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Abstract

In the field of speech synthesis, there is a
growing emphasis on employing multimodal
speech to enhance robustness. A key chal-
lenge in this area is the scarcity of datasets
that pair audio with corresponding video. We
employ a methodology that incorporates modal-
ity alignment during the pre-training phase
on multimodal datasets, uniquely facilitating
Zero-Shot generalization through the process
of freezing the video modality feature extrac-
tion component and the encoder module within
the pretrained weights, thereby enabling ef-
fective cross-modal and cross-lingual transfer.
We have named this method ‘Uni-Dubbing’.
Our method finely tunes with both multimodal
and single-modality audio data. In multimodal
scenarios, it achieves a reduced word error
rate (WER) of 31.73%, surpassing the previ-
ous best of 33.9%. It also excels in metrics
like tone quality and synchronization. With
single-modality audio, it achieves a WER of
36.08%, demonstrating adaptability to lim-
ited data. Its domain generalization capa-
bilities are proven across various language
tasks in video translation and audio genera-
tion. Trained on 433 hours of audio data, it
surpasses techniques using 200 hours of audio-
visual data. The code and demo are available
at https://diracer.github.io/unidubbing.

1 Introduction

With the widespread use of short videos and on-
line meetings in daily life and the workplace(Gupta
et al., 2023), the barrier of cross-linguistic com-
munication has become an urgent problem, and
thus multimodal technologies have attracted much
attention(Yemini et al., 2023). Recently, many re-
searchers have conducted corresponding studies
in this area, such as lip reading task(Assael et al.,
2016; Jin et al., 2023; Li et al., 2023) that trans-
fers video domain to text domain, Lip task(Prajwal
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et al., 2020; Kim et al., 2021; Michelsanti et al.,
2021; Mira et al., 2022b) that transfers video do-
main to audio domain, and lip translation(Huang
et al., 2023) that converts to the target language
directly based on lips. In the case of the field of
visual tasks, the biggest challenge for researchers
is the extreme scarcity of training data. In addi-
tion, the relationship between lips and speech is
not always a simple one-to-one mapping; for ex-
ample, the same word may have very different lip
shapes for people with different accents(Choi et al.,
2023a). Therefore, maintaining accurate intonation
poses a significant challenge, and this has led to the
emergence of many important research findings.

For these reasons, we adopt the strategy of using
discrete units as intermediate targets, i.e., trans-
forming audio and video data into discrete units for
alignment, which can effectively circumvent the
disadvantage of insufficient paired audio and video
data. On top of this, we employ the RVQ(Défossez
et al., 2022) module thus enabling the method to
achieve better timbre preservation, i.e. high fi-
delity, after Full-Shot training. Furthermore, in
order to cope with the lack of data for contem-
porary visual tasks, we also use mHubert(Polyak
et al., 2021) and K-means of re-combining with
discrete units, which enables our model to achieve
better semantic consistency and reach Zero-Shot
capability. As mentioned earlier, the barriers to
cross-language communication are equally signifi-
cant challenges and a lot of good work has emerged,
but unfortunately none of the current methods have
been able to achieve Zero-Shot cross-language
video translation yet. We further explored learn-
ing cross-language and cross-modal Lip2Wav map-
pings from the audio domain, i.e., Zero-Shot trans-
speech, based on the Zero-Shot Lip2Wav model,
have verified that the method is capable of cross-
language migration.

In summary, our goals in the current cross-
language video-to-speech translation are twofold:

10082

https://diracer.github.io/unidubbing


1) High quality and low error: the requirement to
be able to recognise the gender in a video so as
to generate the corresponding tones with minimal
error is very challenging. 2) Zero-Shot: the abil-
ity of the reasoning process to achieve Zero-Shot
is crucial for practicality when considering video
translation.

Based on these two goals, in this paper, the inno-
vation of this study lies in proposing a framework
that requires only cross-linguistic audio speech
training, without the need for visual speech training
inputs, to achieve direct synthesis of visual speech
to cross-linguistic audio speech. This framework
can predict the corresponding audio speech output
by analyzing an individual’s lip movements, and
this prediction is not limited to the language system
of the input visual speech. Our method utilizes an
advanced Zero-Shot learning strategy (Cheng et al.,
2023b) that aligns audio and visual phonemes with
audio data alone during the training process, thus
enabling the prediction of audio outputs in a target
language that has not been seen before in seem-
ingly impossible cross-modal scenarios. The main
contributions of this paper are:

• Our cross-modal Zero-Shot transfer approach
for the Lip2Wav task, trained exclusively with
target audio, matches top Full-Shot models in
WER, sound quality, and synchronization.

• Our method in the Lip2Wav task on the LRS3
dataset attains state-of-the-art results in WER,
ESTOI, LSE-C, and LSE-D, achieving par-
tial timbre preservation to distinguish voice
characteristics of unseen speakers.

• Our cross-lingual audio generation technol-
ogy creates target language audio from single-
language videos, eliminating the need for dual-
language video training. This streamlines
training and lessens the need for extensive
datasets in cross-lingual dubbing, while also
reducing noise.

2 Related Work

In our paper, for the cross-language Lip2Wav syn-
thesis task we mainly divide it into two steps: first
implementing high-fidelity video-to-speech synthe-
sis, followed by Zero-Shot cross-language video-
to-speech translation. A great deal of excellent
research work has preceded our study.

2.1 Video to Speech Synthesis
Video speech synthesis techniques(Cooke et al.,
2006; Afouras et al., 2018a; ?; Cheng et al., 2023a)

that dub silent videos have received a great deal of
attention from researchers in the recent past. Pra-
jwal et al. (2020) presented the Lip2Wav, which
utilizes a sequence-to-sequence architecture, en-
abling it to accurately capture contextual infor-
mation and generate precise audio. Hong et al.
(2021) trained a multimodal memory network, VV-
Memory, to store and recall audio features corre-
sponding to visual inputs so that audio informa-
tion can be accessed exclusively through visual
inputs during inference. Vougioukas et al. (2019)
introduced an end-to-end temporal model based
on GAN, capable of generating speech that syn-
chronizes seamlessly with silent videos, presenting
a convincing and difficult-to-distinguish quality.
Additionally, there have been several recent papers
based on GANs(Kim et al., 2021; Hong et al., 2022;
Mira et al., 2022b). Most recently, a new method
based on diffusion, called DiffV2S, has been pro-
posed by Choi et al. (2023a) who introduced a
novel speaker embedding extractor guided by vi-
sual information and simultaneously developed a
diffusion-based video-to-speech synthesis model.
Choi et al. (2023b) built upon the Lip2Wav model
by incorporating quantized supervised speech rep-
resentations, namely speech units, for synthesizing
intelligible speech from silent videos.

However, despite the fact that all the aforemen-
tioned related methods have their own merits, the
problem of lack of training data for the visual
task mentioned in the previous section remains un-
solved. With this in mind, we train our model by
using discrete units as intermediate comparison tar-
gets in the audio and video domains, thus no longer
relying on paired audio and video data.

2.2 Cross-language Translation
The task of cross-language translation is also a
very challenging and important endeavour that
also receives a lot of attention.(Lavie et al., 1997;
Wahlster, 2000; Nakamura et al., 2006; ITU, 2016).
Tjandra et al. (2019) introduced a discrete repre-
sentation of the source language to target speech
into the cascaded S2ST system, where this discrete
representation is predicted by a separately trained
VQVAE and subsequently utilized by the VQVAE
decoder to generate the target speech spectrogram.
Zhang et al. (2021) proposed the XLVAE model to
enhance the discretization and reconstruction capa-
bilities of VQVAE through cross-linguistic speech
recognition. Lee et al. (2021) utilizes a separately
trained vocoder, which includes a duration predic-
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Figure 1: Uni-Dubbing Overview: In the high-fidelity Lip2Wav task, we employed a Full-Shot training approach
and improved the generation of discrete units. The discrete units generated by this method capture more fine-grained
acoustic information. For the cross-modal and cross-language Zero-Shot tasks, we adopted an approach similar
to uHubert (Hsu and Shi, 2022), where no visual data is used during training and fine-tuning. Another distinction
from the Full-Shot method is that, in Zero-Shot tasks, we froze the feature extraction and Encoder modules to
prevent excessive loss of original visual knowledge during knowledge transfer. During inference, we input only
visual data and use the corresponding Vocoder to generate audio through discrete units. The speech generated in
the Zero-Shot manner contains only semantic information, while the Full-Shot generated speech not only includes
semantic information but also retains some acoustic information.

tor, to directly predict waveforms from discrete
representations. Jia et al. (2019) first introduced a
model based on a sequence-to-sequence architec-
ture capable of end-to-end training and inference.
To improve translation quality and overgeneration,
Jia et al. (2022) presented Translatotron2, which
consists of a speech encoder, a language decoder,
an acoustic synthesizer, and a single attention mod-
ule that connects them together. There is also some
work that attempts to introduce visual speech to en-
hance robustness in the translation process(Huang
et al., 2023).

To the best of our knowledge, paired cross-
lingual audio-video datasets are currently very
sparse. This scarcity results in only one ex-
isting model capable of achieving cross-lingual
Lip2Wav translation. Instead, in direct contrast
with the methods mentioned above, our innovative
discrete-unit-based approach can successfully cross
these dataset barriers, thus learning cross-language
visual-phoneme mappings with Zero-Shot cross-
language lip-synthesis translation capability.

3 Method

3.1 Overview

The overview of this paper is depicted in Figure
1. Figure 1a) describes the training process for
high-fidelity speech synthesis, while Figure 1b)
illustrates the training flow for two tasks: cross-
modal and cross-language. The main differences
between these tasks lie in the modality used during
training, the method for generating discrete units,
and the treatment of predicted discrete units for
synthesizing speech. Additionally, for Zero-Shot
training, it is necessary to freeze the encoder to
retain the visual knowledge acquired during the
pretraining phase.

3.2 High-Fidelity Lip2Wav

While the state-of-the-art ReVISE model (Hsu
et al., 2023) achieves leading performance in
Lip2Wav synthesis on the LRS3 dataset, it does not
preserve the speaker’s timbre during speech syn-
thesis. To address this issue, we propose a novel
approach that utilizes acoustic tokens derived from
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the Hifi-Codec (Yang et al., 2023).
The Hifi-Codec consists of an audio encoder, a

Residual Vector Quantizer (RVQ), and an audio
decoder: Consider an audio signal x with a length
of d and sampled at a rate of sr, resulting in a total
duration of T = d/sr.

1) Initially, the audio encoder E, comprising
multiple convolutional blocks, processes the in-
put audio. This encoder extracts features and out-
puts a latent representation z. 2) Subsequently,
the Residual Vector Quantizer Q employs vector
quantization layers to convert z into a discrete rep-
resentation zQ. In this process, the speech utter-
ance x is encoded as a sequence of acoustic tokens
[a1, a2, ..., aT ], where each token ai is an element
of the set {0, 1, ...,K2−1}, with 1 ≤ i ≤ T . These
acoustic tokens are the discrete units that we focus
on in our training. 3) The audio decoder G recon-
structs the signal x̂ from the highly compressed
latent representation zQ. This algorithm efficiently
quantizes the encoder output by iteratively refining
the residual, which helps in preserving important
information while reducing redundancy. Further,
to address the challenges of temporal synchronic-
ity in Lip2Wav tasks, we have innovated upon the
existing AV-Hubert model. We have replaced the
AV-Hubert decoder with a new structure.

Our adaptation involves a unique decoder struc-
ture, which includes three transposed convolutional
layers. Each layer has a kernel size (K) of 4,
a stride (S) of 2, padding (P ) of 1, and output
padding (Op) of 1. This configuration is meticu-
lously designed to more accurately align lip move-
ments with the generated speech, thereby enhanc-
ing the synchronicity that is crucial for effective
Lip2Wav synthesis. The output size (O) of each
transposed convolutional layer is calculated using
the formula:

O = ((I − 1)× S +K − 2× P ) +Op (1)

where I denotes the input size.

3.3 Zero-Shot Lip2Wav Model Adaptation
To overcome the challenge of scarce paired audio-
visual datasets, we loaded the pre-trained weights
of AV-Hubert and focused on fine-tuning with pure
audio data. To validate the effectiveness of our
approach, we adopted the same Zero-Shot con-
figuration on the LRS3 dataset as uHubert. The
AV-Hubert model, pre-trained on paired audio-
visual data, achieves multimodal alignment by map-
ping visual speech and audio speech to the same

phoneme space. During the fine-tuning phase with
pure audio data, we froze the decoder and only
trained the final transposed convolution layer to
preserve the multimodal alignment knowledge ac-
quired during pre-training. In the inference process,
the model processes silent lip videos, predicting the
corresponding speech discrete units solely based on
lip movements. This Zero-Shot learning strategy
enables the model to effectively synthesize speech
from unseen lip movements, enhancing its robust-
ness in diverse scenarios.

To further validate the effectiveness of our
method, we fine-tuned the model using discrete
units generated in other languages (e.g., Spanish,
French), which were languages not encountered
during pretraining. This approach not only enables
the model to generate speech from lip movements
but also to translate it into different languages.
For example, during inference, an English spoken
video could be decoded into the audio of another
language, simplifying the process of speech syn-
thesis and translation without the need for separate
models for each task.

In these two tasks, our model does not con-
tain any speaker embeddings and is unable to im-
plicitly acquire visual feature embeddings of the
speaker during the fine-tuning phase, eliminating
the need to replicate the speaker’s acoustic informa-
tion. Therefore, we used semantic tokens generated
by the mHubert and kmeans methods as target units.
Compared to acoustic information, semantic infor-
mation has broader applicability, making the use
of semantic tokens more conducive to generaliza-
tion in cross-modal and cross-language Zero-Shot
tasks.

3.4 Training Object

In this study, the focus is on predicting discrete
units, for which the cross-entropy loss function

L =
∑

t

C∑

j=1

zjt log f
j
t (x̃a, xv)

is consistently employed. This formula calculates
the loss by summing over all frames (t) and across
the C units in the vocabulary. The term zjt denotes
the one-hot encoded label of the j-th unit in the
t-th frame, and f j

t (x̃a, xv) represents the predicted
probability distribution over the discrete units for
the same frame and unit, as outputted by the en-
hancer.
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Method ESTOI ↑ LSE-C ↑ LSE-D ↓ WER ↓ MOS↑
VCA-GAN (Kim et al., 2021) 0.207 4.54 9.63 96.63 1.5±0.19
SVTS (Mira et al., 2022a) 0.244 7.08 7.04 79.83 1.96±0.24
Multi-task (Kim et al., 2023) 0.240 4.85 9.15 66.78 1.77±0.24
DiffV2s (Choi et al., 2023a) 0.284 7.28 7.27 39.2 4.06±0.21
ReVISE (Hsu et al., 2023) 0.285 7.12 7.25 33.9 4.11±0.04
Uni-Dubbing (Full-Shot) 0.294 7.58 6.90 31.73 4.16±0.06
Uni-Dubbing (Zero-Shot) 0.235 6.70 7.59 36.08 4.08±0.05

Table 1: The results of various methods on the test set of the LRS3 dataset are shown. The symbol ↑ indicates that
higher values are better, while ↑ signifies that lower values are preferable.

4 Experiment

4.1 Datasets

LRS3 Dataset LRS3 (Afouras et al., 2018b) is an
extensive and open-source benchmark collection
for visual speech recognition research, commonly
known as lip-reading. This dataset is the successor
to the LRW (Chung and Zisserman, 2017a) and
LRS2 (Afouras et al., 2018a) datasets and features
a vast array of labeled video content with corre-
sponding textual transcriptions, primarily sourced
from TED Talks.

LRS3-T Dataset LRS3-T (Huang et al., 2023) is
a new audio-visual translation dataset that has been
generated from the LRS3 dataset through a cascad-
ing process, combining Neural Machine Transla-
tion (NMT) and Text-to-Speech (TTS) technolo-
gies. This intricate processing sequence culminated
in a parallel audio-visual translation dataset com-
prising 200 hours, encompassing both the original
source videos and the translated speech in the target
language.

MUSAN Dataset MUSAN (Snyder et al., 2015)
is a collection of music, speech, and noise record-
ings suitable for audio processing tasks such as
speech activity detection and machine learning ap-
plications. It features 60 hours of speech from
various sources, over 42 hours of diverse music
tracks, and 6 hours of environmental and techni-
cal noises. We used it to generate various types
of noise which were added to the original audio,
in order to test the translation task’s resistance to
noise interference.

4.2 Evaluation

In our study, we evaluate Lip2Wav and audio-video
translation using key metrics. For semantic accu-
racy, we use WER , and for sound quality, we em-

ploy the Extended Short-Time Objective Intelligi-
bility (ESTOI). Synchronization is measured using
LSE-D (predicted audio-video temporal distance)
and LSE-C (prediction confidence), as per Sync-
Net (Chung and Zisserman, 2017b). Our method
approximates the speaker’s voice, thus we use the
Mean Opinion Score (MOS) for evaluating tim-
bre. To ensure consistency with other studies, we
adopted a scoring system ranging from 1 to 5, with
increments of 0.5 points. For each model, we ran-
domly selected 50 samples for evaluation. We rec-
ommend listening to our website’s audio samples
for a practical understanding.

For language translation, we apply the BLEU
(Papineni et al., 2002) score to evaluate the accu-
racy and fluency of speech generation in different
languages, comparing machine-generated text to
reference texts.

4.3 Results
4.3.1 High-Fidelity Video-to-speech synthesis
Unlike other datasets that may concentrate on short
phrases or isolated words, LRS3 offers longer se-
quences of speech, enabling more complex and
contextually rich lip-reading tasks. Since most
speakers only give a TED talk once, the LRS3
dataset is multi-speaker, with no overlap between
the speakers in the test set and those in the training
set. Consequently, most methods using fixed ID
speaker embeddings are ineffective for the LRS3
dataset without altering its test set. This reflects
real-world application needs more accurately, as
the models we train should be effective for unseen
speakers. This paper focuses on speaker generaliza-
tion on the original LRS3 dataset, aiming to gener-
ate audio that is perceptually credible for speakers
it has never encountered before.

As shown in Table 1, DiffV2s and ReVISE sig-
nificantly outperform various previous methods,
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with both achieving a WER below 40% and su-
perior sound quality as evidenced by the ESTOI
metric. Our results clearly surpass all prior work
in these two measures, achieving a WER of 0.296
and an ESTOI of 31.96%. This is because acous-
tic units preserve finer details, making the gener-
ated audio easier for automatic speech recognition
(ASR) systems to understand. In terms of syn-
chronization, our model also achieved the highest
rankings on the LSE-C and LSE-D metrics, sur-
passing all previous methods. This achievement
is primarily attributed to our modifications to the
original AV-Hubert decoder. We transformed it
from a sequence-to-sequence model to one utiliz-
ing transposed convolutions. This change effec-
tively ensures that the ratio between the input and
output lengths of the model remains constant, thus
maintaining a consistent proportional relationship
between the generated audio length and the input
video length. If the original AV-Hubert decoder
were used, the LSE-C and LSE-D scores would be
4.65 and 9.21, respectively. Although our WER has
only increased by 1.17% relative to the ReVISE,
the additional fine-grained acoustic information
plays a crucial role in improving synchronization.
This allows our method to outperform ReVISE in
terms of synchronization even when using the same
transposed convolution decoder.

While quantitative metrics are important, they
are not the key focus of our task. The primary con-
tribution of our work lies in generating audio that
retains partial speaker information without using
the identity of the speaker. In contrast, ReVISE pro-
duces audio in a single female voice for all outputs,
regardless of whether the video features a male
speaker. Due to the absence of explicit speaker
identity information, our method is unable to fully
replicate the unique acoustic characteristics of indi-
vidual speakers. However, due to its use of implicit
visual embeddings and acoustic discrete units, the
system is capable of generating distinct male or
female voices, depending on whether the videos
feature male or female speakers as protagonists.
While the synthesized voices may not precisely
match those of the original speakers, they do pre-
serve certain overarching characteristics, such as
gender distinctions and, to some extent, age dif-
ferences. We believe this aspect is significant. In
cases where humans have not seen the speaker, they
cannot deduce the exact timbre from the video but
can infer such general voice characteristics. The
voices generated by our model align with human

perception, thus meeting human expectations and
requirements.Benefiting from this approach, our
MOS evaluation achieved an optimal score of 4.16.

4.3.2 Zero-Shot from Audio to Video
Table 1 reveals that our method achieves impressive
results even when trained solely with audio, with-
out using any video data. The sound quality, mea-
sured by the ESTOI, is 0.235. This performance
is comparable to the previous three works, rank-
ing just behind DiffV2S and ReVISE. Surprisingly,
despite the absence of video data during training,
the synchronization of our generated audio is quite
good, significantly surpassing the Full-Shot VCA-
GAN and Multi-task methods, and comparable to
other approaches. Most importantly, our method
achieves a WER of 36.08%, which is only slightly
inferior to ReVISE’s 33.9% and better than all pre-
vious Full-Shot methods. These results indicate
that our approach effectively utilizes the knowl-
edge embedded in the pre-trained model to achieve
outstanding performance, while significantly reduc-
ing data collection costs, requiring only pure audio
data without corresponding lip-synced video.

Figure 2: The curve graph illustrating the relationship
between the kernel size of the last layer of transposed
convolution and the corresponding WER. When the
kernel size is odd, the stride is set to 1; for even kernel
sizes, the stride is 2. Therefore, we have plotted two
separate curves for odd and even kernel sizes to analyze
the impact of stride.

Due to the mHubert audio encoder operating
at 50 frames per second and the AV-Hubert video
encoder at 25 frames per second, we employed a
convolutional layer to align the two. It was impera-
tive to set the stride of this transposed convolution
to 2, a fixed requirement. However, the size of
the convolutional kernel significantly impacted the
final results. To determine the optimal kernel size,

10087



we conducted multiple experiments. For compar-
ison, we also tried the alignment method used in
AV-Hubert pre-training, which involves downscal-
ing the audio labels’ discrete units to 25 frames
per second by extracting them at intervals. In this
scenario, we set the stride of the transposed convo-
lution to 1 and chose a convolutional kernel of an
odd size.

As shown in Figure 2, all models using odd-
numbered kernel sizes performed worse in terms of
WER compared to those using even-numbered ker-
nels. Specifically, smaller even-numbered kernels,
such as 2 and 4, significantly reduced accuracy.
However, the performance improvement became
marginal when the kernel size increased to 8 or
larger. Based on this finding, we selected a kernel
size of 8, balancing optimally between temporal
resolution and computational efficiency, crucial for
effective synchronization between audio and video
modalities. Additionally, we experimented with the
original fully connected (FC) layer. The results in-
dicated that using an FC layer instead of transposed
convolutions yielded the worst outcomes, highlight-
ing the effectiveness of transposed convolutions in
extracting local information for our task.

A noteworthy observation is that methods com-
parable to Zero-Shot in terms of ESTOI generally
have a WER exceeding 60%. This implies that
Zero-Shot is capable of acquiring a substantial de-
gree of semantic knowledge from pre-training, but
it slightly lags in generating audio quality, failing
to reach a level commensurate with its semantic
proficiency.

4.3.3 Translate from Video
Building on the concepts discussed earlier, collect-
ing audio and its corresponding lip-synchronized
video data presents significant challenges. These
challenges further escalate when the task is ex-
tended to multiple languages. Our objective is to
utilize datasets composed of video-audio pairs in a
single language, combined with multilingual audio
datasets, to make this approach applicable to mul-
tilingual audio generation. This strategy aims to
efficiently utilize existing resources while address-
ing the challenges of multimodal and multilingual
datasets.

In our study, we compared the performance of
existing Full-Shot methods with our Zero-Shot
method in English to Spanish (En-Es) and English
to French (En-Fr) translation tasks, with detailed
results presented in Table 2. We also tested the

Figure 3: The comparison between Uni-Dubbing and
Av-Transpeech under various sizes of visual speech data
is highlighted. Remarkably, Uni-Dubbing, utilizing a
Zero-Shot approach, outperforms Av-Transpeech even
when the latter is fine-tuned with 200 hours of visual
data.

robustness of our model under different modalities
and specific noise conditions. Firstly, we found
that under given noise conditions, the BLEU scores
using both visual and audio modal inputs were
consistently higher than those using only audio in-
put. This demonstrates the auxiliary role of visual
information in enhancing audio in noisy environ-
ments, highlighting the importance of visual data.
Especially under babble noise conditions, with a
signal-to-noise ratio (SNR) of -5, the BLEU score
for pure audio input was even lower than that for
pure visual input, further emphasizing the signifi-
cance of lip-reading translation. We also provided
experimental data under various noise types and in-
tensities in the appendix. In pure visual translation,
Full-Shot methods typically outperform Zero-Shot
methods. However, the Zero-Shot method still per-
forms commendably in terms of BLEU scores and
MOS, achieving BLEU scores of 16.99 and 19.90,
and MOS of 3.73 and 3.70, respectively.

We replicated Av-Transpeech and fine-tuned it
using multimodal data of varying durations, with
detailed results shown in Figure 3. The figure
demonstrates that the BLEU score obtained by fine-
tuning with 433 hours of pure audio data is roughly
equivalent to that achieved with just 220 hours of
audiovisual data. During the pre-training phase, we
mapped the audiovisual data to the same phoneme
space. This result indicates that the knowledge in
this phoneme space is equally applicable to cross-
lingual audio, enabling us to align the source lan-
guage video with the target language audio through
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Type Method Training Eval En-Es En-Fr
A V A V BLEU ↑ MOS ↑ BLEU ↑ MOS ↑

Full-Shot

Av-Transpeech
(Huang et al., 2023)

✓ ✓ ✓ 25.00 3.94± 0.11 19.90 3.95± 0.10
✓ ✓ ✓ ✓ 33.10 - 28.00 -
✓ ✓ ✓ 5.50 - 4.60 -

Z
ero-Shot

Uni-Dubbing
(Frozen)

✓ ✓ 16.99 3.73± 0.12 15.58 3.70± 0.08
✓ ✓ ✓ 30.00 - 25.30 -
✓ ✓ 7.58 - 6.31 -

Uni-Dubbing
(No Frozen)

✓ ✓ 0 - 0 -
✓ ✓ ✓ 0.94 - 1.39 -
✓ ✓ 0.92 - 1.07 -

Table 2: Comparison of translation results between the Full-Shot method and our method across various modalities
and noise environments. It’s worth noting that babble noise with an SNR of -5 is added to all instances using the
audio modality (including AV and A) during inference. Please refer to the appendix for additional experimental
results on different types of noise and their intensities.

pure audio fine-tuning, resulting in the current
BLEU scores. This finding not only validates the
effectiveness of our method but also emphasizes
the feasibility of using a large amount of pure au-
dio data as an alternative in scenarios where it is
challenging to collect extensive multimodal data.

In our study, as illustrated in Table 2, we addi-
tionally conducted an experiment to investigate the
translation results obtained using our Zero-Shot
method without freezing the encoder. This part of
the experiment primarily aimed to assess the role
of freezing the encoder in preserving pre-trained
knowledge. Under this setup, we observed a sig-
nificant phenomenon: the BLEU scores for model
inference on pure video were zero in both En-Es
and En-Fr translation tasks. This result implies
that the majority of the visual knowledge acquired
during the model’s pre-training phase has been sub-
stantially forgotten in subsequent processes.

Furthermore, compared to models that kept the
encoder frozen during the inference phase, the mod-
els with unfrozen encoders also showed lower resis-
tance to noise. This difference not only reveals the
importance of freezing the encoder for maintaining
model stability but also reflects the criticality of
preserving knowledge acquired during pre-training
when dealing with complex and variable visual in-
puts. Freezing the encoder effectively retains the
visual information learned during the pre-training
phase, which is crucial for enhancing the model’s
accuracy and robustness in parsing and understand-
ing visual data. Therefore, our study not only em-
phasizes the importance of managing the state of

the encoder in implementing Zero-Shot learning
methods but also provides valuable insights for fu-
ture model design in the intersection of vision and
language domains.

5 Conclusion

This paper introduces Uni-Dubbing, an innova-
tive approach trained on multimodal audio-video
datasets, which achieved the best WER, ESTOI,
and synchronization metrics on the LRS3 dataset.
Additionally, by utilizing implicit visual embed-
dings and acoustic tokens, we successfully pre-
served partial speaker information on the cross-
speaker LRS3 dataset. We then implemented a
Zero-Shot strategy, transitioning from audio to
video modalities in cross-modal Lip2Wav tasks,
and cross-lingual Lip2Wav translation tasks. This
method significantly reduces the dependency on
multimodal datasets and demonstrates potential for
application in a wider range of tasks.

To further validate the practicality of this method,
our research utilized only the audio portion of ex-
isting multimodal datasets. In future work, we plan
to explore the use of larger single-modality audio
datasets, aiming to further expand the applicabil-
ity and enhance the effectiveness of this method.
Through such research, we hope to deepen our
understanding and utilization of single-modality
audio data in multimodal tasks, thereby paving new
paths for development in this field.
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6 Ethics Statement

In the context of our research, we acknowledge that
lip-reading technology holds considerable potential
in a multitude of applications, such as facilitating
silent commands in noisy environments or enhanc-
ing communication for individuals with hearing
impairments. The OpenSR system is designed to
democratize the development of lip-reading mod-
els, particularly for domains where resources are
scarce, thereby promoting equality in technology
application across different fields and languages.

However, we recognize the ethical implications
surrounding the use of speech recognition technol-
ogy, including the potential for unintended informa-
tion exposure. It is important to note that effective
lip-reading by our model demands specific video
criteria, such as front-facing, high-resolution im-
agery with sufficient frame rates to ensure clear
visibility of lip movements. Typically, such con-
ditions are met in environments with close-range
cameras or during virtual meetings, not in scenar-
ios where video footage is obtained from a distance
or without clear visibility of the mouth region, like
most surveillance contexts.

Therefore, while our model advances the field
of speech recognition, it is engineered with inher-
ent limitations that naturally restrict its use in sit-
uations that could compromise individual privacy.
We maintain a commitment to ethical research prac-
tices, prioritizing the beneficial impacts of our work
while actively mitigating potential risks of mis-
use that could infringe on personal privacy or be
deemed invasive. Our ongoing research includes a
strong focus on developing safeguards and proto-
cols to ensure that the technology is used responsi-
bly and ethically.

7 Limitations

The present study is limited to the use of just two
modalities: video and audio, thus neglecting the
potential benefits of incorporating further modali-
ties. Furthermore, the approach of applying single-
modality Zero-Shot learning, although it minimizes
reliance on extensive datasets, inherently results in
the inadvertent omission of some portions of the
previously acquired knowledge. Consequently, this
methodology is not entirely effective in preserving
the full spectrum of multimodal alignment knowl-
edge that was initially obtained during the training
phase.
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A Additional quantitative Results

Zero-Shot Kernel Size. The results of cross-modal Zero-Shot experiments conducted on the LRS3
dataset are closely related to the kernel size of the last layer of transposed convolution. Table 3 details
these results, including ESTOI, WER, and synchronization rate metrics.

K ESTOI ↑ LSE-C ↑ LSE-D ↓ WER ↓
2 0.228 6.54 7.77 36.87
4 0.235 6.67 7.64 36.31
8 0.235 6.70 7.59 36.08
16 0.234 6.75 7.61 36.12
32 0.235 6.72 7.60 36.10

1 0.211 6.22 8.05 39.79
3 0.214 6.32 7.95 37.66
5 0.214 6.37 7.91 37.76
9 0.216 6.39 7.91 37.53
17 0.214 6.40 7.90 37.99
33 0.214 6.39 7.90 37.98
FC 0.209 6.20 8.05 41.08

Table 3: The impact of varying kernel sizes on different metrics in audio generation. K represents the size of the
kernel in the final layer of transposed convolution. FC (Fully Connected) represents a configuration where, instead
of using a transposed convolution layer, a fully connected layer is employed as the final layer.

Zero-Shot Translate Data Size. For the Zero-Shot translation task, we present in Table 4 the performance
of AV-Transpeech after fine-tuning with varying amounts of data. We compare the results of inference
using both audiovisual data and video-only data. We found that for both AVST (Audio-Visual Synchronous
Translation) and VST (Video Synchronous Translation) tasks, the effectiveness of our method is similar to
that achieved by fine-tuning with a 200-hour multimodal audiovisual dataset.

Method Utts(hrs) En-Es En-Fr
AV V AV V

AV-Transpeech

433 45.2 25 33.6 19.9
200 35.98 15.25 29.83 14.45
100 31.59 12.36 27.64 11.21
50 28.2 11.22 24.21 10.41
30 24.92 9.92 15.96 8.57

Our(Zero-Shot) 433 36.53 16.99 28.94 15.58

Table 4: Translation results of AV-Transpeech in different modalities after fine-tuning with various data volumes.

Zero-Shot Translate Noise Robust. In the main text, we only present the performance of the model
under partial noise conditions. Table 5 and Table 6 respectively showcase the results of the Zero-Shot
model under frozen and no frozen states across various noise conditions.
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Modality Noise Language SNR Average-20 -10 -5 0 5 10 20

AV

Babble
En-Es 13.45 23.61 30.00 34.15 35.40 35.55 36.07 29.75
En-Fr 12.06 19.24 25.30 27.59 28.46 28.61 28.83 24.30

Music
En-Es 23.93 31.73 34.54 35.09 35.81 35.56 36.18 33.26
En-Fr 19.25 26.27 27.8 28.48 28.60 28.81 28.75 26.85

Speech
En-Es 24.63 32.38 34.25 35.41 35.57 36.16 36.41 33.54
En-Fr 19.83 26.21 27.69 28.72 28.92 28.55 29.30 27.03

Average
En-Es 20.67 29.24 32.93 34.88 35.59 35.76 36.22 32.18
En-Fr 17.05 23.91 26.93 28.26 28.66 28.66 28.96 26.06

A

Babble
En-Es 0.01 0.12 7.58 26.64 33.82 35.23 35.71 19.87
En-Fr 0.05 0.17 6.31 21.54 27.18 28.55 29.41 16.17

Music
En-Es 3.03 16.76 28.25 33.42 34.97 35.78 36.60 26.97
En-Fr 3.47 15.01 22.47 27.11 28.18 28.97 29.11 22.05

Speech
En-Es 4.11 17.97 27.88 33.89 34.79 35.53 36.09 27.18
En-Fr 3.84 15.71 21.92 27.12 28.61 29.14 29.16 22.21

Average
En-Es 2.38 11.62 21.24 31.32 24.53 35.51 36.13 24.68
En-Fr 2.45 10.30 16.90 25.26 27.99 28.89 29.23 20.14

V
- En-Es 16.99 16.99 16.99 16.99 16.99 16.99 16.99 16.99
- En-Fr 15.58 15.58 15.58 15.58 15.58 15.58 15.58 15.58

Table 5: Comparison of translation accuracy (BLEU score ↑) of our zero shot model between different noise
configurations and input modalities. The BLEU scores for pure audio inference are lower than those for inference
using only video in multiple scenarios when the noise intensity is high.

Modality Noise Language SNR Average-20 -10 -5 0 5 10 20

AV

Babble
En-Es 0.01 0.04 0.94 11.47 29.20 36.74 40.08 16.93
En-Fr 0.11 0.14 1.39 10.26 24.33 30.93 33.94 14.44

Music
En-Es 0.53 5.33 15.21 26.91 35.13 38.73 40.33 23.17
En-Fr 0.40 5.31 12.91 22.63 30.19 32.67 33.70 19.69

Speech
En-Es 0.65 7.63 16.73 28.21 34.87 38.52 40.02 23.80
En-Fr 0.55 7.21 13.91 24.01 29.61 32.48 33.68 20.21

Average
En-Es 0.40 4.33 10.96 22.20 33.07 38.00 40.14 21.30
En-Fr 0.35 4.22 9.40 18.97 28.04 32.03 33.77 18.11

A

Babble
En-Es 0.01 0.01 0.92 10.60 28.76 36.96 40.01 16.75
En-Fr 0.09 0.08 1.07 9.60 24.75 30.62 34.04 14.32

Music
En-Es 0.48 6.92 15.61 26.06 34.37 38.40 40.04 23.13
En-Fr 0.46 4.71 12.35 23.18 29.38 32.54 34.20 19.55

Speech
En-Es 1.06 7.33 16.93 27.47 35.45 38.25 40.14 23.80
En-Fr 0.66 6.53 14.50 23.46 29.82 32.30 33.83 20.16

Average
En-Es 0.52 4.75 11.15 21.38 32.86 37.87 40.06 21.23
En-Fr 0.40 3.77 9.31 18.75 27.98 31.82 34.02 18.01

Table 6: Comparison of translation accuracy (BLEU score ↑) of our no-frozon Zero-Shot model between different
noise configurations and input modalities.
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B Additional qualitative Results

LRS3 Dataset in Lip2Wav Implementation. In Figure 4, we display visualizations of four samples each
from the ground truth, our Full-Shot and Zero-Shot methods, and ReVISE, to compare their respective
mel-spectrogram outputs. These methods generate mel-spectrograms whose backbone structures maintain
a certain degree of similarity, resulting in low WER and minimal differences in retained semantic
information for the synthesized speech. However, in comparison, our Full-Shot method produces mel-
spectrograms that more closely resemble real data (Ground Truth) in detail, displaying finer frequency
variations and a more continuous temporal sequence structure. This indicates that the Full-Shot approach
achieves higher accuracy in audio reconstruction, capturing more of the acoustic features of real speech
signals beyond just semantic information. Additionally, our Zero-Shot method shows greater similarity to
ReVISE, demonstrating that even when fine-tuned using only audio data, it can retain a considerable level
of semantic information. This validates the effectiveness of our method in modal transfer.

Figure 4: Sample mel-spectrogram visualizations from various methods on the LRS3 dataset.
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In Table 7, we present the results of several audio samples processed through Lip2Wav and subsequently
analyzed using ASR. The errors generated by these methods are largely similar, likely stemming from the
inherent confusability of the Lip2Wav approach itself. This is because the majority of errors originate
from phonetically similar words or phrases, which are exceedingly difficult to overcome in subsequent
processing.

Table 7: This qualitative comparison addresses visually confusing words. ‘Red words’ highlighted in red indicate
misidentified terms, strikethroughs in parentheses denote visually similar words, and (red words) within parentheses
emphasize words that are absent.

Ground Truth: we were making what was invisible visible
Our(Full-Shot): we were making what was invisible invisible (visible)
ReVISE: we were many (making) what was invisible invisible (visible)
Our(Zero-Shot): we were many (making) what was invisible visible

Ground Truth: would you like to create a second one together
Our(Full-Shot): would you like to create a successful (second) one together
ReVISE: would you like to create (a) success when you guess (second one together)
Our(Zero-Shot): would you like to be in a cecil when (create a second one) together

Ground Truth: african americans supported it at a higher level than had ever been recorded
Our(Full-Shot): african americans supported it at a higher level than had ever been recorded
ReVISE: african americans supported it at a higher level than it (had) ever been recorded
Our(Zero-Shot): african americans supported it at a higher level than it (had) ever be (been) recorded

Ground Truth: dan replies so often you won’t even notice it
Our(Full-Shot): ten (dan) replies so often you won’t even notice it
ReVISE: the data (dan) replies so often you won’t even notice it
Our(Zero-Shot): ten (dan) replies so often you won’t even notice it
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LRS3-T Dataset in Cross-Lingual Lip2Wav Translation. In Figure 5, we display the actual spec-
trograms for En-Es and En-Fr samples, along with the corresponding spectrograms generated by Av-
Transpeech and our Zero-Shot method. The mel-spectrograms generated by Av-Transpeech show a high
degree of similarity to those produced by our method, but both exhibit certain differences from the GT.
This is primarily because both methods use discretized units generated in the same way as training targets,
hence the information they carry is quite similar, primarily focusing on semantic information. On the
LRS3-T dataset, the similarity of the mel-spectrograms generated by these two methods further confirms
the Zero-Shot capabilities of our approach.

Figure 5: Sample mel-spectrogram visualizations from various methods on the LRS3 dataset.
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Table 8 shows GT, Av-Transpeech, and our En-Es and En-Fr translation results. Our translations contain
more erroneous words compared to Av-Transpeech, as reflected in the lower BLEU scores reported in the
text. However, the locations of errors are similar for both methods, suggesting that pure audio fine-tuning
might achieve semantics similar to Full-Shot for the main body of sentences, but there could be confusion
in some details. Further research and exploration in this area are needed.

Table 8: This qualitative comparison addresses visually confusing words. ‘Red words’ highlighted in red indicate
misidentified terms, strikethroughs in parentheses denote visually similar words, and (red words) within parentheses
emphasize words that are absent. The top two samples are En-Es translations, and the bottom two are En-Fr
translations.

Ground Truth: te gustaría crear un segundo juntos
Av-Transpeech: te gustaría crear una sensación (un segundo) juntos
Uni-Dubbing te gustaría crear un sentido conjunto (juntos)

Ground Truth: podemos crear un parlamento mundial de alcaldes
Av-Transpeech: podemos crear un parlamento global (mudial) de pares
Uni-Dubbing necesitamos (podemos) crear un parlamento global (mudial) de c (alcaldes)

Ground Truth: Je te pardonne et je ne te hais pas
Av-Transpeech: je te pardonne et je ne te déteste (pas)
Uni-Dubbing je te donne (pardonne et) je (ne) te déteste (déteste pas)

Ground Truth: donc la réponse à la deuxième question peut-on changer
Av-Transpeech: donc la réponse à la deuxième question pouvants-nous change (peut-on changer)
Uni-Dubbing donc la réponse à la deuxième question pouvonts-nous (peut-on) changer
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C Zero-Shot configuration

On the LRS3 dataset, our applied Zero-Shot configuration is consistent with that of uHubert (Hsu and Shi,
2022). One concern arises: the model might memorize audio-visual pairs from the pre-training period and
associate them with unimodal data for Zero-Shot learning, as the dataset used for fine-tuning is a subset of
the pre-training data. To address this issue, uHubert conducted experiments on non-LRS3 audio datasets,
demonstrating the effectiveness of this configuration. Therefore, we did not seek another out-of-domain
audio dataset for experimentation in this task. We directly conducted Zero-Shot experiments on LRS3-T,
whose audio data is not only excluded from the pre-training but also differs in language type. Furthermore,
ablation experiments regarding whether to freeze the encoder layers also validated the Zero-Shot capability
of our method.

D More implementation details.

Experiment hyperparameters. Table 9 displays the training hyperparameter configurations for each task
in our study, noting that audio masking was not employed in any of the tasks.

Full-Shot Zero-Shot Modal Zero-Shot Translate

num. of updates 45000 20000 60000
num. of frozen 5000 20000 60000
tri-stage LR schedule (10%,20%,70%) (10%,20%,70%) (33%,0%,67%)
peak learning rate 6e-05 6e-05 5e-04
batchsize /GPU 1000 1000 1000
num. of GPU 8 8 8
Adam (β1,β2) (0.9,0.98) (0.9,0.98) (0.9,0.98)

Table 9: Experiment hyperparameters.

ASR toolkit for Evaluation. In this paper, the English ASR used is cited from (Ma et al., 2023). For
Spanish and French, we utilize open-sourced ASR models within the fairseq framework (Ott et al., 2019)
to transcribe the audios, which is consistent with the ASR used by Av-Transpeech.
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