are trained for 15 epochs using AdamW
with β1 = 0.9 and β2 = 0.999 as the optimizer,
0.1 × {total number of update steps} as the num-
ber of warm-up steps, 0.5 as the dropout rate, and
11 as the random seed. We perform grid search
for determining the feature selection threshold (by
searching out of {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.65})
and the learning rate (by searching out of
{0.001, 0.003, 0.01, 0.03, 0.1}) that jointly maxi-

mize QWK4, the standard metric for evaluating
AES systems, on development data. It takes less
than 48 hours to complete training for all experi-
ments on two NVIDIA RTX A6000 48GB GPUs.
The best hyperparameter values selected are re-
ported in Appendix E.

5 Evaluation

5.1 Experimental Setup

In this section, we evaluate our feature-based ap-
proach to cross-prompt holistic scoring.

Datasets. We use ASAP/ASAP++ for model
training and evaluation. Following previous
work (Jin et al., 2018; Ridley et al., 2021), we
conduct cross-prompt evaluation via leave-one-
prompt-out cross-validation experiments. Since
ASAP/ASAP++ contains eight prompts, we divide
the essays into eight folds based on the prompt for
which an essay is written. In each fold experiment,
we use one fold for testing, one fold for develop-
ment (parameter tuning), and the remaining six
folds for model training.

Evaluation metric. We employ Quadratic
Weighted Kappa (QWK) as our metric for holistic
and trait-specific scoring. Since QWK is an
agreement metric, higher values are better.

Evaluation settings. We employ two evaluation
settings that differ in terms of whether traits are
used for holistic scoring. In the first setting, only
the input features are used to predict the holistic
score of an essay. In the second setting, the trait-
specific scores, which may be augmented with the
input features, are used to predict holistic scores.

Baseline systems. For holistic scoring with traits
as well as trait scoring, we employ seven base-
line systems, namely, Hi att (Dong et al., 2017),
AES aug (Hussein et al., 2020), PAES (Ridley et al.,
2020), CTS no att (Ridley et al., 2021), CTS
(Ridley et al., 2021), PMAES (Chen and Li, 2023),
and ProTACT (Do et al., 2023). For holistic scor-
ing without traits, we use as baseline systems all
and only those systems mentioned above that have
also reported holistic scoring results without traits,
namely, Hi att (Dong et al., 2017), PAES (Ridley
et al., 2020) and PMAES (Chen and Li, 2023). A
description of each of these systems can be found
in Appendix F.

4See https://www.kaggle.com/competitions/
asap-aes/overview/evaluation for details.
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Model 1 2 3 4 5 6 7 8 Avg.
1 Hi att (Dong et al., 2017) .372 .465 .432 .523 .586 .574 .514 .323 .474
2 PAES (Ridley et al., 2020) .746 .591 .608 .641 .727 .609 .707 .635 .658
3 PMAES (Chen and Li, 2023) .758 .674 .658 .625 .735 .578 .749 .718 .687
4 Existing Feats .744 .601 .657 .653 .778 .620 .704 .430 .648
5 All Feats .735 .538 .602 .587 .722 .584 .689 .523 .623
6 Existing Feats Filtered .829 .612 .621 .621 .767 .655 .739 .570 .677
7 All Feats Filtered .820 .601 .685 .666 .786 .682 .693 .654 .698

Table 1: Holistic scoring results without traits for each prompt. The results for Hi att and PAES are taken verbatim
from Chen and Li (2023). The best result in each column is boldfaced.

5.2 Results and Discussion

5.2.1 Holistic Scoring without Traits
Results of holistic scoring without traits for each of
the eight prompts, as well as the macro-averaged
results over the prompts, are shown in Table 1.
Rows 1–3 of the table show the results of the three
baselines. As we can see, results on cross-prompt
AES have improved over time, with the later sys-
tems performing better than the earlier ones.

Rows 4–7 of Table 1 show the results obtained
via the four models of our feature-based approach,
which differ in terms of which feature set is used.
Rows 4 and 5 show the results of the two models
without employing feature selection. On average,
they underperform two of the baselines, PAES and
PMAES, by 0.01–0.062 points in QWK. Comparing
rows 4 and 5, we see that using only the EXISTING

features yields better results than than using all of
the features. In other words, not only are the addi-
tional features not useful, but their incorporation
into the feature set hurts performance.

Results of our two models with feature selection
are shown in rows 6 and 7 of Table 1. As can be
seen, despite its simplicity, our feature selection
method seems effective: QWK increases by 0.029
points and 0.075 points when the model employs
only the EXISTING features and ALL features, re-
spectively. The fact that after feature selection,
using ALL features yields better results than us-
ing only the EXISTING features implies that there
are useful features in our proposed feature set for
holistic scoring. In addition, the fact that before fea-
ture selection, using ALL features fails to improve
performance in comparison to using only the EX-
ISTING features can be attributed to the presence
of many noisy features in our proposed feature set.

5.2.2 Holistic Scoring with Traits
Results of holistic scoring with traits for each of
the eight prompts, as well as the macro-averaged
results over the prompts, are shown in Table 2.
The first seven rows show the results of the seven

baseline systems. Note that per-prompt results are
not available for each of the baselines as they are
not reported in the original papers. As can be seen,
the majority of the baselines have QWK scores that
hover around 0.67. The best-performing baseline is
ProTACT, which achieves a QWK score of 0.674.

Next, consider the three baselines that appear in
both Tables 1 and 2, namely, Hi att, PAES, and
PMAES. When traits are used, we see a consistent
precipitation in the average QWK score: QWK
decreases by 0.001–0.021 points. At first glance,
these results may appear surprising, as the the intro-
duction of traits is meant to help predict the holistic
scores. Nevertheless, jointly predicting the trait
scores and the holistic score in these systems in-
creases the complexity of the underlying learning
task, adversely affecting holistic scoring. Note that
the results for Hi att and PAES in Table 1 and
Table 2 are obtained from different sources. Direct
comparisons between them might not be accurate.

Rows 8–11 of Table 2 show the results of our
joint approach where the holistic score is predicted
jointly with the trait scores. These four rows differ
in terms of the feature set used for model training.
The trends we observed for the three baselines, Hi
att, PAES, and PMAES, are also applicable to the
four joint models. Specifically, comparing the re-
sults of the joint models with the corresponding
holistic scoring results without traits in rows 4–7
of Table 1, we see that the average QWK scores
drop in all four cases. This means that the addition
of trait scoring hurts holistic scoring. It is perhaps
not surprising: like in the three baselines, the in-
crease in the complexity of the underlying learning
task is likely responsible for the deterioration in
performance in the joint models. The drops associ-
ated with the joint models (2.3–7.7%) are similar
to those associated with the baselines (0.2–4.4%).

Rows 12–15 of Table 2 show the results of our
two-step pipeline approach where the holistic scor-
ing model in the second step is trained using only
gold traits and tested using only predicted traits.
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Model 1 2 3 4 5 6 7 8 Avg.
1 Hi att (Dong et al., 2017) – – – – – – – – .453
2 AES aug (Hussein et al., 2020) – – – – – – – – .402
3 PAES (Ridley et al., 2020) – – – – – – – – .657
4 CTS no att (Ridley et al., 2021) – – – – – – – – .659
5 CTS (Ridley et al., 2021) – – – – – – – – .670
6 PMAES (Chen and Li, 2023) – – – – – – – – .671
7 ProTACT (Do et al., 2023) – – – – – – – – .674
8 Joint: Existing Feats .579 .630 .667 .638 .771 .574 .687 .518 .633
9 Joint: All Feats .724 .451 .531 .546 .696 .557 .670 .544 .590

10 Joint: Existing Feats Filtered .829 .551 .610 .635 .735 .595 .648 .393 .625
11 Joint: All Feats Filtered .788 .550 .643 .623 .760 .612 .652 .670 .662
12 Step 1: Existing Feats; Step 2: GT .654 .619 .493 .498 .709 .534 .251 .679 .554
13 Step 1: All Feats; Step 2: GT .634 .476 .427 .439 .690 .592 .354 .534 .518
14 Step 1: Existing Feats Filtered; Step 2: GT .656 .602 .505 .510 .715 .465 .290 .660 .550
15 Step 1: All Feats Filtered; Step 2: GT .687 .499 .488 .457 .705 .601 .403 .547 .548
16 Step 1: Existing Feats: Step 2: GT+Feats .738 .584 .697 .658 .776 .656 .688 .641 .680
17 Step 1: All Feats, Step 2: GT+Feats .750 .557 .684 .646 .777 .669 .719 .623 .678
18 Step 1: Existing Feats Filtered; Step 2: GT+Feats .753 .581 .692 .664 .780 .661 .701 .632 .683
19 Step 1: All Feats Filtered; Step 2: GT+Feats .781 .556 .692 .639 .783 .668 .724 .617 .682

Table 2: Holistic scoring results with traits. The results for Hi att, AES aug and PAES are taken verbatim from
Ridley et al. (2021). The best result in each column is boldfaced.

These four rows differ in terms of the feature set
used to train the models for scoring traits in the
first step. As we can see, the average QWK scores
of these models hover around 0.55. In particular,
these models all substantially underperform the cor-
responding models in Table 1, where traits are not
used: QWK drops by 0.094–0.15 points. These
drops can be attributed to error propagation: the
trait scores predicted in the first step are not accu-
rate enough to enable accurate prediction of the
holistic score in the second step.

The results in rows 16–19 of Table 2 are pro-
duced using the same models underlying the results
in rows 12–15, except that in the second step, both
the traits and all of the features that survive feature
selection are used to predict the holistic score. In
particular, the same holistic scoring model is used
to predict holistic scores in all four rows, so the per-
formance differences observed in these four rows
can be attributed solely to the differences in the
trait scores predicted in the first step.

A few points deserve mention. First, comparing
the results in rows 16–19 with the corresponding
results in rows 12–15, we see that holistic scoring
results substantially improve when the traits are
augmented with our features. These results sug-
gest that the features have indeed helped alleviate
the error propagation problem caused by the poorly
scored traits. Second, even when all the features are
used, these results are still worse than the best holis-
tic scoring results when traits are not used (row 7,
Table 1), meaning that the use of traits has caused
more harm than good to holistic scoring. Never-

theless, the models in rows 16–19 still outperform
ProTACT, achieving state-of-the-art cross-prompt
holistic scoring results when traits are used.

A natural question is: are traits simply not use-
ful for holistic scoring? To answer this question,
we compute the Pearson Correlation Coefficient
for each trait with the holistic score and find that
each trait is strongly correlated with the holistic
score (see Appendix G). Furthermore, to determine
whether the holistic scoring results with traits are
bad because the trait scores are poorly predicted,
we conducted an oracle experiment on ASAP++
in our previous work (Li and Ng, 2024b) in which
we trained a linear regressor to predict the holis-
tic score using only the gold traits as features and
evaluated the resulting regressor using the same set
of gold traits as features via leave-one-prompt-out
cross validation. This experiment yields a QWK
score of 0.88, suggesting that traits are useful for
holistic scoring if they can be accurately scored.

5.2.3 Trait Scoring

In Table 2, we showed that using predicted trait
scores does not improve holistic scoring results, so
a question is: how accurately are the trait scores
predicted? Table 3 shows the QWK results of scor-
ing the eight traits when macro-averaged over the
eight folds. The first seven rows show the baseline
results. The next four rows show the results of trait
scoring where the trait scores are predicted jointly
with the holistic score. Note that these results are
derived from the same four joint models that pro-
duce the holistic scoring results in rows 8–11 of
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Model Content Org WC SF Conv PA Lang Nar
1 Hi att (Dong et al., 2017) .348 .243 .416 .428 .244 .309 .293 .379
2 AES aug (Hussein et al., 2020) .342 .256 .402 .432 .239 .331 .313 .377
3 PAES (Ridley et al., 2020) .539 .414 .531 .536 .357 .570 .531 .605
4 CTS no att (Ridley et al., 2021) .541 .424 .558 .544 .387 .561 .539 .605
5 CTS (Ridley et al., 2021) .555 .458 .557 .545 .412 .565 .536 .608
6 PMAES (Chen and Li, 2023) .567 .481 .584 .582 .421 .584 .545 .614
7 ProTACT (Do et al., 2023) .596 .518 .599 .585 .450 .619 .596 .639
8 Existing Feats - Joint .548 .430 .516 .537 .296 .592 .543 .602
9 All Feats - Joint .554 .427 .421 .467 .373 .603 .515 .595

10 Existing Feats Filtered - Joint .544 .398 .422 .506 .241 .549 .537 .574
11 All Feats Filtered - Joint .568 .458 .570 .434 .373 .621 .562 .614
12 Existing Feats - Independent .569 .477 .507 .532 .362 .568 .558 .617
13 All Feats - Independent .562 .393 .411 .454 .373 .559 .509 .605
14 Existing Feats Filtered - Independent .562 .473 .508 .535 .386 .566 .554 .590
15 All Feats Filtered - Independent .592 .478 .459 .452 .439 .617 .556 .637

Table 3: Trait scoring results (Org: Organization, WC: Word Choice; SF: Sentence Fluency; Conv: Conventions;
PA: Prompt Adherence; Lang: Language; Nar: Narrativity). The results for Hi att, AES aug and PAES are taken
verbatim from Ridley et al. (2021). The best result in each column is boldfaced.

Table 2. The last four rows show the results of trait
scoring where the traits are scored independently
of each other. These results are derived from the
trait scoring models used in Step 1 of the pipeline
architecture mentioned earlier.

A few points deserve mention. First, compar-
ing the joint trait scoring results with the corre-
sponding independent trait scoring results, we see
that there is no clear winner. More specifically,
while the independent versions consistently outper-
form their joint counterparts when scoring CON-
TENT, NARRATIVITY, and CONVENTIONS, the
results are rather mixed w.r.t. the remaining traits.
Second, the best-performing system for trait scor-
ing is ProTACT, which achieves the highest QWK
score on every trait except PROMPT ADHERENCE.
As discussed earlier, virtually all systems achieve
worse results on holistic scoring when traits are in-
volved in the scoring process. Nevertheless, since
Do et al. (2023) do not report holistic scoring re-
sults without traits, it is not clear whether the level
of performance ProTACT has achieved on trait scor-
ing can enable its predicted trait scores to benefit
holistic scoring. Third, despite the fact that the
best holistic scoring results are achieved without
using traits, it by no means implies that we can
safely ignore trait scoring for at least two reasons.
First, trait scoring is important in its own right: if
predicted accurately, trait scores can help inform
an essay’s writer which aspects of their essay need
improvement. Second, as shown earlier in the or-
acle experiment, accurate trait scores can indeed
improve holistic scoring.

Since ProTACT, which employs a sophisticated
neural model for AES, has achieved better trait

scoring results than ours, a relevant question is:
does that mean a feature-based approach is insuf-
ficient for trait scoring? We believe the answer is
no. Among the eight traits, CONTENT and NAR-
RATIVITY are intuitively the most difficult to score
accurately as they are dependent on an essay’s con-
tent. Comparing one of our models, All Feats
Filtered (row 15), with ProTACT (row 7), we see
that the two perform comparably on CONTENT and
NARRATIVITY. In contrast, All Feats Filtered
underperforms ProTACT primarily on the remain-
ing six traits, all of which are based on an essay’s
surface form or structure rather than its content and
hence are intuitively easier to score. We therefore
speculate that it is possible to improve the scoring
of these traits by identifying additional features.

6 Conclusion

We examined the relatively under-studied task of
cross-prompt essay scoring, seeking to understand
(1) whether state-of-the-art performance on cross-
prompt scoring could only be achieved using so-
phisticated models and (2) what role the features
played in the scoring process. For this reason, we
proposed a purely feature-based approach to cross-
prompt scoring that combined existing features
with those of our own, achieving state-of-the-art re-
sults on the ASAP dataset when our feature set was
used to train a simple neural architecture. Not only
does our work establish a strong baseline against
which future work can be compared, but it serves to
remind researchers that understanding which por-
tions of a complex model are chiefly responsible
for performance improvements is as important as
demonstrating performance improvements itself.
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Limitations

We believe that our work has several limitations.
First, while we managed to augment a set of exist-
ing features with our own to create a feature set that,
when combined with feature selection, achieves
state-of-the-art results on cross-prompt scoring, we
have not tested the full potential of a purely feature-
based approach to cross-prompt scoring. More
specifically, the EXISTING features that we em-
ployed came solely from Ridley et al. (2021) and
Uto et al. (2020). In other words, there are many
existing features that we have not incorporated into
our feature set, particularly those that are proposed
in the pre-neural NLP era. Repeating our experi-
ments with a more comprehensive feature set com-
posed of all of the features proposed in AES so far
could help us discover the full potential of a feature-
based approach and establish a stronger baseline
against which future work can be compared. Sec-
ond, while we have an augmented feature set that
can achieve state-of-the-art results, we did not use
it in combination with existing cross-prompt AES
models, such as PMAES and ProTACT, to determine
whether having better features can improve the per-
formance of existing models.
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A Statistics on ASAP

In this section, we present additional statistics on
the ASAP corpus. Table 4 displays the eight essay
prompts featured in ASAP, along with the corre-
sponding number of essays and the average word
count for each prompt. The total number of essays
in ASAP as well as the average number of words
across all essays are also shown in this table.

B Traits in ASAP++

Recall that eight traits are used to annotate the
essays in ASAP: CONTENT, WORD CHOICE, OR-
GANIZATION, SENTENCE FLUENCY, CONVEN-
TIONS, NARRATIVITY, PROMPT ADHERENCE,
and LANGUAGE. The rubrics used for scoring these
traits can be found in Mathias and Bhattacharyya
(2018). Not all the eight traits are applicable to
every prompt. Table 5 shows the set of traits anno-
tated for each essay prompt, whereas Table 6 shows
the number of essays annotated for each trait.

C List of Features

Table 7 enumerates the features used in our models
alongside their detailed descriptions and the cate-
gories to which they belong. Feature names are
appended with superscripts for source identifica-
tion. Specifically, features marked with superscript
1 are features derived using the textstat package5.
Features marked with superscript 2 are computed
using a readability package6. Those marked with
superscript 3 are NLTK package-derived features7.
Finally, those marked with superscript 4 are fea-
tures obtained via the spaCy package8.

5https://github.com/textstat/textstat
6https://github.com/andreasvc/readability
7https://www.nltk.org/
8https://spacy.io/

D Feature Usefulness

To gain insights into which features are useful for
holistic scoring, we display in Table 8 the 60 fea-
tures in our feature set where the absolute average
of the Pearson and Spearman Correlation Coeffi-
cients computed between the feature values and
the holistic scores on the entire corpus surpasses
0.2. Notably, certain text variation, length-based,
and readability features demonstrate high correla-
tions with the holistic score. Conversely, the newly
added features display relatively lower correlations,
potentially attributable to their fine-grained charac-
teristics.

E Hyperparameter Settings

In this section, we describe for each set of experi-
ments the best hyperparameter values selected for
each fold. Table 9 shows the best hyperparame-
ters for holistic scoring without traits. Table 10
shows the best hyperparameters for trait scoring
models. Table 11 shows the best hyperparameters
for holistic scoring with traits.

F Baseline Systems

Next, we briefly describe our baseline systems.
Hi att (Dong et al., 2017) is a holistic scoring

model that first employs a CNN on the input charac-
ters with both max pooling and average pooling to
obtain the word embeddings. Then, another CNN
layer with attention pooling is applied on the word
embeddings for extracting sentence representations.
After that, a LSTM network with attention pooling
is applied to the resulting sentence representations
to obtain the document representation. Finally, a
linear layer with a sigmoid output neuron is used
to predict the holistic score.
PAES (Ridley et al., 2020) is a holistic scoring

model that is structurally similar to Hi att. A
notable distinction of PAES is that its CNN layer
is applied on top of POS tags instead of words or
characters. Additionally, PAES incorporates hand-
crafted features as the input of the final linear layer.
AES aug (Hussein et al., 2020) builds on

Taghipour and Ng’s (2016) AES model by increas-
ing the number of output neurons, with the goal
of jointly predicting the trait scores and the holis-
tic score. More specifically, each output neuron is
used to predict either the holistic score or one of the
trait scores. AES aug utilizes a CNN to extract n-
gram level features, passes them through an LSTM
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Prompt Avg. # Words Essays
1 Write a letter to the editor of a newspaper about how computers affect society today. 365.4 1783
2 Write a letter to the editor of a newspaper about censorship in libraries 380.7 1800
3 Write a review about an article called Rough Rough Road by Joe Kurmaskie. The

article will be provided.
108.5 1726

4 Explain why the author concludes the story the way the author did. The short story
will be provided.

94.3 1772

5 Describe the mood created by the author in the memoir. Support your answer with
relevant and specific information from the memoir

122.1 1805

6 Describe the difficulties that builders of the Empire State Building faced because of
allowing dirigibles to dock there.

153.2 1800

7 Write a story about a time when you were patient OR write a story about a time when
someone you know was patient OR write a story in your own way about patience.

167.6 1569

8 We all understand the benefits of laughter. For example, someone once said, “Laugh-
ter is the shortest distance between two people.” Many other people believe that
laughter is an important part of any relationship. Tell a true story in which laughter
was one element or part.

604.7 723

Overall 222.5 12978

Table 4: The eight writing prompts in ASAP.

ID Traits
1 Content, Word Choice, Organization, Sentence Flu-

ency, Conventions
2 Content, Word Choice, Organization, Sentence Flu-

ency, Conventions
3 Content, Prompt Adherence, Narrativity, Language
4 Content, Prompt Adherence, Narrativity, Language
5 Content, Prompt Adherence, Narrativity, Language
6 Content, Prompt Adherence, Narrativity, Language
7 Content, Organization, Conventions
8 Content, Word Choice, Organization, Sentence Flu-

ency, Conventions

Table 5: Traits applicable to each ASAP++ prompt.

network, performs mean pooling, and then uses a
linear layer for joint holistic and trait scoring.
CTS (Ridley et al., 2021) is the first model that ex-

plores cross-prompt multi-trait scoring. Similar to
PAES, CTS utilizes a CNN with attention pooling on
the POS tags of the input essays to obtain n-gram
level features. For each trait, it applies a LSTM net-
work with attention pooling to the n-gram represen-
tations to obtain trait-specific essay representations.
These representations are then combined with hand-
crafted features from Ridley et al. (2020), followed
by a cross-trait attention mechanism so that infor-
mation can be shared by different traits. Finally,
the trait scores and the holistic score are predicted
using a linear layer with sigmoid activation.
CTS no att (Ridley et al., 2021) is the same as

CTS except that CTS no att does not utilize the
cross-trait attention mechanism.
PMAES (Chen and Li, 2023) performs holistic

scoring both with traits and without traits. It en-
hances the representations extracted by Hi att by
applying a contrastive learning objective to learn
consistent essay representations across different

Trait # of Annotated Essays
Content 12978
Organization 5875
Word Choice 4306
Sentence Fluency 4306
Conventions 5875
Prompt Adherence 7103
Language 7103
Narrativity 7103

Table 6: Number of annotated essays in ASAP++ for
each trait.

prompts. This approach captures features shared
by essays from different prompts, thereby helping
the model generalize well across prompts. Addi-
tionally, it incorporates the hand-crafted features
from Ridley et al. (2020) before feeding the repre-
sentations into the final linear layer.

ProTACT (Do et al., 2023) is the current state-
of-the-art cross-prompt trait scoring model. The
model extracts essay representations by employing
CNNs and LSTM networks on the POS embed-
dings of the input essays. It also extracts prompt
representations by applying the same network ar-
chitecture to the sum of the POS embeddings and
the GloVe embeddings (Pennington et al., 2014)
for each word in the prompt. Prompt-aware essay
representations are then derived using multi-head
attention, with the prompt representations acting as
the query and the essay representations as the key
and value. These representations are subsequently
concatenated with hand-crafted features and pro-
cessed through a linear layer to predict both the
holistic score and the trait-specific scores.
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G Usefulness of Traits

To gain insights into whether the traits in ASAP++
are useful for holistic scoring, we present in Ta-
ble 12 the Pearson Correlation Coefficient between
the gold scores for each trait and the gold holistic
scores. As we can see, the correlations are high
across all traits, suggesting that these essay traits
are potentially useful for improving cross-prompt
holistic scoring if they can be scored accurately.
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Feature Group Feature Name Description
Ridley et al.’s (2020) Features (86 features)

LBR

word_count The total number of words in the essay.
mean_word The average number of characters in each word.
ess_char_len The number of characters in the essay.
mean_sent3 The average number of words in each sentence.
characters_per_word2 The average number of characters in each word.
avg_word_len The average number of characters in each word.
avg_words_per_sentence The average number of words in each sentence.
characters2 The number of characters in the essay.
syllables2 The number of syllables in the essay.
words2 The number of words in the essay.
words_per_sentence2 The average number of words in each sentence.
sentences_per_paragraph2 The average number of sentences in each paragraph.
.3 The number of periods in the essay.
,3 The number of commas in the essay.
syll_per_word2 The average number of syllables in each word.

RBR

automated_readability1 A readability metric that measures the readability of a
text based on characters per word and words per sen-
tence.

linsear_write1 A readability metric developed for the U.S. Air Force
to help them calculate the understandability of technical
manuals, factoring in sentence length and words that are
considered difficult.

Kincaid2 A readability metric which estimate the readability of
English texts based on sentence length and word length.

ARI2 A readability metric that measures the readability of a
text based on characters per word and words per sen-
tence.

Coleman-Liau2 A readability assessment that estimates the U.S. grade
level required to understand a piece of text based on
characters, words, and sentences.

FleschReadingEase2 A readability metric that measures the readability of text
based on syllables, words, and sentences. The scores are
on a scale from 0 to 100, with higher scores indicating
easier-to-read text.

GunningFogIndex2 A readability metric that estimates the years of formal
education a person needs to understand the text on the
first reading.

LIX2 A readability metric that considers sentence length and
the percentage of long words (words with more than six
characters) in a text.

SMOGIndex2 A readability formula that estimates the education level
needed to understand a piece of text by analyzing the
number of polysyllabic words (words with three or more
syllables) within the text.

RIX2 A variant of the LIX readability index that only takes into
account the average number of long words per sentence.

DaleChallIndex2 A readability formula that uses word difficulty based on
a list of familiar words, along with sentence length, to
estimate the grade level required to understand a text.

sentences2 The total number of sentences present in the essay.
paragraphs2 The total number of paragraphs present in the essay.
long_words2 The number of words that have 7 or more characters.
complex_words2 The number of words that have 3 or more syllables.
complex_words_dc2 The total number of words that are not in the Dale-Chall

word list of 3000 words recognized by 80% of fifth
graders.

TCR

clause_per_s4 The average number of clauses per sentence.
sent_ave_depth4 The average parse tree depth per sentence in each essay,
ave_leaf_depth4 The average parse depth of each leaf node in the parse

tree.
max_clause_in_s4 The maximum number of clauses in the sentences of the

essay.
mean_clause_l4 The average number of words in each clause.

SBR
overall_positivity_score3 Overall, how positive the essay is.
overall_negativity_score3 Overall, how negative the essay is.

Continued on next page
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Feature Group Feature Name Description
positive_sentence_prop3 The percentage of positive sentences in the essay.
neutral_sentence_prop3 The percentage of neutral sentences in the essay.
negative_sentence_prop3 The percentage of negative sentences in the essay.

TVR

sent_var3 The variance of the length of sentences in the essay.
word_var3 The variance of the length of words in the essay.
stop_prop The percentage of stopwords in the essay.
unique_word The total number of unique words in the essay.
type_token_ratio2 The number of unique words divided by the number of

words.
wordtypes2 The total number of unique words present in the essay.
tobeverb2 The number of “to be” verbs in the essay.
auxverb2 The number of auxilllary verbs in the essay.
conjunction2 The number of conjunctions in the essay.
pronoun2 The number of pronouns in the essay
preposition2 The number of prepositions in the essay
nominalization2 The number of nominalizations in the essay
begin_w_pronoun2 The number of sentences in the essay that begin with a

pronoun.
begin_w_interrogative2 The number of sentences in the essay that begin with an

interrogative.
begin_w_article2 The number of sentences in the essay that begin with an

article.
begin_w_subordination2 The number of sentences in the essay that begin with a

subordination.
begin_w_conjunction2 The number of sentences in the essay that begin with a

conjunction.
begin_w_preposition2 The number of sentences in the essay that begin with a

preposition.
spelling_err3 The number of words that are not in The Brown corpus

of the NLTK package.
prep_comma3 The number of preprositions and commas in the essay.
MD3 The number of tokens having a POS tag of MD in the

text.
DT3 The number of tokens having a POS tag of DT in the

text.
TO3 The number of tokens having a POS tag of TO in the

text.
PRP$3 The number of tokens having a POS tag of PRP$ in the

text.
JJR3 The number of tokens having a POS tag of JJR in the

text.
WDT3 The number of tokens having a POS tag of WDT in the

text.
VBD3 The number of tokens having a POS tag of VBD in the

text.
WP3 The number of tokens having a POS tag of WP in the

text.
VBG3 The number of tokens having a POS tag of VBG in the

text.
RBR3 The number of tokens having a POS tag of RBR in the

text.
CC3 The number of tokens having a POS tag of CC in the

text.
VBP3 The number of tokens having a POS tag of VBP in the

text.
JJS3 The number of tokens having a POS tag of JJS in the

text.
VBN3 The number of tokens having a POS tag of VBN in the

text.
POS3 The number of tokens having a POS tag of POS in the

text.
NNS3 The number of tokens having a POS tag of NNS in the

text.
WRB3 The number of tokens having a POS tag of WRB in the

text.
JJ3 The number of tokens having a POS tag of JJ in the text.

Continued on next page
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Feature Group Feature Name Description
CD3 The number of tokens having a POS tag of CD in the

text.
NNP3 The number of tokens having a POS tag of NNP in the

text.
RP3 The number of tokens having a POS tag of RP in the

text.
RB3 The number of tokens having a POS tag of RB in the

text.
IN3 The number of tokens having a POS tag of IN in the text.
VB3 The number of tokens having a POS tag of VB in the

text.
VBZ3 The number of tokens having a POS tag of VBZ in the

text.
NN3 The number of tokens having a POS tag of NN in the

text.
PRP3 The number of tokens having a POS tag of PRP in the

text.
Uto et al.’s (2020) Features (25 features)

LBU

syllable_count The number of syllables in the essay.
num_words The number of words in the essay.
num_sentences The number of sentences in the essay.
lemma_count The number of lemmas in the essay.
, The number of commas in the essay.
! The number of exclamation marks in the essay.
? The number of question marks in the essay.

TVU

noun_count The number of nouns in the essay.
verb_count The number of verbs in the essay.
adverb_count The number of adverbs in the essay.
adjective_count The number of adjectives in the essay.
conjunction_count The number of conjunctions in the essay.
spelling_error_count The number of spelling errors in the essay.
stopwords_count The number of stop words in the essay.

RBU

ARI A readability metric that measures the readability of a
text based on characters per word and words per sen-
tence.

coleman_liau A readability assessment that estimates the U.S. grade
level required to understand a piece of text based on
characters, words, and sentences.

dale_chall A readability formula that uses word difficulty based on
a list of familiar words, along with sentence length, to
estimate the grade level required to understand a text.

difficult_words The total number of words that are not in the Dale-Chall
word list of 3000 words recognized by 80% of fifth
graders.

flesch_reading_ease A readability metric that measures the readability of text
based on syllables, words, and sentences. The scores are
on a scale from 0 to 100, with higher scores indicating
easier-to-read text.

flesch_kincaid_grade A readability metric which estimate the readability of
English texts based on sentence length and word length.

gunning_fog A readability metric that estimates the years of formal
education a person needs to understand the text on the
first reading.

linsear_write A readability metric developed for the U.S. Air Force
to help them calculate the understandability of technical
manuals, factoring in sentence length and words that are
considered difficult.

smog_index A readability formula that estimates the education level
needed to understand a piece of text by analyzing the
number of polysyllabic words (words with three or more
syllables) within the text.

Part-of-speech Bigram Features (902 features)

POSB (DT, NN) The number of appearance of the bigram (DT, NN)
...

Pronoun Features (218 features)

PRO-Pronoun Count pronoun_cnt_I The number of pronoun “I” in the essay.
...

Continued on next page
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Feature Group Feature Name Description
PRO-Pronoun Group Count first_person_pronoun_cnt The number of first person pronouns in the essay.

...

PRO-Sent Pronoun sent_cnt_I The number of sentences that contain “I”
...

PRO-Sent Pronoun Group sent_first_person_pronoun The number of sentences that contain first person pro-
nouns.

...

PRO-Sent Pronoun Portion percentage_sent_I The percentage of sentences that contain pronoun “I”.
...

PRO-Sent Pronoun Group Portion percentage_sent_first_person The percentage of sentences that contain first person
pronouns.

...
Prompt Adherence Features (4 features)

PA

max_sentence_dot_score Dot score between the embeddings of an essay and its
prompt.

mean_sentence_dot_score The maximum dot score between the embeddings of
sentences of an essay and its prompt.

min_sentence_dot_score The average dot score between the embeddings of sen-
tences of an essay and its prompt.

dot_score The minimum dot score between the embeddings of
sentences of an essay and its prompt.

Top-N Words Features (300 features)

TNW-Word Count top_n_word_count_the The count of “the” in the essay.
...

TNW-Sent Count top_n_num_sent_have_the The number of sentences in an essay that contains “the”.
...

TNW-Sent Portion top_n_percentage_sent_have_the The percentage of sentences in an essay that contains
“the”.

...

Table 7: Description of the features along with their group information. Features marked with the superscript R
are Ridley et al.’s (2020) features. Features marked with the superscript U are Uto et al.’s (2020) features. Group
LB is composed of length-based features. Group RB is composed of readability-based features. Group TC is
composed of text complexity features. Group TV is composed of text variation features. Group SB is composed of
sentiment-based features. Group POSB is composed of the part-of-speech bigram features. Group PRO is composed
of the pronoun-related features. Group PA is composed of the prompt adherence features. Group TNW is composed
of the top-N words features.
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Group Feature PC SC Group Feature PC SC
TVR wordtypes .694 .718 PRO num_sent_have_third_person_pronoun .454 .471
TVR unique_word .689 .715 TVR conjunction .449 .462
LBU lemma_count .670 .690 PRO num_sent_have_demonstrative_pronoun .437 .448
LBU syllable_count .666 .693 TVR type_token_ratio -.460 -.408
RBR complex_words_dc .653 .694 PRO demonstrative_pronoun_count .386 .405
RBR sentences .648 .687 PRO third_person_pronoun_count .383 .405
LBU num_words .655 .679 PRO num_sent_have_indefinite_pronoun .366 .386
LBR sentences_per_paragraph .636 .671 TVR nominalization .336 .357
RBR long_words .623 .676 PRO indefinite_pronoun_count .329 .358
LBR ess_char_len .606 .681 PRO num_sent_have_that .334 .339
TVU noun_count .629 .657 TVR auxverb .324 .344
LBR characters .603 .679 TVR pronoun .307 .331
TVU stopwords_count .622 .644 TVR preposition .309 .322
LBR syllables .594 .671 TVR begin_w_article .310 .291
RBU difficult_words .599 .637 PRO demonstrative_that .292 .304
LBR words .574 .661 PRO num_sent_have_this .298 .287
LBR word_count .572 .663 TCR max_clause_in_s .267 .298
TVR prep_comma .590 .637 PRO demonstrative_this .282 .279
TVU verb_count .597 .620 LBR , .250 .289
RBR complex_words .588 .629 PRO num_sent_have_it .257 .266
TVR preposition .575 .625 PA min_sentence_dot_score -.267 -.227
LBU num_sentences .565 .600 PRO num_sent_have_first_person_pronoun .213 .265
TVU adjective_count .564 .590 TNW top_n_percentage_sent_have_the -.288 -.169
RBU coleman_liau .524 .526 PRO third_person_it .219 .235
TVU adverb_count .502 .527 PRO first_person_pronoun_count .192 .251
TVR spelling_err .493 .531 PRO num_sent_have_interrogative_pronoun .222 .201
TVR pronoun .493 .523 RBR SMOGIndex .218 .202
TVR tobeverb .487 .515 TVR NNP .136 .277
LBU , .475 .502 PRO interrogative_pronoun_count .211 .197
TVU conjunction_count .476 .494 PRO num_sent_have_her .171 .234

Table 8: Features ranked by the absolute average of the Pearson and Spearman Correlation Coefficients computed
between the feature values and the holistic scores. Only the features whose average correlation value exceeds
0.2 are shown. Features marked with the superscript R are Ridley et al.’s (2020) features. Features marked with
the superscript U are Uto et al.’s (2020) features. Group LB is composed of length-based features. Group RB is
composed of readability-based features. Group TC is composed of text complexity features. Group TV is composed
of text variation features. Group PRO is composed of the pronoun-related features. Group PA is composed of
the prompt adherence features. Group TNW is composed of the top-N words features. PC refers to Pearson’s
Correlation Coefficient, and SC refers to Spearman’s Correlation Coefficient.

1 2 3 4 5 6 7 8
lr th lr th lr th lr th lr th lr th lr th lr th

Existing Feats .001 - .01 - .01 - .01 - .003 - .01 - .01 - .01 -
All Feats .001 - .001 - .001 - .001 - .001 - .001 - .001 - .003 -
Existing Feats Filtered .01 .2 .03 .1 .01 .1 .01 .1 .01 .2 .01 .6 .003 .1 .03 .5
All Feats Filtered .003 .6 .03 .6 .01 .5 .03 .5 .01 .6 .01 .5 .001 .1 .01 .4

Table 9: Best hyperparameters for holistic scoring without traits for every fold. “lr” refers to learning rate and “th”
refers to the threshold selected by highest QWK score on the development set.
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(a) Best hyperparameters for Content
1 2 3 4 5 6 7 8

lr th lr th lr th lr th lr th lr th lr th lr th
Existing Feats .001 - .01 - .01 - .01 - .01 - .01 - .01 - .01 -
All Feats .001 - .001 - .01 - .001 - .01 - .001 - .001 - .001 -
Existing Feats Filtered .001 .1 .01 .1 .01 .1 .01 .1 .01 .3 .01 .2 .01 .1 .01 .3
All Feats Filtered .01 .5 .01 .1 .01 .4 .01 .1 .01 .3 .01 .5 .01 .6 .001 .3

(b) Best hyperparameters for Organization
1 2 3 4 5 6 7 8

lr th lr th lr th lr th lr th lr th lr th lr th
Existing Feats .01 - .01 - .001 - .001 - .001 - .001 - .01 - .001 -
All Feats .01 - .01 - .001 - .001 - .001 - .001 - .001 - .001 -
Existing Feats Filtered .01 .1 .01 .1 .01 .2 .01 .2 .01 .2 .01 .2 .01 .2 .01 .2
All Feats Filtered .01 .4 .01 .4 .01 .3 .01 .3 .01 .3 .01 .3 .01 .2 .001 .4

(c) Best hyperparameters for Word Choice
1 2 3 4 5 6 7 8

lr th lr th lr th lr th lr th lr th lr th lr th
Existing Feats .001 - .001 - .01 - .01 - .01 - .01 - .01 - .01 -
All Feats .01 - .01 - .001 - .001 - .001 - .001 - .001 - .01 -
Existing Feats Filtered .01 .3 .01 .3 .01 .65 .01 .65 .01 .65 .01 .65 .01 .65 .01 .2
All Feats Filtered .01 .3 .01 .65 .001 .65 .001 .65 .001 .65 .001 .65 .001 .65 .01 .6

(d) Best hyperparameters for Sentence Fluency
1 2 3 4 5 6 7 8

lr th lr th lr th lr th lr th lr th lr th lr th
Existing Feats .01 - .01 - .001 - .001 - .001 - .001 - .001 - .01 -
All Feats .001 - .001 - .01 - .01 - .01 - .01 - .01 - .001 -
Existing Feats Filtered .01 .2 .01 .2 .01 .6 .01 .6 .01 .6 .01 .6 .01 .6 .001 .3
All Feats Filtered .01 .4 .01 .3 .01 .5 .01 .5 .01 .5 .01 .5 .01 .5 .01 .4

(e) Best hyperparameters for Conventions
1 2 3 4 5 6 7 8

lr th lr th lr th lr th lr th lr th lr th lr th
Existing Feats .01 - .001 - .001 - .001 - .001 - .001 - .01 - .01 -
All Feats .01 - .001 - .001 - .001 - .001 - .001 - .001 - .01 -
Existing Feats Filtered .001 .1 .001 .1 .01 .2 .01 .2 .01 .2 .01 .2 .01 .3 .01 .1
All Feats Filtered .01 .2 .001 .1 .001 .3 .001 .3 .001 .3 .001 .3 .01 .3 .001 .3

(f) Best hyperparameters for Prompt Adherence
1 2 3 4 5 6 7 8

lr th lr th lr th lr th lr th lr th lr th lr th
Existing Feats .001 - .001 - .01 - .01 - .01 - .01 - .001 - .001 -
All Feats .001 - .001 - .01 - .01 - .01 - .01 - .001 - .001 -
Existing Feats Filtered .01 .2 .01 .2 .01 .6 .01 .1 .01 .3 .01 .6 .01 .2 .01 .2
All Feats Filtered .01 .6 .01 .6 .01 .4 .01 .5 .001 .1 .001 .5 .01 .6 .01 .6

(g) Best hyperparameters for Language
1 2 3 4 5 6 7 8

lr th lr th lr th lr th lr th lr th lr th lr th
Existing Feats .001 - .001 - .01 - .01 - .01 - .01 - .001 - .001 -
All Feats .01 - .01 - .01 - .01 - .001 - .001 - .01 - .01 -
Existing Feats Filtered .001 .5 .001 .5 .01 .1 .01 .2 .01 .3 .01 .2 .001 .5 .001 .5
All Feats Filtered .001 .1 .001 .1 .01 .1 .01 .1 .01 .1 .01 .5 .001 .1 .001 .1

(h) Best hyperparameters for Narrativity
1 2 3 4 5 6 7 8

lr th lr th lr th lr th lr th lr th lr th lr th
Existing Feats .001 - .001 - .01 - .01 - .01 - .001 - .001 - .001 -
All Feats .01 - .01 - .01 - .01 - .001 - .001 - .01 - .01 -
Existing Feats Filtered .001 .3 .001 .3 .01 .1 .01 .4 .01 .5 .01 .1 .001 .3 .001 .3
All Feats Filtered .001 .1 .001 .1 .01 .1 .01 .3 .01 .1 .001 .1 .001 .1 .001 .1

Table 10: Best hyperparameters for trait scoring for every fold.
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1 2 3 4 5 6 7 8
lr th lr th lr th lr th lr th lr th lr th lr th

Step 1: Existing Feats; Step 2: GT .001 - .01 - .001 - .01 - .01 - .001 - .01 - .001 -
Step 1: All Feats; Step 2: GT .01 - .01 - .001 - .001 - .001 - .001 - .001 - .001 -
Step 1: Existing Feats Filtered; Step 2: GT .01 - .01 - .01 - .01 - .01 - .01 - .01 - .01 -
Step 1: All Feats Filtered; Step 2: GT .01 - .01 - .01 - .001 - .001 - .001 - .01 - .001 -
Step 1: Existing Feats: Step 2: GT+Feats .001 .5 .001 .4 .001 .6 .001 .2 .001 .65 .001 .6 .001 .1 .001 .6
Step 1: All Feats, Step 2: GT+Feats .01 .5 .001 .1 .01 .65 .001 .2 .01 .6 .001 .6 .01 .1 .01 .65
Step 1: Existing Feats Filtered; Step 2: GT+Feats .001 .5 .001 .4 .01 .6 .001 .5 .01 .65 .001 .6 .01 .1 .01 .6
Step 1: All Feats Filtered; Step 2: GT+Feats .01 .5 .01 .1 .01 .6 .001 .2 .01 .4 .001 .6 .01 .1 .01 .65

Table 11: Best hyperparameters for holistic scoring with traits for every fold. Threshold does not apply to
experiments whose step 2 is GT.

Trait PC
Content .898
Organization .802
Word Choice .990
Sentence Fluency .990
Conventions .802
Prompt Adherence .831
Language .793
Narrativity .822

Table 12: Pearson’s Correlation between each trait and the holistic score.

7681


