
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 9041–9060
August 11-16, 2024 ©2024 Association for Computational Linguistics

M3AV: A Multimodal, Multigenre, and Multipurpose Audio-Visual
Academic Lecture Dataset

Zhe Chen1, Heyang Liu1, Wenyi Yu2, Guangzhi Sun3, Hongcheng Liu1

Ji Wu2, Chao Zhang2B, Yu Wang1,4B, Yanfeng Wang1,4

1Cooperative Medianet Innovation Center, Shanghai JiaoTong University
2Department of Electronic Engineering, Tsinghua University

3University of Cambridge Department of Engineering 4Shanghai AI Laboratory

{chenzhe2018,liuheyang,hongcheng_liu,yuwangsjtu,wangyanfeng622}@sjtu.edu.cn
ywy22@mails.tsinghua.edu.cn, gs534@cam.ac.uk, {wuji_ee,cz277}@tsinghua.edu.cn

Abstract

Publishing open-source academic video record-
ings is an emergent and prevalent approach to
sharing knowledge online. Such videos carry
rich multimodal information including speech,
the facial and body movements of the speak-
ers, as well as the texts and pictures in the
slides and possibly even the papers. Although
multiple academic video datasets have been
constructed and released, few of them support
both multimodal content recognition and un-
derstanding tasks, which is partially due to the
lack of high-quality human annotations. In this
paper, we propose a novel multimodal, multi-
genre, and multipurpose audio-visual academic
lecture dataset (M3AV), which has almost 367
hours of videos from five sources covering com-
puter science, mathematics, and medical and
biology topics. With high-quality human anno-
tations of the slide text and spoken words, in
particular high-valued name entities, the dataset
can be used for multiple audio-visual recog-
nition and understanding tasks. Evaluations
performed on contextual speech recognition,
speech synthesis, and slide and script gener-
ation tasks demonstrate that the diversity of
M3AV makes it a challenging dataset1.

1 Introduction

The rapid progress of technology has brought nu-
merous academic presentations and talks available
on the web with open access (Lev et al., 2019;
Atri et al., 2021; Lee et al., 2022, 2023). These
resources are particularly helpful to researchers as
they contain rich specialised knowledge in auditory
and visual modalities. With the development of
neural-based AI systems, it is desired that AI could
comprehend and process these multimodal infor-
mation resources to assist scientists in accelerating
their research. Abilities, including transcribing and

B: Corresponding author.
1Project website: https://jack-zc8.github.io/

M3AV-dataset-page

generating speech for a presentation with the aid
of slides, as well as presentation slide or script gen-
eration, are particularly useful for researchers to
conduct investigations and prepare presentations.

As a natural data source containing multimodal
content and knowledge, academic lectures have
been explored to construct a series of datasets.
Some datasets focus on the evaluation of the
model’s ability to recognize multimodal con-
tent (Dutta et al., 2018; Wang et al., 2023), others
focus on promoting models to understand multi-
modal knowledge in academic videos (Lev et al.,
2019; Li et al., 2019; Atri et al., 2021; Lee et al.,
2022, 2023). However, none of them has yet simul-
taneously paid attention to the model’s ability to
recognize multimodal content and understand rich
academic knowledge, which is partly due to their
respective lack of adequate manual labelling. The
homogeneity of holding two characteristics is criti-
cal to the implementation of end-to-end academic
recognition and understanding systems.

To fill the gap, we release the Multimodal, Multi-
genre, and Multipurpose Audio-Visual Academic
Lecture Dataset (M3AV) as shown in Figure 1. The
dataset contains selected academic lectures and
presentation videos from multiple fields, including
computer science, biomedical science, and mathe-
matics. Each video is endowed with highly quali-
fied speech transcriptions and OCR labels for both
printed and handwritten characters, including com-
plex mathematical formulae. In addition, academic
papers for some videos are also provided to supple-
ment knowledge more extensively.

Together with the dataset, three benchmark tasks
are also proposed that reflect the perception and un-
derstanding of the multimodal information in those
videos. This includes automatic speech recogni-
tion (ASR) with a particular focus on contextual
ASR (CASR), spontaneous text-to-speech (TTS)
synthesis, and slide and script generation (SSG).
Representative baseline models are used to bench-
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Figure 1: The overview of our M3AV dataset. The first component is slides annotated with simple and complex
blocks. They will be merged following some rules. The second component is speech containing special vocabulary,
spoken and written forms, and word-level timestamps. The third component is the paper corresponding to the video.
The asterisk (*) denotes that only computer science videos have corresponding papers.

mark the performance for each task. Through our
experiments, it is observed that the existing mod-
els showcase limited performance in perceiving
and understanding the multimodal content in this
dataset, and the rich academic knowledge is not
utilized effectively.

2 Related Work

The datasets based on academic lectures mainly fall
into two categories: measuring the model’s ability
to recognize multimodal content and evaluating
its capacity to capture academic knowledge. In
Table 1, we list the data types and dataset tasks of
the relevant academic lecture-based datasets.

Multimodal Content Recognition. LectureV-
ideoDB (Dutta et al., 2018) exploits frames from
lecture videos to test the model’s ability to per-
form handwritten and scene text recognition.
SlideSpeech (Wang et al., 2023) enriches the audio-
visual corpus with synchronized slides to provide
additional textual information. It is worth noting
that M3AV dataset provides both OCR data that is
fully manually labelled and speech data that com-
bines multiple ASR system outputs and manual
labelling, which is completely qualified to cover
tasks in the aforementioned datasets.

Academic Knowledge Understanding. Lec-
tureBank (Li et al., 2019) manually annotates
the prerequisite relationships between course
concepts to carry out prerequisite chain learn-
ing. GoogleI/O (Chen et al., 2014) and
LaRochelle (Nguyen et al., 2014) both study video-
level retrieval using presentation or lecture videos.
AVIATE (Atri et al., 2021) adopts multimodal in-
formation from academic presentation videos to
conduct abstract summarization. Similarly, Talk-
Summ (Lev et al., 2019) uses a scalable annotation
method to construct large-scale paper summaries
from corresponding video transcription. LPM (Lee
et al., 2022, 2023) introduces crossmodal retrieval
and generation tasks around its aligned slides and
spoken language. Our M3AV dataset contains anno-
tated video data for both slides and speeches, which
implies little knowledge loss. The addition of pa-
per documentation information also greatly com-
plements the knowledge information. Furthermore,
a challenging Slide and Script Generation task is
developed to perform the inter-transformation of
two kinds of academic materials.

As illustrated in Table 1, our dataset contains
the most complete and human-annotated resources
of slide, speech, and paper, thus supporting not
only the recognition of multimodal content but also
the comprehension of high-level academic knowl-
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Table 1: Comparison with other academic lecture-based datasets in terms of data types and designed tasks. “A”
denotes fully automated processing and “M” denotes fully or partially manual labelling.

Slide Data Speech Data Paper Data Dataset Tasks

Segments Figures Text Handwriting Formulae Transcription Text Recognition Understanding

LectureVideoDB (2018) M - M M - - - ✔ ✘

SlideSpeech (2023) - - A - - M - ✔ ✘

GoogleI/O (2014) A - A - - A - ✘ ✔

LaRochelle (2014) A - A - - A - ✘ ✔

LectureBank (2019) M - A - - - - ✘ ✔

TalkSumm (2019) - - - - - A A ✘ ✔

AVIATE (2021) - - A - - A A ✘ ✔

LPM (2022; 2023) M M A - - A - ✘ ✔

M3AV (Ours) M - M M M M A ✔ ✔

Table 2: Comparison with other academic lecture-based
datasets in terms of data size and availability.

Size Available

# Videos # Hours # Slides # Papers

LectureVideoDB (2018) 24 - 5474 - ✔

SlideSpeech (2023) 1705 1080 - ✔

GoogleI/O (2014) 209 - - - ✔

LaRochelle (2014) 47 65 3250 - ✘

LectureBank (2019) 1352 - 51939 - ✔

TalkSumm (2019) 1716 - - 1716 ✔

AVIATE (2021) 8201 ~2300 - 8201 ✔

LPM (2022; 2023) 334 187 9031 - ✔

M3AV (Ours) 1113 367 24956 767 ✔

Table 3: Duration of videos from different sources in
each data partition.

Sets CHI Ubi NIH IPP MLS Total
Train 44.1 7.9 188.2 34.0 21.1 295.4
Dev 4.4 1.0 23.6 3.6 2.5 35.1
Test 4.7 1.5 23.5 4.1 2.6 36.4

edge. At the same time, the size of our dataset is
also relatively rich while accessible as shown in
Table 2.

3 Summary of M3AV Dataset

3.1 Metadata

We treat each video as a unit and rename each video
in the form of "{source}-{id}". For the raw data,
we provide the YouTube URL of each video for
users to download.

Speech Annotation. The speech annotations are
saved in JSON files. Each unit contains the start
and end timestamps, the transcribed text in the
spoken and written form, and the corresponding
word-level timestamps.

OCR Annotation. In OCR annotations, the co-
ordinates and manually corrected text (formulae
are in LaTeX format) of each block are provided
in JSON files. Results of merging (detailed in Ap-
pendix A.1) are also provided.

Dataset Split. The division of the sets is deter-
mined by the speech data, as the duration can mea-
sure the amount of information consistently. The
video durations are illustrated in Table 3.

3.2 Characteristics of Speech Data

Variety of Academic Fields. As shown in Fig-
ure 2(a), M3AV contains academic presentations
and talk videos from three different fields includ-
ing computer science, biomedical science, and
mathematics. The Conference on Human Factors
in Computing Systems (CHI) 2021 Presentations
and ACM International Conference on Ubiquitous
Computing (Ubi) 2020 Presentations focus on re-
search in computer science. The National Institutes
of Health Director’s Wednesday Afternoon Lec-
tures (NIH) presents weekly science talks given by
top biomedical scientists. The Introduction to the
Principles and Practice of Clinical Research (IPP)
teaches how to conduct clinical research effectively
and safely. Oxford Mathematics (MLS) contains
mathematics lectures. The total number of videos
is 1113, with 366.9 hours of speech.

Abundance of Rare Words. The size of our spo-
ken form word table is 47865, while the word fre-
quency within 1k reaches 47483 words (99.20%)
as shown in Figure 2(e). It effectively represents
the typical scenario met in academic presentations
where new terminologies constantly appear and are
crucial to the overall understanding.

Quality of Transcription. M3AV is labelled by
combining multiple high-performing ASR systems
together with manual labels. As human often fails
to label rare terminologies, the assistance of a high-
performing ASR is indispensable. The multimodal
labelling pipeline is described in Section 4.2.
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Figure 2: Statistics of our dataset. (a) shows video duration and numbers. (b) shows the number of slides. (c) shows
the number of words per slide. (d) shows the duration per slide segment. (e) shows the speech word frequency.

3.3 Characteristics of Visual Data

Suffient OCR Text Labelling. The total number
of slides has reached 24956 as illustrated in Fig-
ure 2(b). The average number of words per slide
is 40.96 as shown in Figure 2(c). We can observe
that there is a sufficient number of slides and the
density of the words is high, which indicates the
richness of the textual information in our slides.
The duration of every slide segment is 50.67 as
indicated in Figure 2(d).

Complex Handwriting and Formulae. Signifi-
cant numbers of pages and blocks in Table 4 show
the enrichment of our complex texts. Furthermore,
handwriting and formula texts which both contain
lots of presentation content and academic knowl-
edge have already been processed into standard text
or LaTeX format and thus can be directly utilised
by large language models.

4 Data Creation Pipeline

4.1 Data Collection

Videos of open-source conferences and lectures
are collected from YouTube, together with descrip-
tions and subtitles. Papers for computer science
videos are downloaded and subsequently parsed

Table 4: Statistics of handwriting and formulae. Blocks
that appear on the same page as the complex block are
also counted into "# Blocks" due to the same processing.

Sources # Pages # Blocks*
CHI 58 656
Ubi 63 906
NIH 53 695
IPP 21 224

MLS 577 5736
Total 772 8217

using science-parse2.

4.2 Speech Transcription

The diagram of creating speech transcription is
shown in Figure 3, comprising four steps.

4.2.1 Step 1: Candidate Generation
The downloaded subtitles are not high-quality as
expected by our observation. Therefore, we intro-
duce expert ASR systems following Zhang et al.
(2022). In particular, we select Microsoft STT3,

2https://github.com/allenai/science-parse
3https://azure.microsoft.com/en-us/products/

ai-services/speech-to-text
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Figure 3: Diagram illustration of the process of creating
speech transcription.

and Whisper-large-v2 (Radford et al., 2023)4. They
both achieve a WER of less than 10% or even 5%
on multiple test sets indicated in the SpeechColab
ASR Benchmark (EN)5 in Oct. 2022.

The Microsoft transcriptions in written and spo-
ken form6 are denoted as Mw and Ms respectively,
and the Whisper transcriptions result in written
form are denoted as Ww (only the written form
exists in the Whisper result).

𝑊𝑤𝑀𝑠 𝑀𝑤 ≈

𝑀𝑠 𝑀𝑤

𝑀𝑠
𝑎𝑀𝑠

𝑚

𝑊𝑤

𝑀𝑠

𝑀𝑠
𝑐

≈

√ √

×
Mask

Mismatch Words

Manual
Filling

Manual
Combination

Case I

Case II

×

Figure 4: Diagram illustration of the process of candi-
date combination.

4.2.2 Step 2: Audio Segmentation
Most ASR models expect that the input audio
comes in the form of a relatively short duration,
usually up to a few seconds in length. Therefore,
we conduct re-segmentation using the word-level
timestamps in Mw. The split is allowed to be in
silence and punctuation. And the duration of each
segment is kept to 10 seconds or less. Detailed
rules can be found in Appendix A.1.

4https://github.com/openai/whisper
5https://github.com/SpeechColab/Leaderboard
6“Spoken form” refers to the representation of language

as it is actually spoken or pronounced, while “written form”
refers to the representation of language in its written or textual
format.

4.2.3 Step 3: Dataset Partition
We divide all the videos into training, development,
and test sets, with a ratio of roughly 8:1:1 for total
duration. We also avoid a speaker appearing in dif-
ferent sets, which is identified by the introductory
information and description text.

4.2.4 Step 4: Candidate Combination
For the training set, we directly adopt the Microsoft
transcription Mw and Ms, because it shows high
quality verified by checking against manual la-
belling on a subset and has both spoken and written
form. For the development and test set, we de-
sign the candidate combination process shown in
Figure 4.

In Case I where Mw is "approximately equal"7

to Ww, Ms and Mw will be directly adopted.
In Case II where Mw is not "approximately

equal" to Ww, we design the following steps:
1. We use the misalignment to mask the words

in Ms as [???].
2. Annotators are assigned to fill in the masks.

The result, Ma
s can be regarded as a type of

data augmentation.
3. Annotators are instructed to combine Ms and

Ma
s to provide the final corrected results M c

s .
The postprocessing of M c

s is detailed in Ap-
pendix A.3. The manual labelling process is de-
tailed in Appendix A.4. The comparison with man-
ual labelling on a subset for the training set and the
manual processing for the dev/test set ensure the
accuracy and consistency of the speech annotation.

4.3 Slide Annotation
The diagram of creating slide annotation is shown
in Figure 5, comprising four steps.

4.3.1 Step 1: Extensive Pre-Annotation
We conduct frame sampling for the video at 1 frame
per second and use PaddleOCR8 for large-scale text
detection and recognition. PaddleOCR is selected
for its completeness and high accuracy of the recog-
nition results with little sticking between words.

4.3.2 Step 2: Slide Deduplication
Since the frames are repetitive, we first perform au-
tomatic deduplication. Specifically, we remove un-
informative frames and blocks and filter out frames
with too few or too many blocks. Next, we compare

7It forgives misalignments due to pauses and common
words, as they are mainly short-pronounced, and Mw and Ms

have high confidence in them.
8https://github.com/PaddlePaddle/PaddleOCR
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Figure 5: Diagram illustration of the process of slide annotation. Shades of the same colour represent the amount of
slide content in the same segment. For example, the dark green page adds some content to the light green page. The
right sign (✔) represents reservation, while the wrong sign (✕) represents discarding.

the OCR contents of neighbouring frames and only
keep the latter one when the content of the former
is entirely included. Detailed criteria are shown
in Appendix A.2. After completing the automatic
deduplication, manual deduplication is performed
to retain the last frame in each segment.

4.3.3 Step 3: Manual Correction
For frames with simple text, corrections are directly
executed by experienced researchers for the loca-
tion and content of the OCR results. Note that
blocks of presentation-irrelevant text such as URLs
and email addresses are omitted. For frames with
complex handwriting or formulae, we pre-label
them using the Mathpix OCR API9. Then, the an-
notator performs careful corrections for the OCR
result due to their complexity. The formulae are
labelled in the format of in-line LaTeX. The details
of manual labelling are shown in Appendix A.4.
To control the quality of labelling, we sampled the
results of 9 annotators individually and checked
whether 120 of the annotated images had a high
number of missing or incorrect items, with no more
than 10 wrong items.

4.3.4 Step 4: Rule-Based Merging
To provide comprehensive semantic information,
we devise three rules to perform merging10:

• Similar Height:

max(ha0, h
b
0)−min(ha0, h

b
0)

≤ a×max(ha0, h
b
0)

(1)

• High Overlap in the Horizontal Direction:

min(ax2 , b
x
1)−max(ax3 , b

x
0)

≥ b×min(bx1 − bx0 , a
x
2 − ax3)

(2)

9https://mathpix.com/ocr
10As demonstrated in the top part of Figure 1, the recog-

nition results of the general OCR model are in rows. It is
required to merge these lines into paragraphs to provide com-
plete semantic information.

• Proximity of the Upper and Lower:

by0 − ay3 ≤ c×min(ha0, h
b
0) (3)

where the notations are shown as Figure 5. We set
a = 0.8, b = 0.8, and c = 0.6.

5 Benchmarks and Experiments

5.1 ASR and CASR Task

5.1.1 Task Description
E2E approaches have gained substantial attention
for ASR, which enable direct mapping from raw
speech audio to its transcription. However, they
often struggle with the accurate recognition of
rare words that carry important information for
understanding. CASR aims to improve the model’s
recognition performance for these rare words by
incorporating them into the biasing list.

5.1.2 Benchmark Systems
We adopt two widely-used benchmark systems for
ASR and CASR, namely Attention-based Encoder-
Decoder (AED) (Chan et al., 2016) and RNN-
Transducer (RNN-T) (Graves, 2012). Both sys-
tems employ a Conformer (Gulati et al., 2020) en-
coder. The AED system is jointly trained and de-
coded with Connectionist Temporal Classification
(CTC) (Graves et al., 2006; Watanabe et al., 2017).

For ASR, we also introduce a variety of
state-of-the-art pretrained ASR models. Note
that the results of Whisper-v3 are for reference
only, as the Whisper-series model is involved
in dataset construction. The performance of
the other open-source ASR models can be fairly
evaluated, given that our videos are properly
transcribed for the first time, avoiding the is-
sue of training data contamination. These pre-
trained models are selected from the SpeechCo-
lab ASR Benchmark (EN)11 and Hugging Face

11https://github.com/SpeechColab/Leaderboard
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Table 5: Evaluation results on ASR and CASR tasks.

Model Biasing List Dev Test

CER (↓) WER (↓) BWER (↓) CER (↓) WER (↓) BWER (↓)

ASR

AED - 4.6 10.0 35.5 4.5 10.0 35.6
RNN-T - 4.7 10.3 36.8 4.7 10.6 38.0

Whisper-v31.5B - 3.8 7.1 19.4 3.8 7.2 18.9
Wav2Vec2+CTC0.3B - 10.6 28.3 60.1 10.6 28.5 62.4
Conformer+Trans.0.6B - 4.6 10.7 37.8 4.6 10.5 38.2
Conformer+CTC0.6B - 4.4 11.1 40.6 4.3 11.1 42.2
SeamlessM4T-v22.3B - 12.4 17.1 36.7 12.4 18.6 40.7

CASR

RNN-T + TCPGen Random Distractors 4.7 9.7 26.7 4.7 9.7 27.1
RNN-T + TCPGen OCR + Same Topic Rare Words 4.8 9.8 30.5 4.7 10.0 31.7
RNN-T + TCPGen OCR 4.5 9.4 22.9 4.6 9.6 25.0

Community12 which include Whisper-v3 (Radford
et al., 2023), Wav2Vec2+CTC (Grosman, 2021),
Conformer+Transducer13, Conformer+CTC14 and
SeamlessM4T-v2 (Barrault et al., 2023)15.

For CASR, the Tree-Constrained Pointer Gener-
ator (TCPGen) (Sun et al., 2023b) with GNN tree
encodings (Sun et al., 2023a) is used which em-
ploys a combination of symbolic prefix-tree search
and a neural pointer generator for contextual bias-
ing. More details are illustrated in Appendix B.1
and Appendix B.2.

5.1.3 Experimental Results
In addition to the character error rate (CER) and
word error rate (WER) for ASR, we use biasing
WER (BWER) for CASR. BWER is defined as the
total rare word errors divided by the total number
of rare words, including insertions of rare words.
Table 5 shows the experimental results. The AED
and RNN-T systems achieve around 10.0% WER
on both the Dev and Test sets. However, such end-
to-end models suffer from rare word recognition
as reflected by the BWER where a more than two
times increase in the error rate is observed compar-
ing BWER to the WER.

When 1000 distractors16 are randomly selected

12https://huggingface.co/models?pipeline_tag=
automatic-speech-recognition&sort=trending

13https://catalog.ngc.nvidia.com/orgs/nvidia/
teams/nemo/models/stt_en_conformer_transducer_
xlarge

14https://catalog.ngc.nvidia.com/orgs/nvidia/
teams/nemo/models/stt_en_conformer_ctc_xlarge

15https://huggingface.co/facebook/
seamless-m4t-v2-large

16We select a certain number of significant words, which
are the words in the bias list we aim to recognize accurately.
When decoding, a particular utterance only includes a few of
these words, while the rest will appear as distractors. The use

from all rare words and are added to the biasing list,
significant improvements in rare word recognition
can be observed. When using OCR information to-
gether with rare words from the same topic to form
the biasing list of each utterance during decoding,
the recognition performance slightly deteriorates.
This is because strongly related words are included
in the biasing list, which may cause more confu-
sion since words with related meanings often have
similar pronunciations and word forms. When only
OCR words are used, we achieve the best perfor-
mance of the CASR task. In conclusion, by using
TCPGen utilizing the OCR information, we achieve
a relative BWER decrease of 37.8% and 34.2% on
dev and test sets respectively.

5.2 Spontaneous TTS Task

5.2.1 Task Description
Spontaneous Text-to-Speech (TTS) (Guo et al.,
2021; Yan et al., 2021) focuses on generating
speech with a natural and conversational session.
Most TTS systems use clean speech. This form
makes it easier to extract pronunciation features,
while it places higher requirements on the quality
of the training audio and often leads to a discernible
gap between the synthesized output and authentic
speech. We are devoted to using real speech data
in M3AV for the TTS system to produce speech
that aligns more closely with natural conversational
patterns, as it is spontaneous and has regulated pro-
nunciations.

5.2.2 Benchmark Systems
Multi-codebook vector quantized TTS (MQTTS)
(Chen et al., 2023) is introduced as our spontaneous

of distractors follows Le et al.; Sun et al..
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Table 6: Evaluation results on Spontaneous TTS task.
“GT” denotes the ground truth.

Model Objective Subjective
FFE (↓) MCD (↓) MOS (↑)

GT - - 3.86 ± 1.02
Bark 0.4269 10.57 3.31 ± 1.02
SpeechT5 0.4153 9.43 3.43 ± 1.09
MQTTS 0.3518 9.40 3.67 ± 0.94

TTS baseline. It employs a two-stage training ar-
chitecture. In the first stage, a quantizer is trained
to discretize the raw waveform into a sequence
of codes, minimizing quantization and reconstruc-
tion losses. A discriminator guides reconstruction
via adversarial learning. In the second stage, the
fixed quantizer is combined with a Transformer that
performs autoregressive generation on the code se-
quence, conditioned on a speaker embedding for
multi-speaker capability. More details can be found
in Appendix B.3.

5.2.3 Experimental Results
For the objective metrics, we adopt the F0 Frame
Error (FFE) (Chu and Alwan, 2009) and Mel-
Cepstral Distortion (MCD) (Kubichek, 1993). For
the subjective metrics, the Mean Opinion Score
(MOS) test on a scale of 1 to 5 is performed, which
is detailed in Appendix A.4. We randomly choose
20 samples and generate speech segments with
the MQTTS model and well-known pre-trained
models, including Bark17 and SpeechT5 (Ao et al.,
2022)18. Table 6 shows the experimental results,
in which the MQTTS model shows the best perfor-
mance within all the evaluation metrics. It indicates
that the real speech in our dataset can drive AI sys-
tems to simulate more natural speech.

5.3 Slide and Script Generation Task
5.3.1 Task Description
We define the task formally as follows. Let I , Ti

and Ts be the slide picture, slide text and the speech
transcription of every segment, respectively. For
the “Slide→Script” task, we need to generate Ts

based on I . Note that Ti can be viewed as the
intermediate result generated from I by the OCR
model. For the “Script→Slide” task, we need to
generate Ti based on Ts. The Slide and Script
Generation (SSG) Task is designed to promote AI
models to understand and reconstruct advanced
academic knowledge, thus assisting researchers in

17https://huggingface.co/suno/bark
18https://huggingface.co/microsoft/speecht5_tts

creating slides and presentations. The selected pa-
per sentences are provided for retrieval-augmented
generation (RAG), supplementing rich knowledge.
Such models with academic comprehension can
facilitate researchers to handle frequently updated
academic materials to acquire knowledge and inno-
vation efficiently.

5.3.2 Benchmark Systems
Having witnessed the excellent performance of
large language models (LLMs) and large multi-
modal models (LMMs) nowadays, we explore their
capabilities there. For the "Slide→Script" task,
we adopt multimodal cascading pipelines and in-
tegrated systems. The cascading pipeline consists
of an OCR model to extract the text (we directly
adopt the OCR annotations) and a language model
to generate the answer. Specifically, the cascading
pipelines include fine-tuned LLaMA-2 (Touvron
et al., 2023) and GPT-4 (OpenAI, 2023a) using
slide OCR text and the integrated systems include
fine-tuned InstructBLIP (Dai et al., 2023) and GPT-
4V (OpenAI, 2023b,c). For the "Script→Slide"
task, we adopt fine-tuned LLaMA-2 and GPT-4.
For the selection of related paper sentences, We
calculate the similarity between the script text and
each paper sentence and filter from them. More
details can be found in Appendix B.4.

5.3.3 Experimental Results
ROUGE (Lin, 2004), BERTScore (Zhang et al.,
2019), and BARTScore (Yuan et al., 2021) results
are reported in Table 7 and Table 8. We also per-
form manual scoring, where each sample is scored
on a scale from 1 (worst) to 5 (best) by 3 annotators
on multiple dimensions, including coherence, con-
sistency, fluency and relevance (Fabbri et al., 2021).
We show their average values, while the detailed
values are in Appendix B.5. Scoring is performed
on a subset of size 100, detailed in Appendix A.4.

We get significant observations: 1) The open-
source models (LLaMA-2, InstructBLIP) show
a limited performance improvement when raised
from 7B to 13B. Their performances are far from
the closed-source models (GPT-4 and GPT-4V).
We believe that high-quality pre-training data, e.g.,
informative corpus and visual QA data which en-
capsulate multimodal information, is required to
enhance their SSG performances beyond just boost-
ing the model size. 2) The latest LMM (GPT-
4V) has already exceeded the cascaded pipeline
composed of unimodal expert models. It sug-
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Table 7: Evaluation results on SSG tasks. The upper part of "Slide→Script" shows cascading pipelines, while the
lower part shows integrated systems.

Model ROUGE-1 (↑) ROUGE-2 (↑) ROUGE-L (↑) BERTScore (↑) BARTScore (↑) Human (↑)

Slide −→ Script

LLaMA-27B+OCR 24.6 5.6 21.6 0.073 -4.970 3.6
LLaMA-213B+OCR 26.9 6.4 23.6 0.102 -4.823 3.9
GPT-4+OCR 26.2 5.8 23.7 0.085 -4.621 4.6

InstructBLIP7B 24.3 2.2 17.9 0.041 -5.504 2.4
InstructBLIP13B 24.7 2.3 18.2 0.046 -5.514 2.5
GPT-4V 26.4 6.2 23.7 0.092 -4.630 4.7

Script −→ Slide

LLaMA-27B 20.3 6.2 17.3 0.064 -6.689 3.3
LLaMA-213B 23.3 7.5 19.8 0.092 -6.484 3.8
GPT-4 26.8 7.7 23.0 0.077 -6.136 4.8

Table 8: Performance improvements of LLaMA-27B brought by retrieving paper information. “Subset” denotes that
only Computer Science videos are contained in all sets for they are the only ones with downloadable papers.

Range ROUGE-1 (↑) ROUGE-2 (↑) ROUGE-L (↑) BERTScore (↑) BARTScore (↑) Human (↑)

Slide −→ Script

Subset 24.9 6.4 21.8 0.114 -5.110 3.7
+ Paper 29.2 8.7 25.8 0.161 -4.806 4.1

Script −→ Slide

Subset 20.9 6.8 18.1 0.061 -6.737 3.3
+ Paper 22.3 7.9 19.3 0.061 -6.651 3.6

gests that the LMM not only maintains the ability
to process textual information but also possesses
multi-sensory capabilities, such as the perception
and recognition of the slides (Yang et al., 2023).
3) RAG substantially enhances the generation, as
shown in Table 8. Qualitative analyses in Ap-
pendix C provide a more fine-grained view.

As for future development, we are urged to
strengthen the open-source model’s ability to un-
derstand high-level knowledge and perceive mul-
timodal information. They can be achieved by in-
creasing the model size and supplying high-quality
data. The issue that the open-source multimodal
models struggle with recognising text in images can
be mitigated by increasing the OCR input. Further-
more, how to effectively bring in external knowl-
edge is an essential topic.

6 Conclusion

We release the Multimodal, Multigenre, and Multi-
purpose Audio-Visual Dataset with Academic Lec-
tures (M3AV) covering a range of academic fields.
This dataset contains manually annotated speech
transcriptions, slide text, and additional extracted
papers, providing a basis for evaluating AI mod-
els for recognizing multimodal content and under-
standing academic knowledge. We detail the cre-

ation pipeline and conduct various analyses of the
dataset. Furthermore, we build benchmarks and
conduct experiments around the dataset. We find
there is still large room for existing models to im-
prove perceptions and understanding of academic
lecture videos.

Limitations

There are some limitations in our work. First, there
may exist biases in the dataset, such as the types of
presentations and the demographics of the speakers.
It is hard to completely avoid biases, although we
have incorporated a diverse range of data sources.
The users of the dataset should be aware of the
impact brought to the AI models by these biases.

Secondly, the data we collected has limitations
in terms of academic domains and multilingual-
ism. We will consider adding videos from more
research directions, such as humanities disciplines
(e.g. economics, law, and sociology) to an extended
dataset in future work. And we also plan to collect
more data in other languages to prompt multilin-
gual academic research. Nevertheless, we believe
our current collection would already be useful for
the community to develop some initial approaches.

Thirdly, we have some deficiencies in mining
and labelling for visual information of the dataset.
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The illustrations in the video frames are not ex-
tracted separately like Lee et al. (2022, 2023). And,
the talking heads of the speakers are not picked up,
which can be utilised to research the generation of
virtual presenters. In summary, further exploita-
tion of the visual elements in the slides would be a
future extension of the dataset.

Finally, the benchmark systems for the Slide
Generation task do not involve the generation of
visual pictures, instead, we only get the generated
slides in the form of text. The generation of slide
images requires complex multimodal models, and
the corresponding evaluation metrics require more
sophisticated designs.

Ethical Consideration

This work presents a dataset based on academic
speeches with manual annotation in terms of slides
and speech. The presentations and talks included
in the dataset, are open accessed on the YouTube
website. The copyright remains with the original
owners of the videos. Our dataset is provided under
a Creative Commons Attribution-NonCommercial-
ShareAlike 4.0 International License. The annual
annotation is done by the team’s researchers and
workers on the Amazon Mechanical Turk. All an-
notators received clear annotation rules before the
annotation and fair payments upon completion. No
personal information is requested from any of the
annotators.
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Cann, Caiming Xiong, Richard Socher, and Dragomir
Radev. 2021. Summeval: Re-evaluating summariza-
tion evaluation. Transactions of the Association for
Computational Linguistics, 9:391–409.

Alex Graves. 2012. Sequence transduction with recur-
rent neural networks. In International Conference of
Machine Learning 2012 Workshop on Representation
Learning.

Alex Graves, Santiago Fernández, Faustino Gomez, and
Jürgen Schmidhuber. 2006. Connectionist temporal
classification: Labelling unsegmented sequence data
with recurrent neural networks. In Proceedings of the
23rd international conference on Machine learning,
pages 369–376.

Jonatas Grosman. 2021. Fine-tuned XLSR-53
large model for speech recognition in English.
https://huggingface.co/jonatasgrosman/
wav2vec2-large-xlsr-53-english.

Anmol Gulati, James Qin, Chung-Cheng Chiu, Niki
Parmar, Yu Zhang, Jiahui Yu, Wei Han, Shibo Wang,
Zhengdong Zhang, Yonghui Wu, and Ruoming Pang.
2020. Conformer: Convolution-augmented trans-
former for speech recognition. In Proc. Interspeech
2020, pages 5036–5040.

Haohan Guo, Shaofei Zhang, Frank K. Soong, Lei He,
and Lei Xie. 2021. Conversational end-to-end TTS
for voice agents. In 2021 IEEE Spoken Language
Technology Workshop (SLT), pages 403–409.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2020. The curious case of neural text
degeneration. In 8th International Conference on
Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. LoRA: Low-rank adaptation of
large language models. In The Tenth International
Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022. OpenReview.net.

Thomas N Kipf and Max Welling. 2017. Semi-
supervised classification with graph convolutional
networks. In International Conference on Learning
Representations.

Jungil Kong, Jaehyeon Kim, and Jaekyoung Bae. 2020.
HiFi-GAN: Generative adversarial networks for ef-
ficient and high fidelity speech synthesis. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 17022–17033.

R. Kubichek. 1993. Mel-cepstral distance measure for
objective speech quality assessment. In Proceedings
of IEEE Pacific Rim Conference on Communications
Computers and Signal Processing, volume 1, pages
125–128 vol.1.

Taku Kudo and John Richardson. 2018. SentencePiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66–71.

Duc Le, Mahaveer Jain, Gil Keren, Suyoun Kim,
Yangyang Shi, Jay Mahadeokar, Julian Chan,
Yuan Shangguan, Christian Fuegen, Ozlem Kalinli,
Yatharth Saraf, and Michael L. Seltzer. 2021a. Con-
textualized streaming end-to-end speech recognition
with trie-based deep biasing and shallow fusion. In
Proc. Interspeech 2021, pages 1772–1776.

Duc Le, Gil Keren, Julian Chan, Jay Mahadeokar, Chris-
tian Fuegen, and Michael L. Seltzer. 2021b. Deep
shallow fusion for RNN-T personalization. In 2021
IEEE Spoken Language Technology Workshop (SLT),
pages 251–257.

Dong Won Lee, Chaitanya Ahuja, Paul Pu Liang, Sanika
Natu, and Louis-Philippe Morency. 2022. Multi-
modal lecture presentations dataset: Understanding
multimodality in educational slides. arXiv preprint
arXiv:2208.08080.

Dong Won Lee, Chaitanya Ahuja, Paul Pu Liang, Sanika
Natu, and Louis-Philippe Morency. 2023. Lecture
presentations multimodal dataset: Towards under-
standing multimodality in educational videos. In Pro-
ceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV), pages 20087–20098.

Guy Lev, Michal Shmueli-Scheuer, Jonathan Herzig,
Achiya Jerbi, and David Konopnicki. 2019. Talk-
Summ: A dataset and scalable annotation method for
scientific paper summarization based on conference
talks. In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics, pages
2125–2131. Association for Computational Linguis-
tics.

Irene Li, Alexander R Fabbri, Robert R Tung, and
Dragomir R Radev. 2019. What should I learn first:
Introducing LectureBank for NLP education and pre-
requisite chain learning. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 33,
pages 6674–6681.

Chin-Yew Lin. 2004. ROUGE: A package for automatic
evaluation of summaries. In Text Summarization
Branches Out, pages 74–81. Association for Compu-
tational Linguistics.

Ilya Loshchilov and Frank Hutter. 2018. Decoupled
weight decay regularization. In International Confer-
ence on Learning Representations (ICLR).

Michael McAuliffe, Michaela Socolof, Sarah Mihuc,
Michael Wagner, and Morgan Sonderegger. 2017.
Montreal Forced Aligner: Trainable text-speech
alignment using Kaldi. In Proc. Interspeech 2017,
pages 498–502.

9051

https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-english
https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-english
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH


Nhu-Van Nguyen, Mickaël Coustaty, and Jean-Marc
Ogier. 2014. Multi-modal and cross-modal for lec-
ture videos retrieval. In 22nd International Con-
ference on Pattern Recognition, ICPR 2014, Stock-
holm, Sweden, August 24-28, 2014, pages 2667–2672.
IEEE Computer Society.

OpenAI. 2023a. GPT-4 technical report.

OpenAI. 2023b. GPT-4V(ision) system card.

OpenAI. 2023c. GPT-4V(ision) technical work and
authors.

Vassil Panayotov, Guoguo Chen, Daniel Povey, and
Sanjeev Khudanpur. 2015. Librispeech: An ASR
corpus based on public domain audio books. In 2015
IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 5206–5210.

Daniel S. Park, William Chan, Yu Zhang, Chung-Cheng
Chiu, Barret Zoph, Ekin D. Cubuk, and Quoc V. Le.
2019. SpecAugment: A simple data augmentation
method for automatic speech recognition. In Proc.
Interspeech 2019, pages 2613–2617.

Golan Pundak, Tara N. Sainath, Rohit Prabhavalkar,
Anjuli Kannan, and Ding Zhao. 2018. Deep context:
End-to-end contextual speech recognition. In 2018
IEEE Spoken Language Technology Workshop (SLT),
pages 418–425.

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brock-
man, Christine McLeavey, and Ilya Sutskever. 2023.
Robust speech recognition via large-scale weak su-
pervision. In International Conference on Machine
Learning, ICML 2023, 23-29 July 2023, Honolulu,
Hawaii, USA, volume 202 of Proceedings of Machine
Learning Research, pages 28492–28518. PMLR.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing.
Association for Computational Linguistics.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. DistilBERT, a distilled version
of BERT: smaller, faster, cheaper and lighter. CoRR,
abs/1910.01108.

Guangzhi Sun, Chao Zhang, and Phil Woodland. 2022.
Tree-constrained pointer generator with graph neural
network encodings for contextual speech recognition.
In Proc. Interspeech 2022, pages 2043–2047.

Guangzhi Sun, Chao Zhang, and Philip C. Woodland.
2023a. Graph neural networks for contextual ASR
with the tree-constrained pointer generator. arXiv
preprint arXiv:2305.18824.

Guangzhi Sun, Chao Zhang, and Philip C. Woodland.
2023b. Minimising biasing word errors for contex-
tual ASR with the tree-constrained pointer generator.
IEEE/ACM Transactions on Audio, Speech, and Lan-
guage Processing, 31:345–354.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Haoxu Wang, Fan Yu, Xian Shi, Yuezhang Wang, and
Shiliang Zhang. 2023. SlideSpeech: A large-scale
slide-enriched audio-visual corpus. arXiv preprint
arXiv:2309.05396.

Shinji Watanabe, Takaaki Hori, Shigeki Karita, Tomoki
Hayashi, Jiro Nishitoba, Yuya Unno, Nelson En-
rique Yalta Soplin, Jahn Heymann, Matthew Wiesner,
Nanxin Chen, Adithya Renduchintala, and Tsubasa
Ochiai. 2018. ESPnet: End-to-end speech processing
toolkit. In Proc. Interspeech 2018, pages 2207–2211.

Shinji Watanabe, Takaaki Hori, Suyoun Kim, John R.
Hershey, and Tomoki Hayashi. 2017. Hybrid
ctc/attention architecture for end-to-end speech recog-
nition. IEEE Journal of Selected Topics in Signal
Processing, 11(8):1240–1253.

Yuzi Yan, Xu Tan, Bohan Li, Guangyan Zhang, Tao
Qin, Sheng Zhao, Yuan Shen, Wei-Qiang Zhang, and
Tie-Yan Liu. 2021. Adaptive text to speech for spon-
taneous style. In Proc. Interspeech 2021, pages 4668–
4672.

Zhengyuan Yang, Linjie Li, Kevin Lin, Jianfeng Wang,
Chung-Ching Lin, Zicheng Liu, and Lijuan Wang.
2023. The dawn of LMMs: Preliminary explorations
with GPT-4V(ision). CoRR, abs/2309.17421.

Weizhe Yuan, Graham Neubig, and Pengfei Liu. 2021.
BARTScore: Evaluating generated text as text gen-
eration. Advances in Neural Information Processing
Systems, 34:27263–27277.

Binbin Zhang, Hang Lv, Pengcheng Guo, Qijie Shao,
Chao Yang, Lei Xie, Xin Xu, Hui Bu, Xiaoyu
Chen, Chenchen Zeng, Di Wu, and Zhendong Peng.
2022. WENETSPEECH: A 10000+ hours multi-
domain mandarin corpus for speech recognition. In
ICASSP 2022 - 2022 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing
(ICASSP), pages 6182–6186.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Wein-
berger, and Yoav Artzi. 2019. BERTScore: Eval-
uating text generation with bert. In International
Conference on Learning Representations.

Ding Zhao, Tara N. Sainath, David Rybach, Pat Ron-
don, Deepti Bhatia, Bo Li, and Ruoming Pang. 2019.
Shallow-fusion end-to-end contextual biasing. In
Proc. Interspeech 2019, pages 1418–1422.

9052

https://doi.org/10.48550/ARXIV.2303.08774
https://cdn.openai.com/papers/GPTV_System_Card.pdf
https://cdn.openai.com/contributions/gpt-4v.pdf
https://cdn.openai.com/contributions/gpt-4v.pdf
https://proceedings.mlr.press/v202/radford23a.html
https://proceedings.mlr.press/v202/radford23a.html
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/2309.17421
http://arxiv.org/abs/2309.17421


A Creation Pipeline Details

A.1 Audio Segmentation Rules

We establish the following rules of segmenta-
tion:

1. Split is allowed when the silence exceeds 0.2
seconds or there is sentence break punctuation
(".", "!", "?").

2. If the accumulated "small segments" obtained
are greater than or equal to 8 seconds or the
accumulation is greater than or equal to 10 sec-
onds after the next "small segment" is added,
then the accumulated segments will form a
new segment.

3. If the silence exceeds 5 seconds, then this
silence is discarded and a new segment is
formed from the accumulated "small seg-
ments".

The first rule aims to preserve boundary words
as well as the semantics of sentences inspired
by LibriSpeech (Panayotov et al., 2015) and Gi-
gaSpeech (Chen et al., 2021). The second rule
controls the duration of each segment, while the
third rule avoids too long silence within a segment.

A.2 Auto Slide Deduplication Details

1. For the frames that contain some OCR block
representing the video cover Bcover, we delete
these images directly. And we remove
fixed appearing logo blocks Bexcluded, such
as "NIH".

2. Then, we set a threshold minB
alpha to filter

blocks with too few letters. For the filter-
ing process for images, we set the thresholds
minI

B and maxI
B to filter images with too few

blocks and too many blocks, respectively.
3. After the above filtering, we merge all the

blocks of each image into long text by their
coordinates.

4. Initially, we assign the first image to segment
0. Next, we will iterate through each image
chronologically: if the error rates (ER) be-
tween the current image (segment i) content
and all past image contents are all greater than
the threshold minER, then it is considered as
a new image and assigned to segment i + 1,
otherwise, it is not and kept as segment i.

5. Eventually, the last image in each segment
will be the result of the deduplication since
they are not repeating each other and contain
the most text of the images in their segment.

We would like to emphasize that the thresholds
mentioned above depend on the characteristics of
each source of videos, such as the clarity of the
picture, the density of the text, and the presence of
handwriting and formulae. Moreover, we adopt a
modified Word Error Rate (WER) or Char Error
Rate (CER) in the calculation of ER mainly consid-
ering the incremental content of slides. They are
formulated as follows:

WERmod =
S +D + 0× I

H + S +D
(4)

CERmod =
S +D + 0.1× I

H + S +D
(5)

where S, D, I , and H represent the number of
substitutions, deletions, insertions, and hits, respec-
tively. The choice of WER or CER also depends on
the aforementioned characteristics of the videos.

A.3 Postprocessing for Manual Combination
Results

To preserve the consistency of the data after obtain-
ing M c

s shown in Figure 4, we perform inverse text
normalization19, add punctuations, and capitalize
words using tools20. Finally, we obtain the word-
level timestamps of M c

s using Montreal Forced
Aligner (McAuliffe et al., 2017)21.

A.4 Manual Annotation Details

The master-granted annotators are assigned to com-
plete manual filling and combination in creating
speech transcription. In these two tasks, each
worker receives 0.06 USD for each finished sample,
respectively. The annotation interfaces shown in
Figure 12 and Figure 13 describe the rules as well
as the rejection cases of manual filling and combi-
nation in detail, respectively. The failed samples
are passed to other workers for annotation.

The experienced researchers in our team are as-
signed to annotate the OCR data, and the annota-
tion of each sample includes slide deduplication
and OCR content correction. Each worker received
the appropriate remuneration. The interface for
OCR content correction is shown in Figure 14,

19https://docs.nvidia.com/deeplearning/
nemo/user-guide/docs/en/main/nlp/text_
normalization/wfst/wfst_text_normalization.html#
inverse-text-normalization

20https://docs.nvidia.com/deeplearning/nemo/
user-guide/docs/en/main/nlp/punctuation_and_
capitalization.html

21https://github.com/MontrealCorpusTools/
Montreal-Forced-Aligner
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where PPOCRLabel22 is adopted. To control the
quality of labelling, we sampled the results of 9
annotators individually and checked whether 120
of the annotated images had a high number of miss-
ing or incorrect items, with no more than 10 wrong
items.

The master-granted annotators are assigned to
complete the MOS scoring in the TTS task evalua-
tion. A batch of 6 TTS results from the same audio
clip (with the addition of a trap sample used to de-
tect attentiveness). Each worker receives 0.2 USD
for each completed batch respectively. Similarly,
the annotation interface shown in Figure 15 details
the rules as well as the rejection cases, which is
inspired by Choi et al. (2023). The failed samples
will be passed to other workers for annotation.

As for the manual scoring of SSG tasks, we
posted the annotation task on Amazon Mechani-
cal Turk initially but found that the quality was
unsatisfactory due to the complexity of the scripts
and speech texts. Therefore, three experienced
researchers were assigned to carry out the anno-
tation task. Specifically, annotators need to rate
the generated slides/scripts on multiple dimensions,
including coherence, consistency, fluency and rel-
evance, as referenced in SummEval (Fabbri et al.,
2021). Each sample is scored on a scale from 1
(worst) to 5 (best) by 3 annotators. Note that we
sampled 100 items due to cost and multiple models.
The annotation interfaces are shown in Figure 16
and Figure 17.

B Experiment Details

B.1 ASR Benchmark Details

We construct the Attention-based Encoder-Decoder
(AED) with the help of the well-known ESP-
net (Watanabe et al., 2018) toolkit. We use Con-
former (Gulati et al., 2020) as the encoder, which
consists of 12 blocks, with hidden linear units
dff = 2048 and attention output size datt = 512.
Attention head H is set to 8 and the front CNN
kernel size is 31. As for the decoder, we use the
Transformer with 6 blocks (dff = 2048,H = 8).
We use BPE as our recognition unit, which consists
of 1k tokens obtained by SentencePiece (Kudo and
Richardson, 2018). In addition to the attention
training objectives, We use a certain degree of CTC
loss function. CTC weight λ is 0.3 during training,
while 0.2 for infering. SpecAugment (Park et al.,

22https://github.com/PaddlePaddle/PaddleOCR/
tree/release/2.7/PPOCRLabel

2019) is applied with time mask width T = 40 and
frequency mask with F = 30. Our model is trained
on four 24GB 3090 RTX GPUs for 60 epochs. The
top 10 checkpoints after one epoch training are
preserved for model averaging.

For the RNN-Transducer (RNN-T), we also
adopt Conformer as the encoder, with an interme-
diate joint network of 320 dimensions. The Con-
former has 15 blocks, 1024 hidden linear units, 4 at-
tention heads, and 256 attention output dimensions.
After that, a single layer of LSTM is performed.

B.2 CASR Benchmark Details
Our CASR task is performed under two paradigms.
One paradigm is to form the biasing list for an
utterance using target biasing words together with
distractors that are randomly selected from all rare
words, as a simulation of the real-world scenario
(Aleksic et al., 2015; Zhao et al., 2019; Pundak
et al., 2018; Le et al., 2021b). Our experiment uses
1000 distractors to form the biasing list for each
utterance, and rare words are defined by removing
the top 5k most frequent words from the vocabulary.
Another paradigm is audio-visual CASR (Sun et al.,
2022) which extracts the biasing list from visual
information, such as OCR annotation.

As for TCPGen, we use a 6-layer GCN (Kipf
and Welling, 2017) for future information repre-
sentation. Following the method proposed in (Le
et al., 2021a), the biasing lists are extracted by iden-
tifying words in the speech transcription of each
utterance that also appears in the total rare words
list, followed by the addition of plenty of distrac-
tors to simulate a real-life setting. The length of
the biasing list is set to 500 during training and
1000 during inferencing. Model training lasts for
70 epochs, and the best 10 of the checkpoints are
saved for model averaging. Our models are trained
on 24GB 3090 RTX GPUs.

Before model training, the rare word selection
is first performed. Our speech corpus includes
approximately 43k different words in total. We
conduct a word frequency analysis on the training
set, identifying words with a frequency ranking
exceeding 5k as members of the total rare word set.
The number of our rare word list is about 38k.

B.3 Spontaneous TTS Benchmark Details
We followed the settings recommended by the
architecture authors, and their experiments were
trained on a subset of GigaSpeech (Chen et al.,
2021), which is a speech corpus containing tran-
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scribed audio from audiobooks, Podcasts, and
YouTube. We use the training set of the M3AV
for MQTTS model training and arbitrarily extract
a sufficient number of samples from the Dev and
Test Set for speech synthesis to verify the effec-
tiveness of our model. We adopt HiFi-GAN (Kong
et al., 2020) as the backbone architecture for the
quantizer and discriminator, which we trained for
600k steps. After that, a Transformer is trained to
autoregressively generate the code representation
based on the past code sequence. The last check-
points from both steps are preserved. It is worth
noting that MQTTS training may take a long time.
Our models are trained on 24GB 3090 RTX GPUs.

B.4 Slide and Script Generation Benchmark
Details

For the selection of related paper sentences, we
adopt the DistilBERT (Sanh et al., 2019) model in
the repository of sentence-transformers (Reimers
and Gurevych, 2019) 23 to calculate the similar-
ity between the script text and each paper sen-
tence. Then we select the top 3 candidates with
similarity greater than 0.5 as the selection results.
In the training phase of benchmark systems, we
use LoRA (Hu et al., 2022) to fine-tune LLaMA-
2 (Touvron et al., 2023). The optimizer we use
is AdamW (Loshchilov and Hutter, 2018). The
learning rate curve is 1 epoch of warm-up and then
drops with a peak learning rate of 2× 10−4. The
total number of training epochs is 3. Our models
are trained on 24GB 3090 GPUs and 48GB A6000
GPUs. Fine-tuned InstructBLIP (Dai et al., 2023)
is another baseline. Specifically, we fine-tune the
officially released checkpoint for 20 epochs with
the learning rate increasing linearly from 1× 10−7

to 5 × 10−5 during the first 1000 steps and drop-
ping to 0 as a cosine function. The model is trained
on 80GB A100 GPUs with AdamW (Loshchilov
and Hutter, 2018) as the optimizer. The best check-
points are chosen according to the performance of
the development set. As for the generation settings,
we use nucleus sampling (Holtzman et al., 2020)
with a topp of 0.9. The maximum number of tokens
generated is 300. These generation settings are con-
sistent across LLaMA-2, InstructBLIP, GPT-4 and
GPT-4V.

23https://huggingface.co/sentence-transformers/
msmarco-distilbert-base-v4

Table 9: Detailed manual scoring results on SSG tasks.

Model Coh. (↑) Cons. (↑) Flu. (↑) Rel. (↑) Avg. (↑)

Slide −→ Script

LLaMA-27B+OCR 3.2 3.0 4.2 4.1 3.6
LLaMA-213B+OCR 3.7 3.4 4.1 4.3 3.9
GPT-4+OCR 4.0 4.4 5.0 5.0 4.6

InstructBLIP7B 1.6 2.0 2.6 3.2 2.4
InstructBLIP13B 2.0 2.1 2.6 3.3 2.5
GPT-4V 4.2 4.5 5.0 5.0 4.7

Script −→ Slide

LLaMA-27B 3.1 3.4 3.4 3.3 3.3
LLaMA-213B 3.5 3.6 3.9 4.0 3.8
GPT-4 4.6 4.4 5.0 5.0 4.8

Table 10: Detailed manual scoring results on SSG tasks
when paper information is introduced.

Range Coh. (↑) Cons. (↑) Flu. (↑) Rel. (↑) Avg. (↑)
Slide −→ Script

Subset 3.4 3.2 4.2 4.1 3.7
+ Paper 4.1 4.2 4.1 4.1 4.1

Script −→ Slide

Subset 3.2 3.4 3.3 3.3 3.3
+ Paper 3.6 3.7 3.5 3.4 3.6

B.5 Detailed Manual Scoring Results on SSG
Tasks

We show the detailed scoring results in Table 9
and Table 10, which include the coherence (Coh.),
consistency (Cons.), fluency (Flu.), relevance (Rel.)
and average value (Avg.) between the hypothesis
and its reference text.

C Qualitative Analyses of SSG
Benchmark Systems

The comparisons of the benchmark systems in
“Slide→Script” are shown in Figure 6 and Figure 7.
LLaMA-2 and InstructBLIP below refer to models
of size 7B. We can find that the scripts generated
by GPT-4+OCR and GPT-4V are highly qualified
and roughly match the references. The results of
LLaMA-2+OCR are acceptable, although slightly
weaker than the previous two. All three can de-
velop detailed descriptions around topics in slides,
such as the “NIH Outreach Toolkit” in Figure 6 and
“Aging and Migration” in Figure 7. InstructBLIP,
on the other hand, fails to find the right theme, as
shown in Figure 6 and Figure 7, suggesting that
today’s open-source LMM models struggle in han-
dling text in slides.

The comparisons of the benchmark systems in
“Script→Slide” are shown in Figure 9 and Fig-
ure 10. The slides generated by GPT-4 are closer
to references than those generated by LLaMA-2,
and the contents are more accurate and condensed.
For example, GPT-4 presents “Drosophila ToLL”
in Figure 9 and “Pipeline” in Figure 10, while
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LLaMA-2 does not. We can conclude that GPT-4
has a better understanding of complex academic
knowledge than LLaMA-2.

Figure 8 and Figure 11 show the improvement
in the quality of the generated scripts and slides
brought by external knowledge. The addition of
external knowledge enables AI models to produce
necessary details, such as “WiFi CSI” in Figure 8
and “13 long-term users” in Figure 11. It shows
that the introduction of external knowledge leads
to more comprehensive information captured by AI
models.

Slide

Prompt There is a single slide and the speaker's speech within a video clip. The 
clip is a part of the whole speech video. Please act like a speaker and 
generate the corresponding speech text based on the text (picture) in the 
given single slide.

Reference For more information on inclusion, the NIH Office of Research on 
Women's Health has created the Outreach Inclusion Toolkit to help 
principal investigators and their teams fulfill their responsibilities related 
to inclusion of women in clinical research. Supported by NIH, we provide 
information on best practices, federal laws, regulations, and NIH policies, 
as well as a variety of case studies featuring researchers actual 
experiences with including women. In their studies, they share lessons 
learned.

LLaMA-2+ 
OCR

doctor. It's an amazing job. The NIH puts out a really nice set of 
documents that they call the NIH outreach toolkit. And you can find those 
and they provide a lot of, and I mean a lot of help in terms of helping you 
with how to engage, recruit and retain women in clinical research. And it 
includes several things that we just talked about in terms of

GPT-4 + 
OCR

Hello everyone,\n\nToday we will be delving into the importance of 
engaging, recruiting, and retaining women in clinical research and the role 
of the NIH Outreach Toolkit in this process.\n\nThe NIH, or National 
Institutes of Health, has developed an Outreach Toolkit which serves as a 
guide for principal investigators and their research teams. Its primary 
purpose is to aid in fulfilling their responsibilities to ensure the inclusion 
of women in their clinical studies. The inclusion of women in clinical 
research isn't just about being fair or balanced. It's about…

InstructBLIP research so the nih outreach toolkit is a resource that we developed to 
help engage retire women and retain racial ethnic minority woman in 
clinical trials, particularly for studies looking at gender specific diseases 
like breast cancer it includes 5 key steps

GPT-4V Welcome, everyone. Today, we're going to talk about an essential 
resource provided by the NIH, the NIH Outreach Toolkit, which is 
specifically designed to assist principal investigators and their research 
teams in engaging, recruiting, and retaining women in clinical 
research.\n\nAs we delve into this toolkit, it's important to understand 
that it's not just a collection of suggestions; it's a comprehensive guide 
built on a strong foundation of best practices and research. The toolkit 
offers a review of research on recruitment and outreach best practices…

Figure 6: “Slide→Script” Case I where scripts gener-
ated by benchmark systems are compared.

Slide

Prompt There is a single slide and the speaker's speech within a video clip. The 
clip is a part of the whole speech video. Please act like a speaker and 
generate the corresponding speech text based on the text (picture) in the 
given single slide.

So this suggesting that suggested then that quiescent neural stem cells 
may become that are normally very stuck lining the ventricle. They may 
become abnormal migratory with age and that might we don't know, but 
we it's very speculative, but we speculate that this might actually be 
problematic for their normal function. Maybe you know those cells are 
considered the mother stem cells for glioblastoma, so the fact that they 
are more migratory could also like accentuate the bad features of the 
glioblastoma. Whereas in contrast the neuro stem cells, the activated...

its own genetic defects in order to provide guidance to these very late 
dividing neuroblasts? And then, you know, now I've shown you some bad 
things happening in neuroblastoma, but there are lots of bad things 
happening in normal aging. Aging has a deleterious effect on cell 
migration and therefore on tissue organization. And I really believe that 
that that that the aging of the neural stem cell niche is partly because of 
deleterious changes in stem cell migration. So we are now collaborating 
with Dr. Murry Panoragam, who has shown that aging and injury…

In this part of our discussion, we are going to explore a fascinating area, 
which is the correlation between aging and migration within the 
neurogenic niche.\n\nBefore we proceed, it's essential to understand the 
significance of the neurogenic niche, particularly the subventricular zone, 
located along the lateral ventricles in our brains. This area is where neural 
stem cells reside, contributing to the continuous generation of new 
neurons and glial cells throughout our lives.\n\nIn instances of stroke or 
traumatic brain injury, the functioning and behavior of these neural...

cells and it's thought that there are a bunch of other things we know from 
human data for example in the aging brain you can see all sorts or regions 
where rna is localized so one would assume as i just mentioned this 
means they may not be accessible to

Welcome everyone, and thank you for joining today's session. Our focus 
in this segment is on the intriguing topic of 'Aging and migration in 
neurogenic niches.' As we delve into this subject, we'll be exploring the 
relationship between aging and the behavior of neural stem cells within 
the brain.\n\nLet's take a look at our slide here, where we have a 
simplified representation of the brain. You can see the lateral ventricle 
and the subventricular zone highlighted. This area, known as the neural 
stem cell niche, plays a critical role in the production and migration…

Reference

LLaMA-2+ 
OCR

GPT-4 + 
OCR

InstructBLIP

GPT-4V

Figure 7: “Slide→Script” Case II where scripts gener-
ated by benchmark systems are compared.
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Slide

Prompt There is a single slide and the speaker's speech within a video clip. The 
clip is a part of the whole speech video. Please act like a speaker and 
generate the corresponding speech text based on the text in the given 
single slide and related sentences in the paper.

Reference First, in a typical multi person scenario, Wi-Fi signals propagate from 
transmitter to receiver through multiple passes including line of sight, 
reflection passes from static objects and reflection from multiple targets. 
Therefore, the Wi-Fi CSI can be expressed as below. As the CSI is a linear 
mixture of respiration signals, we can apply ICA to separate the 
respiration of each person. That sounds

Related 
Paper 
Sentences

First, we consider the effect of multi-person respiration on WiFi CSI with 
just one transmitting antenna and one receiving antenna.\nWiFi CSI is a 
complex value to describe how the WiFi signals propagate from the 
transmitter to the receiver through multiple paths at a certain carrier 
frequency.\nWith the carefully processed WiFi CSI from multiple 
antennas, we can then model the multi-person respiration sensing as a 
BSS problem and solve it using the independent component analysis (ICA) 
method.

Without 
Paper 
Sentences

send the breathing signals separately for each person. Then we can 
compute the multi person wireless channel matrix which is a mixture of 
the signals from different people. With this idea, we can get the breathing 
channel with a single antenna for each person.

With 
Paper 
Sentences

imagine a system with one transmitter and one receiver. We can 
characterize the WiFi CSI with the linear superposition of all the paths 
from the transmitter to the receiver. Based on the WIFE CSI which 
characterizes the linear superposition of signals from all the paths, we can 
apply the independent component analysis method to separate the 
respiration of each person.

Figure 8: “Slide→Script” Case III where paper sen-
tences are provided as external knowledge.

Prompt There is a single slide and the speaker's speech within a video clip. The 
clip is a part of the whole speech video. Please act like a slideshow creator 
and generate the text in the corresponding single slide based on the given 
speech text.

Reference

Script so as to just to sort of set the stage and illustrate how young this field is. 
The first mammalian Pattern recognition receptor was identified by 
Charles Janeway and Ruslan Medzhitov only. 20 years ago and it was 
based on homology of mammalian toe like receptors and aisle 1 receptor 
to Drosophila Toll.

LLaMA-2 The first mammalian PRR was identified by Janeway and Medzhitov (20 
years ago)\nDrosophila Toll\nC-type lectin\nDectin-1\nMUC16

GPT-4 "Overview: Evolution of Pattern Recognition Receptors\n- Field is 
relatively young\n- First mammalian Pattern recognition receptor 
identified by Charles Janeway and Ruslan Medzhitov 20 years ago\n-
Identification based on homology of mammalian Toll-like receptors and 
IL-1 receptor to Drosophila Toll"

Figure 9: “Script→Slide” Case I where slides generated
by benchmark systems are compared.

Prompt There is a single slide and the speaker's speech within a video clip. The 
clip is a part of the whole speech video. Please act like a slideshow creator 
and generate the text in the corresponding single slide based on the given 
speech text.

Reference

Script we implement a real time pipeline. Given a Gray scale input image, we 
first segment the hand facial skin according to the brightness variation 
features. Then we run a geometry rule based contact detection method to 
detect face touch and then recognize touch location. After that we train 
different CM models associated with different touch locations to classify 
the hand to face gestures. Finally, we further run corresponding methods 
to determine the required integration parameters such as estimating the 
nose deformation by tracking the geometric features of nose contour in 
continuous frame or locate the fingertip for swapping input.

LLaMA-2 Real-time Pipeline\nFace Detection\nTouch Detection\nHand
Segmentation\nFinger Location\nFace Contact Detection\nBrightness
Variation\nIntegration Module\nHand Classifier\nGeometric
Detection\nContextual Assessment\nInput Image\nNose
Deformation\nFinger Gesture Classification\nFinger Locatior\nRun
detection method for touch and hand detection Run the hand 
classification model to obtain the gesture results Based on the contextual 
factor and hand gesture features, take additional action

GPT-4 Slide Text:\n\n1. Real Time Pipeline Implementation\n2. Process:\n -
Gray scale image input\n - Segment hand facial skin based on brightness 
variation\n - Geometry rule based contact detection\n - Face touch and 
touch location recognition\n3. Training of CM models for different touch 
locations\n4. Classification of hand to face gestures\n5. Further Steps:\n
- Determination of integration parameters\n - Estimation of nose 
deformation through geometric feature tracking\n - Fingertip location 
for swapping input

Figure 10: “Script→Slide” Case II where slides gener-
ated by benchmark systems are compared.

Prompt There is a single slide and the speaker's speech within a video clip. The 
clip is a part of the whole speech video. Please act like a slideshow creator 
and generate the text in the corresponding single slide based on the given 
speech text and related sentences in the paper.

Reference

Script We We conducted an exploratory study with certain long term users 
across the Us. Participants freely explored their data using for about 20 
min.

Exploratory study\n43 students who had been using iStent for a year, 
exploring their personal data for about 20 min\n"You can set any criteria 
you like: I found out that when I have a morning coffee, I go to the gym 
more and that made me very happy."

Exploratory study with 13 long-term users (USA)\nFitbit data exploration: 
free-form exploration (20 min)

Without 
Paper 
Sentences

With 
Paper 
Sentences

Related 
Paper 
Sentences

To examine how multimodal interaction helps people explore their own 
data, we conducted an exploratory think-aloud study with 13 long-term 
Fitbit users.\nWe see opportunities to improve visual representations to 
further enhance data exploration experiences especially with long-term 
data.\nWe analyzed the video recordings and the interaction logs from 
the free-form exploration phase.

Figure 11: “Script→Slide” Case III where paper sen-
tences are provided as external knowledge.
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Figure 12: Annotation interface for manual filling in constructing speech transcription.

Figure 13: Annotation interface for manual combination in constructing speech transcription.
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Figure 14: Annotation interface for correcting OCR results.

Figure 15: Annotation interface for MOS scoring in evaluating TTS.
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Figure 16: Annotation interface for manual scoring in Slide → Script task.

Figure 17: Annotation interface for manual scoring in Script → Slide task.
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