@inproceedings{peng-etal-2024-revisiting,
title = "Revisiting Demonstration Selection Strategies in In-Context Learning",
author = "Peng, Keqin and
Ding, Liang and
Yuan, Yancheng and
Liu, Xuebo and
Zhang, Min and
Ouyang, Yuanxin and
Tao, Dacheng",
editor = "Ku, Lun-Wei and
Martins, Andre and
Srikumar, Vivek",
booktitle = "Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.acl-long.492/",
doi = "10.18653/v1/2024.acl-long.492",
pages = "9090--9101",
abstract = "Large language models (LLMs) have shown an impressive ability to perform a wide range of tasks using in-context learning (ICL), where a few examples are used to describe a task to the model. However, the performance of ICL varies significantly with the choice of demonstrations, and previous research usually focuses on the data aspect ignoring the model`s effect. In this work, we first revisit the factors contributing to this variance from the model aspect, and find that the demonstration choice is both data- and model-dependent. We further propose a conjecture that the performance of a demonstration positively correlates with its contribution to the model`s understanding of the test samples, and accordingly propose a data- and model-dependent demonstration selection method, TopK + ConE. Empirically, our method yields consistent improvements in both language understanding and generation tasks with different model scales. Further analyses confirm that, besides the generality and stability under different circumstances, our method provides a unified explanation for the effectiveness of previous methods. Code is publicly available at https://github.com/Romainpkq/revisit{\_}demon{\_}selection{\_}in{\_}ICL."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="peng-etal-2024-revisiting">
<titleInfo>
<title>Revisiting Demonstration Selection Strategies in In-Context Learning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Keqin</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Liang</namePart>
<namePart type="family">Ding</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yancheng</namePart>
<namePart type="family">Yuan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xuebo</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yuanxin</namePart>
<namePart type="family">Ouyang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dacheng</namePart>
<namePart type="family">Tao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lun-Wei</namePart>
<namePart type="family">Ku</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andre</namePart>
<namePart type="family">Martins</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vivek</namePart>
<namePart type="family">Srikumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Large language models (LLMs) have shown an impressive ability to perform a wide range of tasks using in-context learning (ICL), where a few examples are used to describe a task to the model. However, the performance of ICL varies significantly with the choice of demonstrations, and previous research usually focuses on the data aspect ignoring the model‘s effect. In this work, we first revisit the factors contributing to this variance from the model aspect, and find that the demonstration choice is both data- and model-dependent. We further propose a conjecture that the performance of a demonstration positively correlates with its contribution to the model‘s understanding of the test samples, and accordingly propose a data- and model-dependent demonstration selection method, TopK + ConE. Empirically, our method yields consistent improvements in both language understanding and generation tasks with different model scales. Further analyses confirm that, besides the generality and stability under different circumstances, our method provides a unified explanation for the effectiveness of previous methods. Code is publicly available at https://github.com/Romainpkq/revisit_demon_selection_in_ICL.</abstract>
<identifier type="citekey">peng-etal-2024-revisiting</identifier>
<identifier type="doi">10.18653/v1/2024.acl-long.492</identifier>
<location>
<url>https://aclanthology.org/2024.acl-long.492/</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>9090</start>
<end>9101</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Revisiting Demonstration Selection Strategies in In-Context Learning
%A Peng, Keqin
%A Ding, Liang
%A Yuan, Yancheng
%A Liu, Xuebo
%A Zhang, Min
%A Ouyang, Yuanxin
%A Tao, Dacheng
%Y Ku, Lun-Wei
%Y Martins, Andre
%Y Srikumar, Vivek
%S Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F peng-etal-2024-revisiting
%X Large language models (LLMs) have shown an impressive ability to perform a wide range of tasks using in-context learning (ICL), where a few examples are used to describe a task to the model. However, the performance of ICL varies significantly with the choice of demonstrations, and previous research usually focuses on the data aspect ignoring the model‘s effect. In this work, we first revisit the factors contributing to this variance from the model aspect, and find that the demonstration choice is both data- and model-dependent. We further propose a conjecture that the performance of a demonstration positively correlates with its contribution to the model‘s understanding of the test samples, and accordingly propose a data- and model-dependent demonstration selection method, TopK + ConE. Empirically, our method yields consistent improvements in both language understanding and generation tasks with different model scales. Further analyses confirm that, besides the generality and stability under different circumstances, our method provides a unified explanation for the effectiveness of previous methods. Code is publicly available at https://github.com/Romainpkq/revisit_demon_selection_in_ICL.
%R 10.18653/v1/2024.acl-long.492
%U https://aclanthology.org/2024.acl-long.492/
%U https://doi.org/10.18653/v1/2024.acl-long.492
%P 9090-9101
Markdown (Informal)
[Revisiting Demonstration Selection Strategies in In-Context Learning](https://aclanthology.org/2024.acl-long.492/) (Peng et al., ACL 2024)
ACL
- Keqin Peng, Liang Ding, Yancheng Yuan, Xuebo Liu, Min Zhang, Yuanxin Ouyang, and Dacheng Tao. 2024. Revisiting Demonstration Selection Strategies in In-Context Learning. In Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 9090–9101, Bangkok, Thailand. Association for Computational Linguistics.