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Abstract
While image captioning is an essential field of
vision language models (VLM), a lack of con-
tinuity between the learning objective and fi-
nal performance metrics of VLMs complicates
their training and optimization. Reinforcement
learning (RL) can directly optimize such met-
rics, but it is accompanied by a significant com-
putational cost, making it difficult to apply to
recent large-scale VLMs. In this paper, we
propose Direct Metric Optimization (DMO),
which is a lightweight final-metric-optimizing
training method. We replace the computa-
tionally expensive exploration process in RL
with an offline, diverse text data augmenta-
tion and show that self-supervised training on
reward-weighted augmented data leads to di-
rect and stable metric optimization. Our exper-
iments demonstrate that DMO achieves perfor-
mance comparable to those of the state-of-the-
art RL method while saving hundreds of times
more model forwarding iterations and greater
amounts of computation time. This suggests
that DMO constitutes a promising alternative
for metric optimization in the era of large-scale
VLMs.

1 Introduction

With the advent of CLIP (Radford et al., 2021), the
boundaries between vision and language modalities
in machine learning have been dissolved, leading
to rapid advancements in research involving these
areas. Furthermore, the rise of large language mod-
els (LLM) has led to the emergence of large-scale
vision language models (VLM), extending their
influence to practical applications. For example,
models such as ChatGPT (Achiam et al., 2023) and
Gemini (Team et al., 2023) generate detailed natu-
ral language descriptions from visual information.
With the increasing prevalence of VLMs, methods
for customizing and fine-tuning these models for
specific domains or individuals are attracting signif-
icant interest and attention (Sun et al., 2023; Zhao
et al., 2023).
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Figure 1: An overview of our Direct Metric Optimiza-
tion (DMO). Image and tokens are denoted as I and yi
and CE stands for cross entropy function. Precomputed
rewards r assign different weights to each sample in a
textually augmented dataset, effectively enhancing the
targeted performance metrics.

Recent standard captioning models adopt self-
supervised learning for training purposes (Wang
et al., 2022; Yu et al., 2022; Alayrac et al., 2022;
Li et al., 2023). This method treats the ground
truth captions both as inputs and labels, and the
model predicts only the next token from the given
image and preceding tokens. Specifically, recent
transformer-based encoder-decoder models can
conduct the next token prediction of each step
in parallel, significantly enhancing their computa-
tional efficiency. However, this approach is subject
to certain limitations. Typically, the performance of
image captioning is evaluated using metrics such as
BLEU (Papineni et al., 2002) or CIDEr (Vedantam
et al., 2015); however, self-supervised learning of
language modeling does not necessarily optimize
those metrics. To target final metrics directly, re-
inforcement learning (RL) methods have been em-
ployed (Ranzato et al., 2015; Zhang et al., 2017b;
Rennie et al., 2017; Gao et al., 2019). Reinforce-
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ment learning is a powerful method capable of op-
timizing even non-differentiable metrics; however,
it has certain drawbacks, such as learning instabil-
ity and significant time and computational costs.
With the growing trend of using large pre-trained
models, those challenges have become increasingly
serious. Conducting RL with models containing
billions of parameters demands extensive computa-
tional time and resources, making the application
of RL methods impractical.

To bypass the prohibitive computational cost of
RL, we propose to replace the expensive explo-
ration process in RL with diverse text data aug-
mentation and reduce RL to simple importance-
weighted self-supervised learning. The approach
that utilizes previously collected data for RL is
known as offline-RL (Levine et al., 2020). Partic-
ularly in our approach, datasets are augmented by
various methods and the augmentation diversity
brings a variety of samples of different rewards,
enabling the efficient estimation of the optimal cap-
tion for the image. We call this metric-optimizing
self-supervised training Direct Metric Optimization
(DMO). Our experiments demonstrate that DMO
achieves performance on par with state-of-the-art
(SOTA) RL methods in standard image captioning
metrics while retaining lightweight computational
efficiency and learning stability. This highlights
DMO’s significant practical advantages in metric
optimization, especially considering the increasing
need to tune and customize large-scale VLMs.

2 Preliminaries
2.1 Self-Supervised Learning for Image

Captioning

The standard approach for image captioning in re-
cent years has been to employ an encoder-decoder
model, where the encoder maps the image into the
latent space and extracts features from the image,
and the text decoder autoregressively generates to-
kens for the next step from extracted features and
previously generated tokens. In the self-supervised
learning of language models (LM), the model is of-
ten trained by teacher-forcing (Williams and Zipser,
1989). This method increases the likelihood of
ground-truth sentences by aligning the model’s
conditional distribution pθ(yi|I, y<i) with the la-
bel distribution q(yi) using cross-entropy (CE) for
each step i ∈ {1, . . . , T}. Here, yi represents
a text token at step i and I is the given image.
The label distribution q(yi) is a one-hot vector or

label-smoothed vector (Szegedy et al., 2016) from
ground truth label yi. The objective function of self-
supervised learning for language modeling LLM is
expressed as follows:

LLM =
T∑

i

CE(q(yi), pθ(yi|I, y<i)). (1)

Especially in the recent Transformer-based archi-
tecture, the predictions of the next tokens at each
time step can be performed in parallel (Vaswani
et al., 2017). Thus this training method is extremely
time and computationally efficient because it does
not require recursive operations, as is the case with
conventional RNN-based methods (Vinyals et al.,
2015; Xu et al., 2015).

2.2 Reinforcement Learning for Image
Captioning

Typically, the performance of captioning models
is assessed using metrics such as BLEU or CIDEr.
However, self-supervised learning does not neces-
sarily optimize these metrics. Furthermore, these
evaluation metrics are often non-differentiable,
making it impossible to apply the gradient descent
directly. One approach for directly optimizing
those non-differentiable metrics is to employ RL.
Recent studies of image captioning have applied
the various RL algorithms including REINFORCE
and Actor-Critic (Ranzato et al., 2015; Zhang et al.,
2017b; Liu et al., 2017; Rennie et al., 2017; Zhang
et al., 2021), to captioning tasks by regarding the
captioning models as agents and the final evalu-
ation metrics (such as CIDEr) as rewards. The
objective function of the captioning model in the
RL framework is expressed as follows:

LRL = −Ewi∼pθ [r({w1, . . . , wT })], (2)

where wi is the token sampled from the model’s
distribution pθ at the time step i and T is the total
length of the token sequence. The partial deriva-
tives of LRL can be determined using the REIN-
FORCE algorithm (Williams and Zipser, 1989).
The calculation of the expected values is approx-
imated by Monte Carlo sampling within a mini-
batch as follows:

∇θLRL ≈ −r({w1, . . . , wT })·
∇θ log pθ({w1, . . . , wT }|I). (3)
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In RL, the reward metric need not be confined
to automatic evaluation scores. It can accept any
user-defined score including ambiguous evalua-
tions from humans (Christiano et al., 2017; Ouyang
et al., 2022), thus demonstrating significant versa-
tility and adaptability to various tasks.

Notwithstanding these advantages, the RL
methodology presents significant challenges. First,
for the method to be effective, extensive explo-
ration is needed, which makes RL time-consuming.
Second, the learning process tends to be unstable,
especially during the early stage of training, when
the model poorly samples the high-rewarded se-
quences. (Ranzato et al., 2015; Rennie et al., 2017).
In addition, the sampling process in RL is compu-
tationally inefficient because the gradient compu-
tation requires the last token wT (see Equation 3),
but token generation is done in a left-to-right man-
ner, undermining the computational parallelism of
Transformer architecture.

2.3 Text Data Augmentation (TDA)

Data augmentation is a traditional yet effective
method that is used to enhance a language model’s
performance (Li et al., 2023; Fan et al., 2023; Yang
et al., 2023). Previous studies have shown that text
data augmentation (TDA) strategies can be broadly
categorized into three types: paraphrasing, noising
and sampling (Li et al., 2022). Paraphrasing is a
method that generates data that convey very simi-
lar information as the original data with restrained
changes. Noising adds noise to datasets to improve
the robustness of the model. Sampling produces
a set of new data from the model that masters the
distribution of the original data (Li et al., 2022).
The primary objective of these strategies is to intro-
duce diversity into the dataset. This is particularly
crucial in scenarios with limited datasets, where
models are prone to overfitting. Augmenting the
dataset and smoothing the distribution can effec-
tively prevent this overfitting.

In the fields of image and audio processing, data
augmentation has traditionally achieved significant
success (DeVries and Taylor, 2017; Zhang et al.,
2017a). In contrast, it has not been explored as ex-
tensively in the field of natural language processing.
This disparity can be attributed to the challenges
inherent in text augmentation. Unlike images and
audio, which comprise continuous data, tokenized
text data is discrete and even minor alterations can
lead to significant semantic shifts. Implementing

superficial changes while controlling these seman-
tic variations is not straightforward, and universally
effective methods for achieving this are yet to be
established (Feng et al., 2021).

3 Proposed Framework

3.1 Overview of Method

In RL, the sequences are sampled from the model’s
distribution pθ, but this raises problems of its
high computational cost and instability in the early
stages of training. We propose the following per-
spective shift: What if we were to consider the
sequences drawn from the given dataset as the
sequences sampled from the model itself? This
approach allows us to obtain the gradients of RL
objective function with ground truth data in a self-
supervised manner. Furthermore, since sequences
are pre-sampled, the bottleneck in RL, specifically
the recursive generation process, is resolved. This
significantly enhances computational efficiency.

The approach that utilizes previously collected
data for RL is known as "offline-RL" (Levine et al.,
2020), and is commonly used to bypass the compu-
tationally expensive exploration in RL (Chen et al.,
2021; Jang et al., 2022; Shi et al., 2023; Baheti
et al., 2023). Applying the offline-RL to image
captioning, however, is not straightforward. First,
because of the nature of major captioning metrics
(such as BLEU, METEOR, and ROUGE-L) that
measure the overlap of n-grams, words or subse-
quences with a set of ground-truth captions, ground
truth captions always receive rewards of 1 in the
offline-RL framework. Because the rewards are
indicators of the quality of samples, receiving a
constant value of rewards gives no clue about how
good each caption is, and consequently, there is no
advantage compared with standard self-supervised
training. The second problem is data suboptimality,
a common challenge in offline-RL (Levine et al.,
2020). The reliance on limited static data restricts
exposure to high-reward samples, thereby capping
the model’s performance improvements. We ad-
dress those obstacles by introducing diverse text
data augmentation (TDA). With TDA, we expose
models to a variety of expressions with different
rewards outside the original dataset, providing a
greater number of clues about the optimal caption
for the images. Furthermore, substituting TDA
for exploration improves the stability of the learn-
ing process in the early stage. This is because,
unlike RL, TDA can consistently provide reason-

8335



able quality samples and training does not rely on
the model’s capability of sampling high-reward se-
quences. This metric-optimizing self-supervised
training on textually augmented datasets, which we
call Direct Metric Optimization, offers the follow-
ing two significant advantages.

1. It allows direct optimization of metrics in a
self-supervised manner, significantly enhanc-
ing computational efficiency.

2. Training is stable even at an early stage be-
cause it does not rely on the model’s capability
of generating captions of high rewards.

3.2 Direct Metric Optimization

In the proposed DMO method, sequences are sam-
pled from textually augmented dataset Daug. Be-
cause the dataset is known, scores for each ground
truth sample can be calculated in advance. Let the
score function (for example, the BLEU and CIDEr
scorer) be the reward function r(·). Once ground
truth data d = {y1, . . . , yT } from dataset Daug is
sampled, the gradient of our DMO objective LDMO

is defined as follows:

∇θLDMO(d) = −r({y1, . . . , yT })·
∇θ log pθ({y1, . . . , yT }|I) (4)

= −r(d)∇θ

T∑

i

log pθ(yi|I, y<i) (5)

= r(d)∇θ

T∑

i

CE(q(yi), pθ(yi|I, y<i)) (6)

= r(d)∇θLLM(d), (7)

where q(yi) is a one-hot vector from label yi. Note
that in offline reinforcement learning, importance
sampling is commonly employed to bridge the gap
between the distribution of the policy model and the
offline training data (Precup, 2000). However, espe-
cially in the fine-tuning stage after the pre-training,
the policy model’s distribution is considered to be
not significantly different from the distribution of
the data; therefore the importance term is ignored
in our setting. The resulting objective function (Eq.
(7)) can be interpreted as a reward-weighted gradi-
ent of self-supervised learning loss. This approach
eliminates the bottleneck inherent in RL, specif-
ically the recursive generation process, through
the utilization of pre-sampled sequences. Conse-
quently, it enables the model to leverage the parallel
computational capabilities of the Transformer ar-

chitecture, resulting in a substantial enhancement
of computational efficiency.

This reward-weighted self-supervised training
on augmented datasets is related to noise/similarity-
aware supervised training that adaptively assigns
different weights to each sample (Atliha and Šešok,
2020; Yang et al., 2023; Kang et al., 2023). How-
ever, there are notable differences. First, while
those noise-aware methods often focus on large-
scale pre-training from noisy datasets and mitigate
the effect of noisy samples, our approach features
the finetuning stage with relatively small and clean
datasets, and deliberately augments datasets to in-
troduce the diversity of samples. Second, while
similarity-aware methods often utilize CLIP/BERT
scores or custom weights (Ding et al., 2019; Atliha
and Šešok, 2020; Yang et al., 2023), we directly
employ target metrics for sample weighting. While
the CLIP/BERT score is useful for denoising or
filtering, training with these measures does not di-
rectly lead to the optimization of the final metrics.
With these perspectives, our method enables more
effective optimization of the target metrics.

4 Experiment Implementations

This section describes the experiment implementa-
tions for the evaluation of our DMO training.

4.1 Datasets and Captioning Models

We validate our method with the MS-COCO
dataset (Lin et al., 2014) and Flickr8K (Hodosh
et al.), which are commonly used in image cap-
tioning research. Both datasets have 5 captions per
image. For the evaluation, the datasets are split into
training, validation, and testing sets according to
the Karpathy method (Karpathy and Fei-Fei, 2015)
so that the numbers of images in the training, val-
idation and test datasets become 6091/1000/1000
for Flickr8k and 113287/5000/5000 for MS-
COCO. For captioning models, we employ GIT-
base/large (Wang et al., 2022) and BLIP2-2.7b (Li
et al., 2023), which have different sizes of param-
eters and architectures. GIT has a simplified ar-
chitecture of one image encoder and one text de-
coder and the base model has 178M parameters
while the large model has 390M parameters for
each. BLIP2-2.7B has 2.7B parameters and it em-
ploys large pre-trained frozen models for its vi-
sion encoder and text decoder. Both models are
pre-trained on datasets that include COCO (Lin
et al., 2014), Visual Genome (Krishna et al., 2017),
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CC3M (Sharma et al., 2018), and other large image-
text pair datasets. In our experiments, all mod-
els are finetuned for 3 epochs with learning rate
1.0 × 10−5 and batch size 960, using a fixed sin-
gle random seed. Further details are explained in
Appendix A.1.

4.2 Text Data Augmentation Strategy

Based on Section 2.3, we adopt the following three
augmentation methods accordingly. From each
of the following three methods, two augmented
captions are randomly sampled for each image and
added to the original training dataset.

• Back-translation: The En-Fr translation
model from MarianNMT (Junczys-Dowmunt
et al., 2018) is adopted. Back-translation is
applied to each ground truth caption and the
same number of back-translated captions as
original captions are created.

• Pre-trained VLM Sampling: Using the
COCO-pre-trained BLIP2-6.7B model, five
captions are generated from each image in the
training dataset with temperature 1.0.

• Paraphrasing by LLM: We employ Llama2-
7b-chat (Touvron et al., 2023) to paraphrase
captions. The detailed prompt text is pre-
sented in Appendix B.

We do not explicitly adopt a noising strategy, as suf-
ficient semantic noise is introduced by each TDA
method.

4.3 Metrics and Rewards

We evaluate the performance of models by CIDEr,
BLEU-4, METEOR (Banerjee and Lavie, 2005),
ROUGE-L (Lin, 2004) and SPICE (Anderson et al.,
2016). Since our method requires each sample to
be scored by a reward function, we directly use the
metrics above as the rewards in the training. As
the scoring of each metric demands a set of ground
truth captions as references, we employ the original
training dataset as the reference dataset.

5 Results

We evaluate our proposed method in terms of met-
ric optimization performance, learning stability and
computational efficiency. We further investigate
how reward-weighting architecture facilitates ro-
bust metric optimization by comparing DMO with
standard LM training under noisy data and limited
data settings.

Training Evaluation Metrics
Metric CIDEr B4 MET. ROU.
CIDEr 97.0 33.3 27.7 57.5
BLEU-4 96.8 33.5 27.7 57.5
METEOR 96.1 32.8 27.5 57.0
ROUGE-L 96.0 33.0 27.6 57.5
standard LM 95.1 33.4 27.0 57.1

Table 1: Performance evaluation of GIT-base model
optimized for each metric by DMO on the textually aug-
mented Flickr8k dataset. ’B4’, ’MET.’ and ’ROU.’ refer
to BLEU-4, METEOR and ROUGE-L, respectively.

5.1 Evaluating Metric Optimization
Performance

5.1.1 Does DMO Enhance Final Metrics?
First, we examine whether our method effectively
improves the targeted metrics for image caption-
ing. We use a textually augmented Flickr8k dataset
(TDA-Flickr8k) and apply DMO to the GIT-base
so that each CIDEr, BLEU-4, METEOR, and
ROUGE-L is optimized respectively. We then eval-
uate whether DMO improves these metrics com-
pared to training with the standard Language Model
(LM) loss. The result is presented in table 1. We
find that when optimized for each metric, there is
an improvement in each metric compared to train-
ing with the standard LM loss. This result implies
that our method can effectively enhance the tar-
get metrics. Interestingly, optimizing for CIDEr or
BLEU-4 leads to improved scores in other metrics
as well. This can be attributed to the similarities in
the way each evaluation metric is measured. In the
following experiments, we use CIDEr as the target
metric because CIDEr-optimizing DMO leads to
general improvements in scores across other met-
rics.

5.1.2 Comparison of DMO and LM Training
We compare the performance of DMO training with
LM training for different models and dataset set-
tings. We use three models, GIT-base, GIT-large,
and BLIP2-2.7b and two datasets, the Flickr8k and
the COCO dataset. We apply CIDEr-optimizing
DMO to each model and compare CIDEr, BLEU-4,
METEOR, ROUGE-L, and SPICE scores with the
models trained by standard LM loss. The results
are presented in Table 2. We observe that DMO
results in significant performance improvements
in almost all models and datasets compared with
models trained with LM loss without TDA. On
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Captioning Optimization Flickr8k MS-COCO
Model Method CIDEr B4 MET. ROU. SPICE CIDEr B4 MET. ROU. SPICE
GIT-base LM 95.1 33.4 27.0 57.1 21.4 135.6 41.0 30.5 60.4 23.6
GIT-base LM w/ TDA 93.6 33.2 26.9 57.0 21.0 132.1 39.4 29.8 59.9 23.5
GIT-base DMO 99.6 35.4 27.9 58.1 22.3 137.4 41.5 30.5 60.9 24.0
GIT-large LM 96.3 33.3 26.9 56.9 21.2 140.9 42.5 31.3 61.3 24.3
GIT-large LM w/ TDA 101.1 34.9 27.9 58.0 22.2 134.7 39.8 30.3 60.4 23.9
GIT-large DMO 110.7 37.6 29.1 60.2 23.2 140.6 42.0 31.1 61.5 24.3
BLIP2-2.7b LM 101.3 33.8 28.6 58.5 23.4 132.2 39.1 29.6 59.5 23.3
BLIP2-2.7b LM w/ TDA 100.2 32.7 28.3 58.2 22.8 132.9 38.7 29.9 59.7 23.6
BLIP2-2.7b DMO 103.7 33.8 28.7 58.4 23.7 138.3 41.1 30.4 60.7 24.0

Table 2: Evaluation of three models trained by standard LM training (with and without TDA) and CIDEr-optimizing
DMO on Flickr8k and COCO datasets. The performance metrics include CIDEr, BLEU-4 (B4), METEOR (MET.),
ROUGE-L (ROU.) and SPICE.

the Flickr8k dataset, all models exhibit score im-
provements across all metrics with DMO. A similar
trend is observed when fine-tuning GIT-base on the
COCO dataset. We observe that DMO remains ef-
fective even for larger models with up to 7 billion
parameters (Appendix E). This suggests that DMO
consistently enhances the scores beyond standard
LM training across various models and datasets.

In the analysis comparing with LM training on
TDA datasets, we observe that LM training on TDA
datasets causes a decline in the performance in cer-
tain scenarios, such as training GIT-base/BLIP2 on
Flickr8k and GIT-base/large on the COCO. This
implies that the TDA datasets possess excessive
noise and this noise leads to a deterioration in the
performance of the models trained with standard
LM loss. In contrast, DMO training, which utilizes
the TDA dataset, exhibits rather enhanced perfor-
mance. BLIP2 trained with DMO on Flickr8k and
GIT-base DMO-trained on the COCO show im-
proved scores for almost all metrics while those
trained with LM loss show worse performance by
introducing TDA. These findings indicate that our
DMO can effectively leverage even noisy datasets
that would deteriorate the performance of regular
LM training. Moreover, when GIT-large is trained
on TDA-COCO, a reduction in performance is ob-
served for both LM and DMO training. However,
the decline in performance is significantly differ-
ent: 6.1 points for LM training compared with 0.3
points for DMO training, highlighting DMO’s ro-
bustness under noisy dataset conditions.

5.1.3 Does TDA-Diversity Matter?
We hypothesize that diversifying the augmenta-
tion techniques serves as a replacement for ex-
ploration, enhancing the performance of DMO.

Dataset Evaluation Metrics
Setting CIDEr B4 MET. ROU. SPICE
Dbktrs 93.6 32.8 27.3 56.9 22.1
Dblip2 98.2 33.0 28.0 57.9 22.1
Dllama 99.5 34.3 28.0 58.0 21.9
Dall 99.6 35.4 27.9 58.1 22.3
baseline 95.1 33.4 27.0 57.1 21.4

Table 3: Scores of GIT-base model trained with CIDEr-
optimizing DMO on each dataset setting. Baseline is the
score of LM training without any TDA. B4: BLEU-4,
MET: METEOR, ROU: ROUGE-L.

To validate this hypothesis, we conduct an abla-
tion study and evaluate the performance of mod-
els trained with DMO on datasets augmented by
a single method and on datasets augmented by
multiple methods, respectively. We denote the
datasets augmented solely by the back-translation,
pre-trained BLIP2 sampling, and Llama2 para-
phrasing as Dbktrs, Dblip2, and Dllama respectively.
For a fair comparison, each dataset is adjusted to
have approximately the same number of image-
caption pairs. For datasets Dbktrs, Dblip2, Dllama,
we increase 5 captions per image by augmentation.
Note that the dataset Dall is constructed by sam-
pling two augmented captions from each augmenta-
tion method and adding them to the original dataset.
We use the Flickr8k dataset and train GIT-base by
CIDEr-optimizing DMO. The results are presented
in Table 3. While all data augmentation methods
except for back-translation improve performance
over the baseline, which is the score of LM train-
ing without any TDA, the highest performance is
achieved with the dataset that combines all aug-
mentation methods, suggesting that exposing the
model to a variety of expressions from diverse aug-
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Figure 2: Transition of CIDEr scores for the GIT-base
model trained using three different methods: DMO,
standard LM training, and SCST. The scores reflect the
CIDEr values of sequences greedily generated by each
model for images in the mini-batches of the Flickr8k
training dataset.

mentation techniques yields the most significant
performance improvement. Further analysis of the
advantages of combining multiple TDA methods is
discussed in Appendix C.

5.2 Stability and Computational Efficiency

DMO replaces the exploration with TDA and re-
solves the learning instability and computational
bottleneck of RL. We examine DMO’s stability and
efficiency by comparing them with those of RL and
standard LM training. We use the GIT-base model
trained on the Flickr8k dataset. As an RL method,
we employ SCST (Rennie et al., 2017), which is
one of the most prominent reinforcement learning
methods for image captioning, utilized in training
many SOTA models (Wang et al., 2022; Xu et al.,
2023). We assess the stability of training by con-
ducting experiments with five seeds and calculating
the average and variance of the final scores at the
3rd and 20th epoch. To equalize the number of
parameter updates, the number of explorations in
RL is set to equal the number of image-text pairs in
the training dataset. SCST requires intricate hyper-
parameter tuning and we present the detailed con-
figuration for SCST training in Appendix A.2. The
result is presented in Table 4. With 3-epoch train-
ing, our DMO produces the highest score. SCST
is still unstable at 3 epochs, with a standard devia-
tion (SD) of 4.1, which is significantly larger than
LM’s SD of 0.74 or DMO’s SD of 1.26. Figure 2
shows the CIDEr score progression on training data

Method 3 epochs 20 epochs
LM 94.4 ± 0.74 94.2 ± 1.65
SCST 93.6 ± 4.10 99.8 ± 1.50
DMO 97.7 ± 1.26 98.0 ± 1.36

Table 4: The average and standard deviation of CIDEr
scores when the model was trained for 3 epochs and 20
epochs with five different seeds by each method.

Optimization Forwarding Execution
Method iterations time
LM 1.68× 103 13 sec
SCST 1.50× 105 9971 sec
DMO 1.68× 103 14 sec

Table 5: The number of model forwarding iterations and
execution time for the GIT-base to complete 3 epochs
on Flickr8k. The time is measured during the loss com-
putation and the number of iterations is measured by
counting the number of batch model forwarding.

up to 5 epochs for DMO, LM, and SCST, respec-
tively. While DMO and LM show steady score
improvements, SCST exhibits large fluctuations.
This instability in SCST is attributed to its poor
capability of sampling high-reward sequences in
early training. On the other hand, DMO utilizes
samples from TDA throughout the entire training,
which makes training more stable.

By the end of the 20th epoch, SCST achieves the
highest score, owing to SCST’s ability to contin-
ually explore and obtain new samples. DMO dis-
plays minimal score improvements from epoch 3 to
epoch 20, suggesting that training for only 3 epochs
may suffice for model optimization in DMO train-
ing while SCST requires at least 20 epochs. This
indicates that DMO optimizes the performance of
the model more rapidly than SCST.

Additionally, we measure the number of model
forwarding iterations and the training time required
for each method to complete 3 epochs. To elimi-
nate the impact of differences in implementation
and hardware differences on timing, we specifically
measure the duration between feeding the data to
the model and obtaining the loss values. The re-
sult is presented in Table 5. With respect to com-
putational efficiency, we find that LM and DMO
have the same number of batch forwardings, while
SCST requires approximately 100 times more (the
rationale behind the results is explained in Ap-
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Noise ratio LM DMO
0% 95.1 (−0%) 98.6 (−0%)

20% 82.1 (−14%) 97.9 (−1%)
40% 69.6 (−27%) 98.0 (−1%)
60% 58.6 (−38%) 90.9 (−8%)
80% 5.1 (−95%) 81.9 (−17%)

Table 6: CIDEr scores of GIT-base model trained with
noisy dataset. Noise ratio is the ratio of original ground-
truth captions replaced by irrelevant random captions.
The numbers in parentheses represent the percentage
decrease from the score at the 0% noise ratio.

pendix A.1). In terms of execution time, while
DMO training takes approximately the same du-
ration as LM training, SCST requires about 1000
times longer. The slight increase in time for DMO
training compared to LM training is due to the ne-
cessity of reward-weighting operations. On the
other hand, SCST requires the recursive genera-
tion process, resulting in a number of forwardings
approximately 100 times greater and a duration ap-
proximately 1000 times longer, compared to LM
and DMO training. These results emphasize the
DMO’s substantially greater computational effi-
ciency compared to that of SCST.

5.3 Noise Robustness and Data Efficiency

We experimentally show that DMO can train mod-
els robustly even in data-noisy or low-resource
settings, by effectively leveraging the reward. To
evaluate the pure effect of reward utilization, we
compare LM training and DMO training without
TDA.

5.3.1 Evaluation on Extremely Noisy Dataset
In this experiment, we examine how robustly our
method can train models on the noisy dataset. To
simulate the case where the training dataset is ex-
tremely noisy, we construct datasets in which a
certain percentage of the ground truth captions in
the Flickr8k dataset are replaced with entirely ir-
relevant captions (we randomly sampled from the
COCO dataset). With these datasets, we train GIT-
base both with DMO and LM loss and observe
how training is affected by those toxic samples. In
DMO training, we use the original clean dataset for
the reference dataset to ensure that the quality of
each sample is accurately scored. We increase the
noise ratio from 0% to 80% and evaluate the CIDEr
scores of the model trained by LM and DMO. The
results are presented in Table 6. Compared to the

Dataset Size LM DMO
100% 95.1 (−0%) 98.6 (−0%)
80% 92.1 (−3%) 97.4 (−1%)
60% 93.8 (−1%) 97.6 (−1%)
40% 90.4 (−5%) 95.4 (−3%)
20% 86.5 (−9%) 95.0 (−4%)

Table 7: CIDEr scores of GIT-base model trained with
the limited number of data. Dataset size is the volume of
the available training data. The numbers in parentheses
represent the percentage decrease from the score at the
100% dataset volume.

baseline, both LM and DMO training exhibit a de-
cline in performance; however, while LM training
experiences a significant performance drop, DMO
manages to minimize this reduction. This indi-
cates that, by utilizing scores as cues, our proposed
method can effectively discern samples that should
be learned from samples that should be ignored,
enabling robust learning even from noisy datasets.

5.3.2 Evaluation under Low-Resource Setting
We simulate a scenario where training is con-
strained by limited data samples due to low com-
putational resources, as is typical in edge device
training that is aimed at minimizing time and bat-
tery consumption. We construct small datasets to
evaluate how effectively data can be utilized under
conditions of low resource availability. We reduce
the amount of training data progressively from 20%
to 80%. For the scoring in DMO training, we use
the full original dataset as the reference dataset.
The results are presented in Table 7. While LM
training exhibits a 9% drop in scores as the data
size decreases, DMO demonstrates robust learn-
ing even with limited data, exhibiting a smaller
decrease of 4%. This result demonstrates that our
method can efficiently learn even from a small num-
ber of data samples by leveraging the importance
score of each sample.

6 Conclusion

In this paper, we present Direct Metric Optimiza-
tion (DMO), which is a lightweight final-metric-
optimizing training method. We hypothesize that
diverse text augmentation can substitute the explo-
ration in RL, and show that self-supervised train-
ing on reward-weighted augmented data leads to
direct and stable metric optimization. Our experi-
ments demonstrate that DMO can directly optimize
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evaluation metrics across models of various archi-
tectures and parameter sizes, and stably achieves
performance comparable to the SOTA RL method
while saving hundreds of times more model for-
warding iterations and greater amounts of computa-
tion time. With these practical advantages of stable
and lightweight cost of tuning, DMO emerges as
a new promising choice for metric optimization in
the era of large-scale VLMs.

Limitations

Although our experiments yield promising results,
it is important to acknowledge the limitations of our
method. The first limitation is the quality subopti-
mality of TDA. Our approach substitutes the explo-
ration phase in RL with diverse data augmentation.
However, in theory, data augmentation is distinct
from exploration because it does not actively pur-
sue higher rewards. Consequently, over extended
training periods, RL methods, which consistently
seek new and higher-quality samples, can outper-
form our DMO which relies on a fixed dataset.
However, considering that RL methods for VLM
are often very sensitive to hyperparameters and
challenging to optimize, our DMO offers distinct
practical advantages such as learning stability and
the straightforward training process without the
need for intricate hyperparameter tuning—benefits
that are absent in most of RL approaches.

Another limitation is the data augmentation over-
head. While DMO avoids the computationally ex-
pensive exploration process in RL, data augmenta-
tion still necessitates a certain computational cost.
Therefore, considering the data preparation phase
in addition to the training phase, the computational
costs required for DMO increase and DMO’s supe-
riority over RL methods in terms of computational
costs is diminished. However, a key distinction
from exploration is that TDA can be conducted on
separate machines (e.g., cloud servers) from the
one the target VLM is deployed on. This aspect
becomes particularly beneficial for model tuning in
scenarios where resources such as time, memory,
and battery of devices are constrained, as is typical
in edge device training. Collecting augmented data
on different servers enables models on the resource-
constrained device to bypass the data augmentation
overhead, making DMO a genuinely lightweight
metric optimization method.
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A Experiments Setting in Detail

A.1 Hardware Environment

We use two RTX A6000 Ada GPUs for GIT-
base/large and four H100 GPUs for BLIP2-2.7B.
Because each GPU has a different size of VRAM,
we adopt the gradient accumulation method so that
the batch size becomes 960 regardless of the size
of the VRAM of the GPU that is used in each
experiment. We present the hyperparameters for
GIT-base/large and BLIP2-2.7B in Table 8. This
configuration explains the number of model iter-
ations in LM/DMO training presented in Table 5.
The training uses 6091 images and 11 captions
per image (including augmented captions) across
3 epochs. Dividing this by a mini-batch size of 60
and 2 GPUs results in approximately 1.68 × 103

iterations. For SCST, the maximum token length
is set to 128 and the model recursively generates
tokens up to this length, resulting in nearly 100
times more model forwarding iterations compared
to LM/DMO training.

A.2 Configuration for SCST Training

Due to the instability of training with SCST, it
necessitates pre-fine-tuning through standard self-
supervised training (Rennie et al., 2017). Therefore,
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Model Learning Rate Batch Size Mini-Batch Size Grad. Acc. Step GPU
GIT-base 1.0× 10−5 960 60 8 RTX A6000 Ada × 2
GIT-large 1.0× 10−5 960 30 16 RTX A6000 Ada × 2

BLIP2-2.7B 1.0× 10−5 960 30 8 H100 × 4

Table 8: Hyperparameters for GIT-base/large and BLIP2-2.7B. The number of batch sizes is equal to the product of
the mini-batch size, the number of gradient accumulation steps (Grad. Acc. Step) and the number of GPUs.

Figure 3: The prompt that is used in Llama2-
paraphrasing. The part ’<target caption>’ in the prompt
text is replaced by the caption to be augmented.

we initially fine-tune the model for three epochs
with a learning rate of 1.0× 10−5 before applying
SCST. Given that fine-tuning has already been com-
pleted, we reduce the learning rate to 5.0 × 10−6

and only update the parameters of the text decoder
to stabilize training. Moreover, during the sam-
pling process in SCST, we opt for a temperature of
0.1. This is because we observe that higher temper-
atures, such as 0.5 or 1.0, often lead the model to
generate random, meaningless sequences of words,
which ultimately results in model collapse.

B Prompt for Llama2 Paraphrasing

For the Llama2-paraphrasing method, we em-
ploy the same prompting method proposed in La-
CLIP (Fan et al., 2023). We present the prompt that
is used in our experiments in Figure 3. The part
’<target captions>’ in the prompt text is replaced by
the caption to be paraphrased. In the prompt, three
examples of paraphrasing are provided. The first
and second examples are constructed by regard-
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Figure 4: CIDEr score distributions of captions aug-
mented by back-translation, BLIP2-sampling, and
Llama2-paraphrasing.

ing the two captions for the same image in each
Flickr8K and COCO dataset as the captions be-
fore and after paraphrasing. The third paraphrasing
example is made by feeding ChatGPT4 a caption
from Flickr8k with the prompt "rewrite this image
caption".

C Distributions Difference by TDA
Method

In this section, we explore how the quality of sam-
ples varies across different TDA methods. We
present the distribution of scores of samples gen-
erated by each TDA method in Figure 4. Scores
are CIDEr scores based on the training dataset of
Flickr8k. The back-translation tends to yield
higher scores while BLIP2-sampling tends to pro-
duce samples of lower scores. Examples of gener-
ated captions by each TDA method are shown in
Figure 5. We find that captions generated by the
back-translation show little change compared to
the ground truth (GT) captions. On the other hand,
BLIP2 sampling generates captions that are signifi-
cantly different from GT in terms of style and level
of detail. Back-translation receives the GT captions
to augment captions. Thus captions generated by
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Figure 5: Examples of captions generated by each augmentation method, back-translation, BLIP2-sampling, and
Llama2-paraphrasing.

Captioning Optimization Flickr8k
Model Method CIDEr BLEU4 METEOR ROUGE_L SPICE
LLaVA-v1.5-7b LM 101.5 34.7 28.9 58.9 22.4
LLaVA-v1.5-7b LM w/ TDA 98.0 32.8 27.6 57.9 20.7
LLaVA-v1.5-7b DMO 103.4 35.0 28.7 59.3 23.1

Table 9: Performance evaluation of LLaVA-v1.5-7b model trained on Flickr8k dataset by LM training with and
without TDA, and DMO.

back-translation closely resemble GT captions. On
the other hand, BLIP2-sampling generates captions
solely from images. Therefore, captions generated
by BLIP2-sampling often deviate from the GT cap-
tions and sometimes include incorrect descriptions
(e.g., BLIP2 misidentified the person in the im-
age as "woman" in Figure 5). Moreover, because
the paraphrasing by Llama2 takes the GT captions
as a prompt, the generated captions by Llama2
are semantically close to the GT captions. How-
ever, the changes from GT captions are greater than
those of captions augmented by back-translation,
owing to the prompt which encourages Llama2 to
change expressions (e.g., ’surf’ is paraphrased as
’ride a wave’ in Figure 5). Interestingly, consider-
ing the result that DMO training on a dataset solely
augmented by back-translation does not improve
scores (shown in Table 3), TDA that often produces
samples of high scores may not provide an advan-
tage for DMO if it hardly alters the expression of
the original GT data. Rather, TDA methods that
produce samples of diverse expressions and struc-
tures can improve the performance of DMO by
introducing various information that is not present
in the original dataset. With the analysis above, we
emphasize that the diversity of samples is important
for DMO training and especially diversifying the
augmentation techniques themselves is an effective

approach because utilizing multiple augmentation
methods generates a diverse set of samples across
various distributions.

D Examples of Captions Generated by
DMO, LM Training and SCST

Figure 6 shows examples of images and corre-
sponding ground truth captions and captions gen-
erated by a GIT-base model trained by DMO, stan-
dard LM training and SCST. Models are trained for
three epochs on the textually augmented Flicker8k
dataset. Expressions which seem to be unique to
the image are underlined. Those examples show
that the model trained by DMO captures distinc-
tive information and objects within the image and
depicts them in the generated captions.

E Experiment with Larger Model

To verify whether DMO remains effective for larger
models, we experiment with LLaVA-v1.5-7b (Liu
et al., 2024). We train LLaVA by standard LM
training with and without TDA, and by DMO on
the Flickr8k dataset, for 6 epochs with learning
rate 1.0× 10−5. We present the results in Table 9.
The results show that DMO optimizes metrics of
LLaVA better than standard LM training either with
or without the TDA dataset, which is consistent
with the result presented in Section 5.1.2.
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Figure 6: Examples of ground truth captions and captions generated by GIT-base model trained by DMO, standard
LM training and SCST. Each model is trained on the textually augmented Flickr8k dataset for 3 epochs. Expressions
which seem to be unique to the image are underlined.
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