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Abstract
In the new era of language models, small mod-
els (with billions of parameter sizes) are receiv-
ing increasing attention due to their flexibility
and cost-effectiveness in deployment. However,
limited by the model size, the performance of
small models trained from scratch may often be
unsatisfactory. Learning a stronger and smaller
model with the help of larger models is an in-
tuitive idea. Inspired by the observing modu-
lar structures in preliminary analysis, we pro-
pose LEMON to learn competent initial points
for smaller models by fusing parameters from
larger models, thereby laying a solid foundation
for subsequent training. Specifically, the param-
eter fusion process involves two operators for
layer and dimension, respectively, and we also
introduce controllable receptive fields to model
the prior parameter characteristics. In this way,
the larger model could be transformed into any
specific smaller scale and architecture. Starting
from LLaMA 2-7B, we revive two stronger and
smaller models with 1.3B and 2.7B. Experimen-
tal results demonstrate that the fusion-based
method exhibits flexibility and outperforms a
series of competitive baselines in terms of both
effectiveness and efficiency.

1 Introduction

Transformer-based language models (LMs) shine
in various natural language tasks due to their power-
ful understanding and generation capabilities (An-
thropic, 2023; OpenAI, 2023; Touvron et al., 2023).
Considering that the training and deployment of
large-scale LMs require a large amount of comput-
ing resources, small LMs are more cost-effective in
actual production environments (Gunasekar et al.,
2023; Li et al., 2023). However, in the pre-training
stage, it has been proven that there is a certain scal-
ing law between model size and performance (Ka-
plan et al., 2020; Hoffmann et al., 2022). How to
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Figure 1: (a) The pruning-based method searches for
important neurons and removes unimportant neurons,
while (b) our fusion-based method utilizes all neurons
to preserve parameter functionality.

break through this limitation to train a stronger and
smaller model with the help of large models has
recently attracted the attention of researchers (Ma
et al., 2023; Xia et al., 2023; Xu et al., 2023).

Inspired by the idea of function-reserving trans-
formation in efficient training (Chen et al., 2015),
there are some model compression efforts that uti-
lize layer dropping, structured pruning, or weight
selection to preserve the parameter functionality of
large models as much as possible, so as to acceler-
ate pre-training and improve the final performance
of small models (Zhang and He, 2020a; Xia et al.,
2022; Xu et al., 2023). However, since there are
tens or even hundreds of billions of parameters in
modern LMs, searching for the essential parame-
ter combinations requires significant computing re-
sources, while pruning inappropriate parameters in-
evitably leads to performance degradation in down-
stream tasks (Frantar and Alistarh, 2023). In this
case, how to construct an appropriate initial point
with capabilities close to large LMs at the lowest
possible cost remains an open problem.

Given the limited understanding of parameter
characteristics and roles in modern large LMs, we
perform an empirical analysis from the perspectives
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of representation similarity, and observe that there
are some modular structures with high internal sim-
ilarity. In particular, there is a high similarity in the
parameters of adjacent layers, while the similarity
of distant layers to a lesser extent, which coincides
with the sparsity found in previous studies (Qin
et al., 2022; Zhang et al., 2023). Nonetheless, for
a parameter module, each part has its own unique
role, and thus no model parameter should be ar-
bitrarily discarded. Based on the observation, we
believe that the functionality of a module should
be reconstructed by selectively fusing correspond-
ing parameters during the initial point construction
phase, as illustrated in Figure 1.

In this paper, we propose LEMON to construct
compact initial points for small models through
linear fusion of large model parameters. Specifi-
cally, we first identify the importance of parameters
in larger models with fusion operators, and then
compress them into new parameters for the smaller
model, maintaining the same functionality of re-
lated parameters before and after transformation.
To support mapping a larger model into any specific
architecture, we decompose the fusion process into
layer and dimension operations. The layer operator
establishes layer-to-layer correspondence between
larger and smaller models, while the dimension
operator aims to learn the fusion of different di-
mensions within each parameter matrix. Recalling
the modular structures among layers, we further
factorize the fusion operators into Kronecker prod-
ucts (Schacke, 2004) with controllable receptive
fields, instead of directly learning it on a huge num-
ber of parameters. Eventually, the fusion operators
are initiated by the prior features of modular pa-
rameters and optimized on unlabeled data. Based
on well-learned operators, it is convenient to effi-
ciently achieve compact initial points for smaller
models and facilitate subsequent training.

To verify the effectiveness, we conduct experi-
ments on the LLaMA 2-7B model (Touvron et al.,
2023) and compress it into two smaller models,
1.3B and 2.7B, respectively. Within only 0.26 bil-
lion tokens, it is sufficient to learn competent initial
points for smaller models, and with an additional
50 billion tokens of post-training, LEMON outper-
forms a series of powerful baselines on 11 repre-
sentative downstream tasks. Meanwhile, compared
to traditional models trained from scratch (Bider-
man et al., 2023; TogetherAI, 2023; Xinyang Geng,
2023), LEMON only requires 5.26% of pre-training
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Figure 2: Interlayer parameter similarity in LLaMA 2-
7B. (a) The similarity heatmap of multi-head attention in
each layer, (b) The similarity curve of adjacency layers.

token budget. When achieving comparable perfor-
mance to recent pruning-based method (Xia et al.,
2022), the learning process of our fusion-based
method saves 62.5% of training budget. Overall,
LEMON exhibits considerable flexibility with con-
trollable layer and dimension operation, making
it a unified view of existing model compression
techniques, which explore a new way for model
compression using in-model parameters fusion.

2 Parameters Characteristics in Large
Language Models

To figure out the inherent characteristics of the pa-
rameters in the large language model, we calculate
the layer-by-layer parameter similarity of individ-
ual components with Centered Kernel Alignment
(stated in Appendix A.6). From Figure 2 (a) (here
we provide the parameter similarity of multi-head
attention in LLaMA 2-7b, see Appendix A.5 for
the similarity of feed forward layer), one can ob-
serve that the parameters of large LMs tend to form
cluster-like modular during pre-training, in which
the parameter within the cluster, especially in neigh-
boring layers, shows a high degree of similarity,
while there are significant differences in the layers
outside the cluster. It is intuitive to speculate that
these modules naturally distinguish the functional
areas of large models, allowing for the processing
of language features at different levels. Specifi-
cally, the cluster-like similarity structure primarily
emerges in the middle to deeper layers, which in-
dicates a shift from explicit textual information
processing in shallower layers to more abstract and
progressive feature processing in deeper layers. On
the contrary, the start and final layers of these mod-
els show distinct characteristics, highlighting their
unique functions.

This enlightens that, on the one hand, the obser-
vation of similar parameters shows that there is a
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large amount of redundancy in the pre-trained large
model, which opens up the exploration of merging
modules with high parameter similarity to reduce
the model size. On the other hand, the highest
parameter similarity is still less than 80% (see Fig-
ure 2 (b)), indicating that each part in the module
has its unique function behavior and should not be
directly discarded. Further motivated by findings
that deep neural networks’ parameter optima can be
connected via linear low-loss paths (Garipov et al.,
2018; Qin et al., 2022), is imperative to explore the
linear fusion of parameter modules in large models
to achieve model compression.

3 Method

Building a stronger small model typically involves
two steps. The first step is to construct a compact
initial point from a larger model while preserving
its functional behavior, and the second step is to per-
form (restorative) pre-training to further improve
performance. The second step is technically no
different from training from scratch, we focus on
the first step in this paper.

Formally, we define a model as a set of layer
weights ΘL,D = [W1,W2, · · · ,WL], where Wl ∈
RD×D

′
denotes the weight of layer l with row

dimension D and column dimension D
′
. In the

initialization stage, our goal is to transfer knowl-
edge from a larger model Θ(large)

L1,D1
to a smaller one

Θ
(small)
L2,D2

, where total layers L1 > L2, hidden di-
mension D1 > D2, by learning a fusion operation
that minimizes the functional difference between
original and fused parameters,

argmin
M

Ex∼D L
(
x;Θ(small) −Θ(large)

)

subject to Θ(small) =M(Θ(large))

(1)

where M is the fusion operator, D is the train-
ing data set, and L is the loss function. However,
there are a total of O (L1D1D1L2D2D1) mapping
relations between the parameters of two models,
simply optimizing the above loss function is in-
feasible due to the high computational complexity.
In the subsequent sections, we decompose the fu-
sion operator into layer operator and dimension
operator, to achieve an optimal balance between
computational efficiency and model performance.

3.1 Layer Operators: Vertical Fusion with
Layer-by-Layer Mapping

Based on the observing inherent modularity and
redundancy observed in large models, it is very

intuitive to learn layer-by-layer mapping from large
models to small models, in order to achieve similar
functional behaviors of corresponding clusters with
fewer layers.

Following this line of thinking, we introduce
Monarch matrix (Dao et al., 2022) to reduce the
computational cost of matrix multiplication. By
decompose the fusion operator M into layer op-
erator Llayer and dimension operator Rdim. i.e.
M = LlayerRdim. The layer operator Llayer = γ⊗ I,
where γ is the layer-by-layer mapping matrix, I is
a highly sparse block diagonal matrix. The param-
eter module in the smaller model is a linear sum
of the parameter modules of multiple layers in the
larger model: Wsmall

i =
∑L1

j=1 γi,j(W
large
j ), where

γi,j represents the mapping relationship from the
j-th layer of the original model to the i-th layer of
the target model.

M =







γ1,1 · · · γ1,L1

...
. . .

...
γL2,1 · · · γL2,L1


⊗ I




︸ ︷︷ ︸
Layer Operators




R1
dim

. . .
RL1

dim




︸ ︷︷ ︸
Dimension Operators

(2)

where Rl
dim ∈ RD2×D2 is the dimension operator

of l-th layer. Llayer performs linear mapping of
parameter modules layer by layer, enabling pre-
cise and efficient structural transformations while
preserving layer functionality. This approach sim-
plifies parameter learning and mapping, especially
in large-scale models with extensive parameters1.

3.2 Dimension Operator: Horizontal Fusion
with Controllable Receptive Field

In this section, we create Rdim, a set of dimen-
sion operators for compressing parameters into de-
sired shapes, by splitting R into B and A, which
independently manage row and column transfor-
mations. Given a source matrix W ∈ RD1×D

′
1

and a target matrix W′ ∈ RD2×D
′
2 , we uti-

lize the Kronecker product: since vec(CAB) =(
B⊤ ⊗ C

)
vec(A) (Schacke, 2004), operator Rl =

Al ⊗ Bl , where A ∈ RD
′
1×D

′
2 and B ∈ RD1×D2 ,

achieving W′ = B⊤
l WAl.

Due to the considerable size of A and B in large
models, we further refine them into sparse and low-
rank matrices A∗ and B∗ to minimize memory and
computational demands. We illustrate this with B∗

acting on W, defining the parameter modulariza-
tion’s receptive fields θ within W as r, thus simpli-

1Reduce to O(D1D1D2D2 + L1L2)
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Figure 3: The schematic diagram of LEMON, where the entire fusion operator M is decomposed into layer operator
(middle) and dimension operator (right). The layer operator performs vertical fusion at layer fields, while dimension
operator performs column fusion and row fusion at fields on the parameter matrix.

fying the formulation to B∗ =
∑D2/r

i=1

∑D1/r
j=1 bi,j

and W =
∑D1/r

i=1 θi,j , the formula as:

B∗W =






b1,1 · · · b1,D1/r

...
. . .

...
bD2/r,1 · · ·bD2/r,D1/r


⊗ I




︸ ︷︷ ︸
Row mapping matrix



θ1

. . .
θD1/r




︸ ︷︷ ︸
Parameter matrix

(3)

The row scaling operator B is provided with a recep-
tive range. Each element b in B maps the parame-
ters within its receptive range in the original matrix
as a whole. By providing different receptive ranges
to different parameter modules, we not only ensure
the integrity of the modular parameter structure but
also ensure the diversity in the mapping of param-
eter matrices with different depths and functional-
ities. Moreover, this approach optimises the oper-
ator complexity in a controlled way2. Finally, we
have RΘ =

[
B∗
1W1A∗⊤

1 · · · B∗
L1

WL1A∗⊤
L1

]
.

In Figure 3, we intuitively describe the workflow
of build a compact initial point by fusing parame-
ters from larger models, which adeptly preserves
essential information embedded in the model pa-
rameters while effectively reducing the model size.
Subsequently, we perform routine pre-training to
optimize the goal of language modeling, the ini-
tial point will help us break through the scaling
law, and quickly surpass the model performance
training from scratch.

3.3 Implementation in Compressing LLaMA
Our approach is theoretically applicable to trans-
forming parameters across various neural network
designs, focusing on preserving the knowledge
within large language models parameters.

2Reduce to O((D1D2 +D′
1D

′
2)/r

2 + L1L2).

Fusion Operators Receptive Fields

Layer γ ∈ RL1L2 1
Hidden B*emb ∈ RD1D2/rh rh
Attention A*attn ∈ RL1D1D2/ra ra
Intermediate A*ffn ∈ RL1H1H2/ri ri

Table 1: Fusion operators designed for various modules
using various receptive fields.

Using the LLaMA model as a case study, we
implement our compression technique on all pa-
rameters. By compressing the embedding layer
and output heads using B*emb and sharing parame-
ters across the compression operator’s hidden size
dimension, this method significantly reduces the
number of parameters required for learning, en-
hancing efficiency. In the multi-head attention and
feed forward components, due to distinct param-
eter roles, we tailor operators A*attn and A*ffn for
each unique module, ensuring effective compres-
sion without loss of function.

We quantify the discrepancy between source (ps)
and target (pt) model distributions using KL di-
vergence Lkl = DKL(ps∥pt) and guide mapping
learning with language model loss. The total loss
merges these aspects:

Lfinal = λLlm + (1− λ)Lkl (4)

Due to the flexibility of the LEMON, we can repre-
sent the results of other model compression meth-
ods (see Sec 3.4) and base our training on these.
In implementation, to conserve resources, we ex-
perimented with various training-free initialization
methods: such as directly truncating the model, ex-
tracting similar layers based on modular features,
and deletion results based on pruning algorithms,
among others. The pseudocode for a single forward
shown in algorithmic 1 in Appendix A.
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3.4 The Connection Between LEMON and
Existing Methods

Layer Dropping Methods (Zhang and He,
2020b; Sajjad et al., 2023) remove layers to re-
duce the model’s depth. The selection of subset
layers L2 to keep (L2 ⊆ L1, L1 denotes the set of
total layers) indicates the depth reduction process
as:

W init
i =

L1∑

j=1

γi,jW
large
j , γi,j =

{
1 if j ∈ L2,

0 otherwise.
(5)

Structured Pruning Methods (Jiang et al., 2023;
Ma et al., 2023; Xia et al., 2023) prune both rows
and columns of the matrix and removes layers to
achieve a target model size. It shares the layer
reduction formula with layer dropping. For row
and column pruning, represented by D2 ⊆ D1 and
D′
2 ⊆ D′

1 respectively, the pruning process is:

W init
i,m =

D1∑

j=1

D
′
1∑

n=1

ai,jbm,nW
large
j ,

ai,j =

{
1 if j ∈ D2,

0 otherwise.
, bm,n =

{
1 if n ∈ D

′,
2

0 otherwise.
(6)

Parameter Selection Methods (Xu et al., 2023;
Kim et al.) for initializing models with a subset
of original parameters, including regular, random,
and search-based selection, mirror the structured
pruning’s approach to matrix dimensionality reduc-
tion. These methods apply similar principles to
selectively maintain or discard matrix dimensions
and layers.

4 Experiments

4.1 Setup
Data To learn LEMON operators and continue
pre-training, we use the RedPajama (TogetherAI,
2023) dataset, mirroring the training data in
LLaMA across seven domains (CommonCrawl,
C4, Github, Wikipedia, Books, ArXiv, Stack-
Exchange). The dataset includes a validation set
of 2 million tokens, a training set of 4 billion to-
kens, and a continued pre-training set of 50 billion
tokens.

Training Our setup uses Sheared-LLaMA (Xia
et al., 2023) code base on Composer pack-
age (Team, 2021), tested on 8 NVIDIA A100 GPUs
(80GB). The models were trained at the sequence
length of 4096 using a batch size of 32 during the
pruning phase and continued pre-training phase.

Following the setup in Sheared-LLaMA (Xia et al.,
2023), baseline models were trained for 6400 steps
(22 hours) with dynamic batch gradient loading
(DoReMi (Xie et al., 2023)) during the pruning
phase. In contrast, LEMON were trained for 1200
steps (8 hours) without DoReMi. For continued
pre-training, we employed 50 billion tokens with
DoReMi with 256 batch size (387 hours). Learning
rates were set to 1e-4 for language modeling loss,
and for layer and dimension operators, 5e-4 and
5e-5, respectively. For more information, please
refer to Appendix A.3.

Evaluation Following the multiple assessment
metrics reported in the baseline studies (Xia et al.,
2023), we utilized lm-evaluation-harness (Gao
et al., 2023) to evaluate our models. In common
sense and reading comprehension evaluation, we
report 0-shot accuracy of SciQ (Welbl et al., 2017),
PIQA (Bisk et al., 2020), WinoGrande (Abbre-
viated as Wino.) (Sakaguchi et al., 2020), ARC
Easy (Clark et al., 2018a), HellaSwag (Zellers et al.,
2019), 25-shot accuracy of ARC Challenge (Clark
et al., 2018b). In world knowledge evaluation, we
report accuracy of 32-shot NQ (Kwiatkowski et al.,
2019) and 5-shot MMLU (Hendrycks et al., 2021).
In Continued QA and text understanding evalua-
tion, we report accuracy of 0-shot LogiQA (Liu
et al., 2020), 32-shot BoolQ (Clark et al., 2019)
and 0-shot LAMBADA (Paperno et al., 2016).

4.2 Baseline
Structured Pruning Methods construct initial
points by searching and eliminating non-essential
neurons, followed by continued pre-training. We
designate Sheared-LLaMA (Xia et al., 2023) as
our primary baseline. Sheared-LLaMA provided a
robust training framework, dynamic batch gradient
pre-training methods, and an evaluation framework,
achieving competitive outcomes.

Pre-training from Scratch Baseline Models
train from scratch without utilizing any pre-existing
model parameters. We choose similar-scale open-
source LLMs includes Pythia-1.4B & -2.8B (Bi-
derman et al., 2023), which use different training
data than RedPajama. We choose INCITE-Base-
3B (TogetherAI, 2023) as baseline which use the
same training data.

4.3 Result
Foundational Capabilities. Table 2 shows the
foundational capacity performance of the model
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Commonsense & Reading Comprehension

Model (#tokens for training) SciQ PIQA WinoGrande ARC-E ARC-C (25) HellaSwag (10)

LLaMA 2-7B (2T)† 93.7 78.1 69.3 76.4 53.0 78.6

Pythia-1.4B (300B)† 86.4 70.9 57.4 60.7 31.2 53.0
Sheared-LLaMA-1.3B (50B) 87.3 73.4 57.9 61.5 33.5 60.7
LEMON-1.3B (50B) 87.9 73.7 58.5 62.2 36.3 61.5

Pythia-2.8B (300B)† 88.3 74.0 59.7 64.4 36.4 60.8
INCITE-Base-3B (800B) 90.7 74.6 63.5 67.7 40.2 64.8
Sheared-LLaMA-2.7B (50B) 90.8 75.8 64.2 67.0 41.2 70.8
LEMON-2.7B (50B) 91.5 76.5 65.4 68.2 42.2 71.9

Continued LM World Knowledge

Model (#tokens for training) LogiQA BoolQ (32) LAMBADA NQ (32) MMLU (5) Average

LLaMA 2-7B (2T)† 30.7 82.1 28.8 73.9 46.6 64.6

Pythia-1.4B (300B)† 27.3 57.4 61.6 6.2 25.7 48.9
Sheared-1.3B (50B) 26.9 64.0 61.0 9.6 25.7 51.2
LEMON-1.3B (50B) 26.4 65.5 62.1 10.2 26.1 51.9

Pythia-2.8B (300B)† 28.0 66.0 64.7 9.0 26.9 52.5
INCITE-Base-3B (800B) 27.7 65.9 65.3 14.9 27.0 54.7
Sheared-LLaMA-2.7B (50B) 28.9 73.7 68.4 16.5 26.4 56.7
LEMON-2.7B (50B) 28.5 74.3 69.6 18.1 26.9 57.6

Table 2: Comprehensive assessment of model’s fundamental capabilities, in which LEMON models demonstrate
competitive performance while requiring significantly fewer training resources.

after initialization with LEMON operators then
continued pre-training with 50B tokens. We also
evaluate capabilities of similarly sized models and
models built from pruning methods. Experiments
show that our approach achieves even better
performance with very little training resource
overhead (i.e. 50B tokens of training data) com-
pared to models built from scratch. LEMON-1.3B
outperforms the Pythia-1.4B models, which were
initially pretrained with 300B tokens. LEMON-
2.7B also outperforms 300B tokens pretrained
Pythia-1.4B models and 300B tokens pretrained
INCITE-Base-3B. Compared to prune-based
initialization methods, we obtain better initial
points retaining the knowledge of larger model,
which leads to substantial savings in pre-training.
Our LEMON-2.7B, LEMON-1.3B outperforming
Sheared-LLaMA-2.7B and Sheared-LLaMA-1.3B
respectively.

Better Initialization. We check whether
LEMON produces a better initialization than
existing language models of the same size. We
continue to pre-train the LEMON-2.7B model
on the original RedPajama data, comparing it to
the INCITE-Base-3B adn Sheared-LLaMA-2.7B

model. Figure 4 shows the INCITE-Base-3B
model has much higher initial accuracy, but its
performance stagnates throughout the continued
pre-training. Sheared-LLaMA and LEMON-2.7B
has lower initial accuracy but rapidly improves
and eventually outperforms the INCITE-Base-3B
model. LEMON-2.7B has higher initial accuracy
and final performance than Sheared-LLaMA-2.7B.
The parameter-fused model outperforms the
pruned model and is more suitable for initialising a
strong model for further pre-training.

Fast Convergence. We report the Eval PPL
during training process for LEMON and Sheared-
LLaMA in the same configuration. As shown in
the Figure 4 (Middle), although the initial point is
not sufficiently satisfactory, LEMON can converge
quickly within 2,000 steps, using only 33% of
Sheared-LLaMA training steps. LEMON reaches a
PPL of 7.47 at 2,000 steps, which is below the 7.49
PPL of Sheared-LLaMA at 4,800 steps. The PPL
of LEMON achieves parity with Sheared-LLaMA
at 500 steps and surpass the Sheared-LLaMA by
3.5 point at 1000 steps, demonstrating the ability
to effectively retain the information in parameters.
We can continue to allocate the LEMON training
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Figure 4: Left: Comparative downstream task accuracy of continued pre-training. Middle: Eval Perplexity (PPL)
during training of LEMON and Sheared-LLaMA (in the 2.7B setting). Right: Average accuracy (%) of dimension
operators on different receptive fields. (r1-r2) represents the receptive fields of MHA r1 and FFN r2.

Method L. SciQA PiQA Wino. ARC-E LogiQA AVG

LLaMA2-7B 32 93.5 78.0 69.7 76.3 30.7 69.6

Cut

24

81.7 65.7 59.0 53.8 26.0 57.2
Random 45.4 66.6 54.1 34.7 25.0 45.2
Avg 31.4 55.7 50.0 28.9 26.3 38.4
Shear 82.8 71.3 55.0 62.9 26.3 59.7
LEMON-Prune 87.2 71.9 56.0 60.9 26.4 60.4
LEMON-Cut 92.0 71.9 64.0 55.2 26.9 62.0

Cut

16

28.4 56.6 57.4 32.3 25.0 40.0
Random 23.6 53.9 50.2 26.4 24.0 35.6
Avg 20.6 52.9 46.9 25.3 26.1 34.4
Shear 33.2 55.7 49.4 29.8 24.0 38.4
LEMON-Prune 72.2 62.8 50.5 35.6 22.1 48.6
LEMON-Cut 65.9 62.2 59.4 44.3 24.9 51.3

Table 3: Results of ablation experiments, here we only
use the layer operator to compress the model.

Method SciQA PiQA Wino. ARC-E LogiQA AVG

LLaMA2-7B 93.5 78.0 69.7 76.3 30.7 69.6

Shear 83.9 68.9 56.0 51.0 22.4 56.4
LEMON 128-2 84.0 70.0 54.4 48.9 25.6 56.5
LEMON 2-4 79.0 63.5 51.7 44.1 23.2 52.3
LEMON 2-2 84.4 69.8 55.3 50.8 25.7 57.2

w/o LEMON 20.7 52.9 50.2 25.8 21.0 34.1

Table 4: Results of ablation experiments, here we only
use the dimension operator to compress the model.

budget to reduce the initial PPL, which involves
a trade-off in computational resource allocation
between compression and pre-training.

4.4 Analysis

In this section, we evaluate our layer fusion oper-
ators by reducing LLaMA2-7B’s depth from 30
to 24/16 layers (L.) and evaluate dimension opera-
tors through compress parameter matrix to 62.5%
origin dimensions. We compare this with the fol-
lowing methods: last layers cutting (Cut), random
layer removal (Random), layer parameter aver-
aging (Avg), and Sheared-LLaMA (Shear). For
weight averaging, we cluster similar layers, averag-

ing within clusters for new parameters. We choose
the optimal result from Sheared-LLaMA as our
baseline. The LEMON-Cut and LEMON-Prune op-
erator initialized from the Cut and Shear, then
were trained for 1200 steps. The results are show
in Table 3.

Layer Fusion As shown in 3, even in the dimen-
sion of layer fusion alone, our method shows great
advantages. New model parameters after fusion im-
prove 6.1% and 7.5% absolute accuracy compared
to the initial point in the scenarios with 8-layer
deletion and 16-layer deletion, and 3.4% and 7.9%
compared to pruning approach. The effectiveness
of LEMON improves as the magnitude of model
compression increases, suggesting LEMON help
to preserve the Large Model performance at large-
scale parameter discarding.

Dimension Fusion We report the accuracy of
LEMON dimension compression for different con-
figurations of Multi-Head Attention (MHA) and
Feedforward Neural Network (FFN) in the Table 4
and Figure 4 (Right). Under the simple Cut ini-
tialization method, our operator achieves Sheared-
LLaMA performance. Even at high dimension
compression settings (4096 to 2560), the fused
model performance still rise dramatically compared
to the initial point. This indicates the strong adapt-
ability and generalisation of our method.

Receptive Fields Table 4 and Figure 4 (Right)
shows the performance of dimension compression
operators under different receptive fields settings
(MHA-FFN). (r1-r2) represents the MHA oper-
ator receptive fields of r1 and the FFN operator
receptive fields of r2. In the experiment, Atten-
tion modules show robustness to larger receptive
fields (e.g.128), highlighting heads’ modular pa-
rameter structure. Conversely, hidden and inter-
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Figure 5: Visualization of the weight distribution of
layer operators in LLaMA 2-7B. Left: the operator on
MHA; Right: the operator on FFN.

mediate sizes are more sensitive, where finer set-
tings yield greater performance boosts. However,
the increased computational overhead from finer
receptive fields suggests a balance is necessary. Op-
timal receptive fields settings should consider the
model’s parameter modularity, waiting further sys-
tematic investigation.

Operators Initialization Cut and Prune repre-
sent the operators’ initialization based on direct
cutting model and pruning algorithm results. As
Shown in Table 3, the starting point of opera-
tors affects the performance after LEMON fusion.
Although the performance is lower after cutting
model, through learning, LEMON enhancing the
average accuracy by 4.8% when retaining 24 layers
and by 11.3% when retaining 16 layers. These im-
provements surpass the pruning search algorithm
by 2.3% and 12.9% under the same experimental
settings. The experiments also demonstrate that
LEMON operator can be combined with existing
compression methods, improving upon the pruning
methods by 0.7% and 10.2%. Experiments with
7B and 3B models indicate that providing LEMON

with better initial points helps enhance model’s per-
formance ceiling. This is a valuable area for future
research. For more information about compressing
3B model, please refer to Appendix A.4.

Explainability Analysis We visualized the layer
fusion operators of the LLaMA model in Figure 5
and Appendix A.7. Through learning, the dimen-
sion operators autonomously form and aggregate
clusters of similar layers within the model, reflect-
ing observed parameter module similarity. The
operator weights decrease with distance, even turn-
ing negative, indicating the operators deem distant
parameter modules irrelevant or even detrimental
to the current module. After fusion, the parameter
distribution within the LEMON model still shows
consistency with the original model (discussed in

Appendix A.5, Figure 6). This indicates that new
fused parameters reconstructed the functions of
multiple parameters from the original model.

5 Related Work

Efficient pre-training approaches In recent
years, the ability of incremental training to accel-
erate large-scale model training by studying how
to obtain the optimal initialization point for train-
ing has thus attracted much attention (Xie et al.,
2017; Wu et al., 2019). Asymptotic training (Zhang
and He, 2020a) is used to learn larger-scale mod-
els by training small transformers with a small
number of layers, and then gradually expanding
them by stacking layers. Net2Net (Chen et al.,
2015) uses function-holding transformations to ex-
pand the width by duplicating neurons, and uses a
unitary layer implementation to expand the depth.
LiGO (Wang et al., 2023) proposes a learnable
expansion method that can be used at the initial
initialization point of a transformer. learned expan-
sion methods that can expand models of arbitrary
structure at initialization. LEMON is inspired by
these methods, but we investigate how to learn to
map the parameter matrix from large to small with-
out losing the ability of the larger model itself.

Model Compression Our approach is dedicated
to obtaining a high-performance lightweight lan-
guage model, which is the same goal as the task
of model compression. Quantization (Gray and
Neuhoff, 1998) reduces the numerical accuracy of
model weights and activations, and speeds up train-
ing and inference, but results in a loss of model
accuracy and the inability to freely build target-
specific models. CRash (Zhang et al., 2023) and
LayerDrop (Zhang and He, 2020b; Sajjad et al.,
2023) methods discard ineffective layers during
training, which do not allow for target-specific
structuring and come with a large performance loss.
Pruning (Wang et al., 2020) minimizes the impact
on performance by cutting out redundant neurons
that over-parameterize the model. In the LLM era,
this leads to a significant reduction in neuron redun-
dancy as models move from task-specific to gener-
alized (Frantar and Alistarh, 2023). Pruning LLM
leads to performance degradation at larger pruning
magnitudes. LLMsheairng (Xia et al., 2023) uses
the results of pruning as initialization for contin-
uous pre-training of the model to recover perfor-
mance, but this approach requires more data and
computational overhead. We avoid the information
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loss caused, by learning the parameter fusion ma-
trix of the model to reach a specific structure, thus
obtaining better initialization points and reducing
the overhead of continuous pre-training.

6 Conclusion

In this paper, we propose a new paradigm for build-
ing smaller LMs based on larger LMs. By learning
a parameter fusion operator with controllable recep-
tive fields from a larger model to smaller models,
we can obtain a good starting point to facilitate
subsequent training. This fusion mapping opera-
tor consists of a layer operator and a dimension
operator. Experimental results demonstrate that
our method can compress larger LMs into smaller
LMs of arbitrary architectures and better preserve
the knowledge in large models. By comprising the
requirements of pre-training data, we demonstrate
the effectiveness of the method against several base-
line approaches in terms of training speedup and
computational expenditure savings. The paradigm
has greater research value and has the potential to
reach smaller performance losses and lower com-
putational effort in the future.

Limitation

There are limitations to our approach: First, we
have only explored the use of linear methods for
parameter fusion in our model. In the future, non-
linear methods deserve more exploration as they
have the potential to better link different parameters
and reach optimality. Second, limited by computa-
tional resources, we only experiment on 7B-scale
and 3B-scale models. However, our method is
scalable (discussed in Appendix A.4) and can be
extended to models of arbitrary size in future work.
Third, although we minimize the computational
complexity of the fusion operator, it still requires
a lot of memory and computation for optimization.
Finally, we believe that the fusion of parameters
within models is a direction that has not been fully
explored. How to solve the information loss caused
by parameter fusion is a problem we will try to
solve in the future.

Ethical Consideration

In our study, we leverage open and online acces-
sible data and techniques, mitigating privacy con-
cerns. Our method emphasizes enhancing model
parameter efficiency and reducing size to create
powerful, compact, and openly accessible models,

thereby promoting the open dissemination and de-
mocratization of NLP technologies. By employing
pre-training strategies, we aim to mitigate biases
through extensive training and large corpus sizes,
contributing to an ethical AI development that pri-
oritizes openness, efficiency, and bias reduction.
Our work is committed to advancing accessible
and efficient NLP technologies, fostering a more
inclusive and automated future for AI.
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A Appendix

A.1 LEMON Operator
Our final operator is as follows:

M =







γ1,1 · · · γ1,L1

...
. . .

...
γL2,1 · · ·γL2,L1


⊗ I




︸ ︷︷ ︸
LLayer




A∗

1 ⊗B∗
1

. . .
A∗

L1
⊗B∗

L1







︸ ︷︷ ︸
RParam

(7)

We freeze the parameters of LLaMA model and
optimise only Lemon Fusion operators. In the
LLaMA-7B model, our single forward operation is
summarised in Algorithm 1.

Algorithm 1 Learning operators in LLaMA
1: Model parameters θ, Hidden dimensions D1, D2, Number

of layers L1 and L2, Intermediate sizes H1, H2, Embed-
ding sizes E.

2: W (emb) ∈ RD1×E , WQ
l ,W

K ,W V
l ,WO

l ∈ RD1×D1 ,
W

(up)
l ,W

(gate)
l ∈ RH1×D1 ,W

(down)
l ∈ RD1×H1 ,

W
(ln1)
l ,W

(ln2)
l ∈ RD1 , ∀l ∈ [L1], W (out) ∈ RE×D1

3: initialization operator γ,A∗, B∗

4: Step 1: Learning Depth Mapping
5: for l = 1, · · · , L2 do
6: for Θ = Q,K, V,O, up, gate, down, ln1, ln2 do
7: W ′Θ

l ←
∑L1

j=1 γ
Θ
l,jW

Θ
j

8: end for
9: end for

10: Update θ, γ with L(θ, γ)
11: Step 2: Learning Width Mapping
12: W ′(emb) ← B∗(emb)W ∗(emb)

13: for l = 1, · · · , L1 do
14: for Θ = Q,K, V, up, gate do
15: W ′Θ

l ← A∗(Θ)WΘ
l B

∗(emb)⊤

16: end for
17: for Θ = O, down do
18: W ′Θ

l ← B∗(emb)WΘ
l A

∗(Θ)⊤

19: end for
20: for Θ = ln1, ln2 do
21: W ′(ln2)

l ← B∗(emb)W
(ln2)
l

22: end for
23: end for
24: W ′(out) ←W (out)B(emb)⊤

25: Update θ,A∗, B∗ with L(θ,A∗, B∗)
26: Step 3: Continuous-pretrain model with parameters θ.

A.2 Model Configurations
For a fairer comparison, we directly used the model
architecture of baseline works (Xia et al., 2023) to
construct LEMON-2.7B & -1.3B. Beyond the ini-
tial, in order to perform ablation experiments to
verify the performance of the layer fusion operator
and the dimension fusion operator, we constructed

LEMON-Vertical, LEMON-Horizontal -37.5% and
-50% . Table 5 report the parameter configurations
adopted for the different scale models in our exper-
iments.

A.3 Training Details
The hyperparameters used in our experiments are
presented in Table 6. We employ fully sharded
data parallel to efficiently train our models in par-
allel. A cosine learning rate scheduler is used, with
the learning rate decaying to a minimum of 10%
of the peak value. Preliminary experiments were
conducted to determine the optimal peak learning
rate for learning the fusion operators and Lagrange
multipliers.

A.4 Pre-experiments in 2.7B Model and
LEMON Scalability

Considering the experimental cost and compression
efficiency, we conduct pre-experiments on Sheared-
LLaMA 2.7B to explore the optimal compression
operators and hyperparameter comparisons, which
are later applied to the 7B-scale LLaMA model.

As shown in Table 7, LEMON demonstrated
the same excellent performance on both the com-
pressed 3B model and the compressed 7B model.
The LEMON fusion operator with the clipping and
pruning algorithms as initial points improves per-
formance by 3.5% and 4.2%, respectively, when
compressing the 2.7B model.This is consistent with
our observation that the LEMON fusion operator
with clipping as an initial point improves perfor-
mance by 4.8% on the 7b scale. On more layers
of compression, our approach achieves equally im-
pressive performance at 2.7B and 7B. This suggests
that our method has good scale scalability and can
be applied to larger models with good performance.

It is worth noting that our approach is validated
at different model scales with appropriate hyperpa-
rameters and applied at larger scales. For example,
in both 2.7B and 7B model compression we adopt
a layer fusion operator learning rate of 5e-4, and a
dimension fusion operator learning rate of 5e-5, as
shown in Table 7. In the pre-experiments, we also
found that layer fusion (deleting layers) inevitably
brings more information loss, so we perform di-
mension fusion first and then layer fusion.

A.5 Parameter Modularity in LLaMA2
Model and LEMON Model

Here we show the modularity phenomenon ob-
served in the llama model at all scales. For details,
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hidden_size intermediate_size attention_heads hidden_layers

LLaMA-7B 4096 11008 32 32
LEMON-Vertical 4096 11008 32 24/16
LEMON-Horizontal -37.5% 2560 6912 20 32
LEMON-Horizontal -50% 2048 5504 16 32
LEMON-2.7B 2560 6912 20 32
LEMON-1.3B 2048 5504 16 24

Table 5: Parameter Configurations of LEMON models

Fusion Contined Pre-training

Training budget 0.26B 50B
Learning rate of Llayer ∈ M 0.0005 -
Learning rate of Rdim ∈ M 0.00005 -
Learning Rate of θ 0.0001 0.0001
LR warmup ratio 10% 3%
Batch size (tokens) 131K 1M
Evaluation interval m (steps) 40 40
Steps 2, 000 5, 000
# GPUs 8 8

Table 6: Training hyper-parameters

Method L. AVG Method L. AVG

ShearedLLaMA-2.7B 32 63.4 LLaMA2-7B 32 69.6

Cut

24

50.3 Cut

24

57.2
Random 44.7 Random 45.2
Avg 31.2 Avg 38.4
Shear 49.9 Shear 59.7
LEMON-Prune 54.1 LEMON-Prune 60.4
LEMON-Cut 53.8 LEMON-Cut 62.0

Cut

16

30.9 Cut

16

40.0
Random 29.0 Random 35.6
Avg 28.1 Avg 34.4
Shear 32.1 Shear 38.4
LEMON-Prune 41.5 LEMON-Prune 48.6
LEMON-Cut 39.6 LEMON-Cut 51.3

Table 7: Results of pre-experiments in Sheared-LLaMA 2.7B, here we only use the layer operator to compress the
model.Sheared-LLaMA 2.7B has the same number of layers as LLaMA-7B, but with smaller hidden dimension and
numbers of heads.

see Figure 7, 8. We visualized the similarity of
the Attention query matrices between layers in a
24-layer model compressed using LEMON layer fu-
sion operators in Figure 6. We compared this with
the original, uncompressed LLaMA2-7B model.
Although the fused model has not yet undergone
pre-training, the parameter distribution within the
model still shows consistency with the original
model. This indicates that LEMON successfully
reduced the size of similar parameter clusters and

that the new fused parameters successfully recon-
structed the functions of multiple parameters from
the original model.

A.6 Centered Kernel Alignment (CKA)

Centered Kernel Alignment (CKA) is a statistical
measure used to quantify the similarity between
two sets of data representations. Unlike traditional
correlation measures, CKA is designed to be invari-
ant to orthogonal transformations and scaling of
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Figure 6: Visualization of Attention Query Matri-
ces Similarity. Left: LLaMA2-7B; Right: LEMON-
Vertical-24 w.o. Continued Pre-training.

the data.
To calculate the similarity between two sets of

representations using CKA, we employ a kernel
function to map the original data into a higher-
dimensional space, where the alignment of their
central tendencies can be more easily measured.
The CKA value ranges from 0 to 1, where 0 indi-
cates no similarity and 1 indicates identical repre-
sentations.

The mathematical formulation of CKA, when
using a linear kernel, is given by the following
equation:

CKA(X,Y ) =
∥XTY ∥2F√

∥XTX∥2F · ∥Y TY ∥2F

Here, X and Y are matrices whose columns are
the vectors of the representations to be compared,
∥ · ∥F denotes the Frobenius norm, and XT and
Y T are the transposes of X and Y , respectively.

A.7 Operator Visualisation
In order to better observe the parameter distribu-
tions of the operators and investigate the explain-
able principles, we visualised the post-training dis-
tributions of the operators initialised based on Cut’s
method in Figure 10.
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Figure 7: LLaMA2-7B-FFN Figure 8: LLaMA2-13B-FFN

Figure 9: FFN Weights Similarity of different scale LLaMA2 Models

Figure 10: Visualisation of operator parameters under Cut initial points
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