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Abstract

Semantic Parsing of natural language ques-
tions into their executable logical form (LF)
has shown state-of-the-art (SOTA) performance
for Knowledge Graph Question Answering
(KGQA). However, these methods are not ap-
plicable for real-world applications, due to lack
of KG-specific training data. Recent advances
in the capabilities of Large Language Models
(LLMs) has led towards generating low-level
LFs such as SPARQL and S-Expression in a
few-shot setting. Unfortunately, these methods:
(1) are limited to the knowledge of underlying
LLM about the LF, (2) performs inferior for
the harder complex benchmarks such as KQA
Pro, (3) suffers while grounding the generated
LF to a specific Knowledge Graph. Recently,
a new LF called KoPL (Cao et al., 2022a) has
been introduced that explicitly models complex
reasoning process step-by-step in a symbolic
manner and has shown SOTA on KQA Pro in
fully-supervised setting. Inspired by this, we
propose SymKGQA1 framework that gener-
ates step-by-step Symbolic LF i.e., KoPL in a
few-shot in-context learning setting using LLM.
Our framework is not dependent on pre-trained
knowledge of LLM about KoPL. We further
build a Retrieval-Augmented Generation based
Question-Aware Contextual KoPL (QUACK)
resolver to ground the generated LF. Our ex-
periments with different LLMs and few-shot
settings demonstrate that SymKGQA outper-
forms all other few-shot and even many of the
fully-supervised KGQA approaches.

1 Introduction

Knowledge Graph Question Answering (KGQA)
has received a lot of research interest in recent
years (Saxena et al., 2022; Zhang et al., 2022b;
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Mitra et al., 2022; Shu et al., 2022; Nie et al., 2022;
Neelam et al., 2022). It aims at answering a natural
language question using a structured Knowledge
Graph (KG) by producing a logical form (LF) such
as SPARQL, S-Expression, λ-DCS, etc. that is
executed on the KG to retrieve the answer(s). When
such techniques are used in applications such as
intelligent assists, the annotated training data is
generally not available at cold-start, thus, making it
difficult to use these techniques without significant
investment in building a large, generalizable (to the
application) dataset to train the models on.

With recent advancements in Large Language
Models (LLMs), the research is moving towards
leveraging the reasoning capability of LLMs to ob-
tain the LF for a given Natural Language Question
(NLQ) in both fine-tuning (Ye et al., 2022; Shu
et al., 2022; Gu et al., 2023) and few-shot settings
(Gu et al., 2023; Li et al., 2023b). For few-shot
setting, these works have used in-context learning
(ICL) paradigm with various state-of-the-art LLMs
such as GPT-3 (Brown et al., 2020) variants to gen-
erate LF. However, these methods suffer from the
following limitations: (1) their LF generative ca-
pabilities are limited to the pre-trained knowledge
of the underlying LLM about the grammar and se-
mantics of the LF (SPARQL or S-expression). (2)
this also results in their inferior performance for
harder complex KGQA benchmarks such as KQA
Pro (Cao et al., 2022a; Huang et al., 2023). These
benchmarks require explicit modeling of KG com-
plexities such as concepts, attributes, qualifiers, etc.
to perform joint compositional and numerical rea-
soning that may not be seen by the LLM. (3) their
KG grounding formulation is independent of the
context of the question, which limits their perfor-
mance.

Due to the recent surge in the complexity of
questions that users pose to Question Answering
(QA) systems, complex KGQA has particularly
gained attention (Huang et al., 2023). Complex
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questions require joint compositional and numeri-
cal reasoning on KG to answer them. Some of the
works have demonstrated that step-by-step Chain-
of-Thought (CoT) decomposition of the reasoning
process is one of the key factors in enhancing the
reasoning capability of LLMs for QA tasks (Wei
et al., 2023; Zhou et al., 2023; Niu et al., 2023).
However, a recent shift towards decomposing the
problem with symbolic formalization i.e., Chain-
of-Symbol (CoS) (Hu et al., 2023) has emerged
as another key factor to observe further enhance-
ments in reasoning (Zhang et al., 2022a; Wolfson
et al., 2020). Additionally, some of the works (Cao
et al., 2022a; Nie et al., 2022; Liu et al., 2024) have
shown that using the same underlying model with
LFs having high to low formalization i.e., dissim-
ilarity to natural language has shown an inverse
trend in the performance for KGQA.

Recently, KoPL (Cao et al., 2022a), a symbolic
LF has been introduced that defines various func-
tions (operations) on KG catering to various com-
plexities. It reflects the CoS reasoning process as
compared to other LFs that have to be used as a
whole query (Huang et al., 2023; Liu et al., 2024).
Its modular functions and their inputs make it suit-
able for complex compositional and numerical rea-
soning while being interpretable. Figure 1 shows
an example of a complex question and its corre-
sponding LFs with high (top) to low (bottom) level
of formalization. As shown, KoPL is most decom-
posable, interpretable LF while having symbolic
formalization to solve complex questions.

Another challenge that most of the existing LLM-
based techniques face while generating LF for
KGQA is - that LLM picks KG items (entities,
relations, etc.) based on its inherent knowledge or
picks an appropriate phrase from the input question.
These items have to be grounded/resolved for a KG
before the generated LF can be executed. To illus-
trate this, consider the generated KoPL in Figure
1. The functional input of Step 3 is occupy that
does not exist in the KG and the closest relations in
the KG are {mass, area, etc.}. The existing meth-
ods pick the closest relation based on the similarity
between occupy and the candidates {mass (0.912),
area (0.84)}. Hence, they would pick mass due
to its higher similarity than area. However, if we
consider an additional context of the input question
while choosing the closest relation, area should
be chosen (desired relation). Existing methods do

2BERT similarity score

Figure 1: Logical Forms with varying formalization
levels for a complex question.

not take into consideration this context of the input
question and hence, suffer in grounding the LF.

Addressing the above-discussed challenges, the
contributions of our work are as follows:

1. We propose SymKGQA: a KGQA framework
specifically designed to generate Symbolic KoPL
program for a given complex natural language ques-
tion using LLMs in a few-shot setting.

2. We further build a Retrieval-Augmented Gen-
eration (RAG) (Lewis et al., 2020) based Question-
Aware Contextual KoPL (QUACK) resolver to
ground the generated KoPL for a given KG.

3. We experiment with different LLMs on 3
datasets with varying complexity of questions and
KG to demonstrate the flexibility and robustness of
our approach.
We adopt the few-shot ICL paradigm with KoPL
function definitions and instructions as prompt to
generate CoS KoPL programs. This prompting ap-
proach makes SymKGQA independent of the pre-
trained knowledge of the underlying LLM about
KoPL.

Popular KGQA datasets such as MetaQA (Zhang
et al., 2018), WebQSP (Yih et al., 2016), etc. has
sparse coverage of complex questions. On the
other hand, a recently introduced KQA Pro dataset
(Cao et al., 2022a) contains much harder complex
QA pairs that require compositional and numerical
reasoning as compared to other datasets such as
GrailQA (Gu et al., 2021; Dutt et al., 2023). Thus,
this work utilizes KQA Pro as the core benchmark
dataset for experiments.

Our extensive experiments demonstrate that
SymKGQA outperforms all other LLM-based few-
shot and even most of the SOTA fully-supervised
KGQA approaches by a significant margin. To the
best of our knowledge, SymKGQA is the first few-
shot KGQA framework that uses a CoS approach
(using KoPLs) with RAG-based QUACK resolver.
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2 Related Work

2.1 Fully-Supervised KGQA methods

These KGQA techniques requires a large amount
of annotated training data to learn the model. They
are further divided into 2 sub-categories:
(1) Semantic Parsing based techniques: This in-
cludes methods (Shu et al., 2022; Nie et al., 2022;
Neelam et al., 2022) that transform the natural
language question into LF, such as SPARQL, S-
expression, etc. that are directly executable on KG
to retrieve the answer. KQA Pro (Cao et al., 2022a)
work also provides a technique to learn questions
to KoPL/SPARQL mapping using scratch training
of sequence-to-sequence models such as BART.
Recently, a new intermediate representation (Nie
et al., 2022) i.e., GraphQ IR has been introduced
that has a language-like expression to define the
syntax. They demonstrate that the performance ob-
tained with BART + GraphQ IR > BART + KoPL >
BART + SPARQL. These works have shown SOTA
on the KQA Pro dataset. Among these LFs, only
KoPL is symbolic in nature that enables CoS.
(2) Information Retrieval based techniques:
This includes end-to-end learning approaches that
are not tied to any specific KG (Miller et al., 2016;
Saxena et al., 2020; Shi et al., 2021; Zhang et al.,
2022b; Mitra et al., 2022; Saxena et al., 2022).
These techniques use only QA pairs with KG triples
to rank candidate entities for a given question.
These techniques also require a large amount of
QA pairs data for learning and can’t be used if the
data is not available at cold-start.

Both categories of techniques have shown SOTA
performance on specific datasets, however, highly
sensitive to a large amount of manually annotated
data for learning. Hence, none of these techniques
can be adopted for practical applications where KG
specific training data is not available.

2.2 Few-Shot KGQA methods

Recent advancements in the development of vari-
ous pre-trained LLMs, such as T5 (Raffel et al.,
2023) and Codex (Chen et al., 2021), have
shown SOTA performance on various downstream
tasks. Some of the LLM based frameworks have
been proposed for KGQA task as well. RnG-
KBQA (Ye et al., 2022), TIARA (Shu et al.,
2022), KB_BINDER (Li et al., 2023a) and sim-
ilar works convert natural language sequences to S-
Expression with constrained decoding using LLMs.
Pangu (Gu et al., 2023) capitalizes on the dis-

criminative ability of LLMs rather than generation.
BYOKG (Bring Your Own KG) (Agarwal et al.,
2023) leverages an LLM-based symbolic agent to
comprehend KG information through exploration.
It starts at random nodes, inspecting the labels of
adjacent nodes and edges, and combining them
with their prior world knowledge. FlexKBQA (Li
et al., 2023b) introduces an execution-guided self-
training method and surpasses all other few-shot
methods. These techniques generate low-level LFs
such as SPARQL, and S-expressions but suffers
from various limitations (discussed in Section 1).

3 Proposed Framework: SymKGQA

We first briefly define the problem statement and
then introduce the details of SymKGQA framework
shown in Figure 2, which consists of two stages:
(1) KoPL Generation: using Few-Shot ICL; and (2)
RAG based QUACK Resolver.

3.1 Problem Statement
The goal of the SymKGQA framework is:

1. Generate the CoS KoPL program steps (P )
for a given natural language question (Q) using a
pre-trained LLM (M ) by providing a prompt (Y ).

2. Execute P , on KG K, with the help of
QUACK resolver, to obtain the final answer(s).
Here, K ⊂ E ×R× (E ∪L ∪C), where C is the
set of concepts3, E is the set of entities, L is the set
of attributes/literals and R a set of binary relations.

3.2 Generation: Few-Shot ICL Prompting
As mentioned earlier, we adopt the ICL paradigm
to generate the CoS KoPL steps for a given com-
plex natural language question using a pre-trained
LLM. We first create a prompt Y = (I, F,D) that
consists of a set of Instructions I , KoPL Function
Information F , and Few-Shot Demonstrations D
(also shown in Figure 2).
Instructions I: It describes the task and outlines
generation policies for program steps P . Few in-
structions are shown below. Refer to Appendix A.1
for a full set of instructions.

Instructions

- The task is to come up with the steps of functions
for the given test question using the list of functions
provided.
- To generate these steps you should match the out-
put of the current step function with functional in-
puts of the next step function. ....

3A concept is an abstraction of a set of entities
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Figure 2: SymKGQA: A Few-Shot KGQA Framework based on Symbolic Program Generation and Execution

Function Information F : We provide the infor-
mation of all 27 KoPL functions for the LLM to
understand and use them in the generation process
(shown below). Refer to Appendix A.1 to find
the details of all 27 KoPL functions. We specifi-
cally provide the function name, description, inputs
(functional and textual), and outputs. The func-
tional inputs come from the previous program steps
whereas the textual inputs come from the question.

Function Information

Function Name: Relate
Description - Find entities that have a specific rela-
tion with the given entity in the knowledge graph
Functional Inputs - Entity
Textual Inputs - (Predicate, Direction)
Outputs - (Entities, Facts)

Demonstration Selection D: The demonstration
selection is a crucial part of generation. The demon-
stration questions should be selected such that their
KoPL program steps cover all functions. Here, we
don’t require annotated KoPLs for the full training
dataset, we just need them to create a pool of few-
shots (approx. 10 − 100 questions), as described
below. We experiment with the below methods to
select n = 10 demonstration questions for ICL:

• Manual selection: Here, we manually select
n = 10 natural language questions from the train
set keeping in mind that their KoPL program steps,
when annotated, would cover a maximum number
of functions with minimal overlap to obtain diverse
yet complete demonstration set D. For all the test
questions of a particular dataset, D will remain
fixed. Refer to Appendix A.1 for the n manually
chosen set D.

• Dynamic selection: We perform function
coverage-based pool selection of N (100) natural
language questions from the train set inspired from
“bottom-up matching" in (Drozdov et al., 2022).
1. Pool Creation (N): Since, Find and FindAll
functions appear with almost all other remaining
25 functions, we randomly select k = N/25 ques-
tions that specifically demonstrate each of the 25
functions (except Find and FindAll). This ensures
diversity and coverage of all functions.
2. Obtaining D (n): We build a retriever with the
pool to retrieve top n = 10 nearest neighbor ques-
tions to the test question as D. After experimen-
tation, we chose ChromaDB4, a vector-based re-
triever, due to its superior performance (5 − 7%)
as compared to popular BM25 retriever (Robertson
and Zaragoza, 2009). We mask the entities and con-
cepts in the question to exclude their interference
in determination of semantic similarity. Cosine
similarity is used as the distance metric.
The value of n is also dependent on the prompt
length supported by an LLM. The demonstration
set D of size n = 10 thus obtained is added to the
prompt using the template shown.

The template, however, requires the set of enti-
ties and concepts (if present) to be annotated for
each demonstration d ∈ D in the prompt using
the KG. The same template is used to add the test
question also in the prompt.
Entity and Concept Identification: For a given
complex natural language question Q during test-
ing, the set of concepts C ′ ⊂ C and the set of
entities E′ ⊂ E present in Q can be annotated us-
ing any off-the-shelf entity linker such as (Gu et al.,

4https://docs.trychroma.com/
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2023; Mohammed et al., 2018) popularly used in
KGQA, Named Entity Recognition (NER) meth-
ods, POS tags, or can be explicitly provided. We
use NER as the entity linker for SymKGQA.

Training Example i

Question: Does Pierce County that is located in
Washington or Grays Harbor County have less area?
Entities: [’Washington’, ’Pierce County’, ’Grays
Harbor County’], Concepts: None. The steps to
solve this question are:
Output:
Step 1: Find(Washington)
Step 2: Relate(located in the administrative territo-
rial entity, backward)
Step 3: Find(Pierce County)
Step 4: And()
Step 5: Find(Grays Harbor County)
Step 6: SelectBetween(area, less)

After assembling the prompt Y using I , F and
D, the LLM is now supposed to generate the cor-
rect CoS KoPL program steps for each test question
conditioned on prompt Y and Q.

Adding I and F makes Y independent of the pre-
trained knowledge of the underlying LLM about the
LF (i.e., KoPL) while handling complex questions.
This prompting technique is applicable to any LF
supporting CoS-based reasoning. Appendix A.1
contains the complete prompt for a sample test
question. We compare prompt templates used by
existing approaches and SymKGQA (Appendix
A.2). Hyperparameter details for generation are
provided in Section 4.4.

3.3 RAG based QUACK (Question-Aware
Contextual KoPL) Resolver

The KoPL steps generated by LLM can have dis-
crepancies in terms of: (a) entity and concept
names; (b) relations and attributes; (c) numerical
operators; (d) numerical quantity and their units;
and (e) symbolic functions. This would hinder the
direct execution of the generated steps on the KG.
Hence, we resolve each program step with the help
of RAG before executing it.
Resolution: We resolve each of the above defined
discrepancy, as described below:

1. Entity and Concept Names: The entity and
concept names present in the generated program
can be semantically similar but not grounded to a
KG due to: (a) imperfect identification of E′ and
C ′ by entity linker during the prompt creation. (b)
LLM discards the identified E′ and C ′ and halluci-
nates based on its inherent knowledge. Hence, to
resolve such cases, we use the following approach:

(a) Retrieval: Top 10 similar entities/concepts
from the KG for each entity/concept name present
in the generated step are retrieved. BERT based
semantic similarity retriever is used to achieve this.
(b) Generation: LLM is prompted with the re-
trieved list along with the question to select the
most probable entity/concept from the given list. to
prevent hallucinations. The prompt template used
at this step is shown in Figure 2.
More details on the RAG approach are provided in
Appendix A.3.

2. Relation and Attribute Names: LLM chooses
relations/attributes present in Q itself while gen-
erating program steps due to the absence of re-
lation/attribute linkers. Hence, it needs to be
grounded for the KG explicitly. We use the same
RAG approach as (1). At the retrieval step, the top
10 similar relations/attributes from the KG for each
generated relation/attribute name are retrieved. At
the Generation step, LLM selects the most proba-
ble relation/attribute in the context of Q. A sample
prompt is shown below:

Resolution Prompt

From below relation list, select only top relation that is
most similar to the relation extracted from question.

Question: What is the higher education institution
is headquartered in the city whose postal code is 20157?

Relation list = [’headquarters location’, ’work
location’, ’located in the administrative territorial
entity’, ’capital of’, ’located in time zone’, ’residence’,
’capital’, ’country’, ’filming location’, ’place of birth’]
Relation extracted from the Question: [’headquartered
in’]
Answer:

3. Numerical Operators: Sometimes, the nu-
merical operators such as {<, >, =}, etc. are either
missing from the “textual input" of the KoPL func-
tion or represented in textual form (such as “less
than", “greater than", etc). However, the KoPL ex-
ecutor requires the numerical operator in the form
of symbol. Hence, to correctly identify the numer-
ical operator symbol from Q, we provide the list
of pre-defined numerical operators5 for the LLM
to pick the right one in the context of Q using the
same RAG approach as (1).

4. Numerical Quantity and Units: The numeri-
cal quantity unit present in Q and the unit present
in the KG for that attribute can be different. Hence,
it is important to normalize the numerical quantity

5Refer to Appendix A.4 for the list of numerical operators
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present in Q into the unit present in the KG. We
use sympy6 python library to achieve this.

5. Symbolic Function Names: As illustrated
in Figure 1, sometimes LLM picks wrong sym-
bolic function names but generates logically correct
steps. In Figure 1, the model generated FilterStr
at Step 3 but the functional input is a number with
an operator. Considering the context of the ques-
tion, the correct function that should be executed is
FilterNum. To rectify such functional errors, we
use the same RAG approach as (1). At retrieval
step, the set of functions with the same functional
inputs (from the previous step) and textual inputs
(corrected using the above-described resolutions)
that are possible at the current step are retrieved.
Then, the most probable function to be used in the
context of Q is selected at Generation step.
Most of the existing methods such as (Li et al.,
2023a) use only lexicon-based similarity to select
top-k closest entities and relations (without consid-
ering Q as context) to resolve the LF. On the other
hand, our approach utilize Q as the context so that
the interconnected constraints among entities, con-
cepts, relations, etc. are considered in a unified
way while choosing the most relevant KG item.
Execution: The resolved KoPL program steps are
then executed on the KG as per the default KoPL
executor provided (Cao et al., 2022a).

4 Experiments

Our experiments are outlined to answer the follow-
ing research questions: (1) How does SymKGQA
compare against existing KGQA frameworks in
few-shot setting? (2) How does the performance of
SymKGQA vary with different pre-trained LLMs
and demonstration selection methods? (3) What
are the contributions of each stage of SymKGQA?

4.1 Datasets

We experiment with 3 datasets with different: (a)
question complexities; (b) KG domain; and (c)
number of inference hops required. The statistics
of these datasets are shown in Table 1.

1. KQA Pro (Cao et al., 2022a): This is a very
recent dataset based on Wikidata KG and contains
complex QA pairs with numerical quantities, con-
cepts and entities for multi-hop compositional and
numerical reasoning. It contains questions that re-
quire up to 10 hops to obtain the answer(s). The

6https://pypi.org/project/sympy/

Dataset KoPL Train Val Test

KQA Pro ✓ 94,376 11,797 11,797
MetaQA 1-hop ✓ 96,106 9,992 9,947
MetaQA 2-hop ✓ 118,948 14,872 14,872
MetaQA 3-hop ✓ 114,196 14,274 14,274

WebQSP × 2,998 100 1,639

Table 1: Statistics of the Datasets used

test set is closed, hence, we use the validation set
as the test set for our experiments.

2. MetaQA (Zhang et al., 2018): It is a large-
scale multi-hop dataset widely used for domain-
specific KGQA (movie domain). It provides 1-hop,
2-hop, and 3-hop QA pairs.

3. WebQSP (Yih et al., 2016): This dataset con-
tains natural language questions up to 2 hops from
Google query logs answerable through Freebase
KG. We sample N = 100 questions (explained in
Section 3.2) to create the pool for dynamic demon-
stration selection and annotate their KoPLs.

4.2 Models
We experiment with below SOTA LLMs with vary-
ing number of parameters:

1. CodeLlama Instruct (34B) (Rozière et al.,
2023): A code-focused LLM, built upon Llama
2. It can follow programming instructions without
prior training for various programming tasks. The
prompt/context limit of this model is 4K tokens.

2. Llama-2 (70B) (Touvron et al., 2023): It is
an auto-regressive model that uses an optimized
transformer architecture. The prompt/context limit
of this model is 4K tokens.

3. PaLM 2 (540B) (Chowdhery et al., 2022):
One of the SOTA LLM with improved multi-
lingual, reasoning, and coding capabilities. We
use text-bison-001 version of this model. The
prompt/context limit of this model is 8K tokens.

4. GPT3.5-turbo: Due to the costs associated
with the API, we randomly sample 100 questions
from the test set of each of the three datasets and
compare the performance with other models.

4.3 Baselines
We select the following 3 categories of baselines:

• Fully Supervised: We compare with SOTA
fully supervised techniques for each dataset. It
includes KVMemNet (Miller et al., 2016), Embed-
KGQA (Saxena et al., 2020) for all datasets and:

1. MetaQA: SRN (Qiu et al., 2020), PullNet
(Sun et al., 2019), NSM (He et al., 2021) and
TransferNet (Shi et al., 2021).
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Method Models F1

Program Transfer 74.6
EmbedKGQA 66.6

Fully Supervised KVMemNet 46.7
DecAF 78.8

Subgraph Retrieval 66.7
Few-Shot FlexKBQA (S-Expression + GPT3.5) 60.6

(100 Shots)
KB_BINDER (1) (S-Expression + Codex) 52.5

Pangu (S-Expression + Codex) 54.5

Direct QA
CodeLlama Ins. 39.6

Llama-2 46.7
PaLM 2 33.5

SymKGQA CodeLlama Ins. 61.9
Manual Few-Shot Llama-2 65.2

(10 Shots) PaLM 2 70.6
SymKGQA CodeLlama Ins. 71.2

Dynamic Few-Shot Llama-2 71.9
(100 Shots) PaLM 2 75.4

(a) WebQSP

Method Models Hits@1
1-hop 2-hop 3-hop

KVMemNet 96.2 82.7 48.9
EmbedKGQA 97.5 98.8 94.8

SRN 97.0 95.1 75.2
Fully Supervised

PullNet 97.0 99.9 91.4
NSM 97.2 99.9 98.9

TransferNet 97.5 100 100

Direct QA
CodeLlama Ins. 27.9 28.8 46.7

Llama-2 58.0 37.6 55.8
PaLM 2 27.6 9.1 21.5

SymKGQA CodeLlama Ins. 98.1 99.9 99.8
Manual Few-Shot Llama-2 99.1 99.7 99.9

(10 Shots) PaLM 2 99.7 99.7 99.9
SymKGQA CodeLlama Ins. 99.8 99.9 99.8

Dynamic Few-Shot Llama-2 99.9 99.9 99.9
(100 Shots) PaLM 2 99.7 99.8 99.9

(b) MetaQA

Table 2: Results on WebQSP and MetaQA (*Bold and underline fonts denote the best and the second best performance only
among few-shot setting. Rows in grey color denote fully-supervised methods. There are no few-shot baselines for MetaQA10.)

Method Models Hits@1

KVMemNet 6.9
EmbedKGQA 20.27
SRN 11.84

Fully Supervised RGCN 29.12
Subgraph Retrieval 22.82
BART + KoPL 83.28
GraphQ IR 79.13

Few-Shot FlexKBQA (SPARQL + GPT3.5) 42.68
(100 Shots) LLM-ICL (SPARQL + Codex) 27.75

Direct QA
CodeLlama Ins. 28.7
Llama-2 31.2
PaLM 2 21.5

SymKGQA CodeLlama Ins. 50.9
Manual Few-Shot Llama-2 38.9
(10 Shots) PaLM 2 39.0
SymKGQA CodeLlama Ins. 51.1
Dynamic Few-Shot Llama-2 45.6
(100 Shots) PaLM 2 42.7

Table 3: Results on KQA Pro*

2. KQA Pro: SRN, RGCN (Schlichtkrull et al.,
2018), Subgraph Retrieval (Zhang et al.,
2022b), BART + KoPL (Cao et al., 2022a),
GraphQ IR (Nie et al., 2022).

3. WebQSP: DecAF (Yu et al., 2023), Subgraph
Retrieval (Zhang et al., 2022b) and Program
Transfer (Cao et al., 2022b).

• Few-Shot: We compare with few-shot tech-
niques that have shown SOTA for each dataset:

1. KQA Pro: FlexKBQA (Li et al., 2023b) and
LLM-ICL7 both generating SPARQL.

2. WebQSP: FlexKBQA, KB_BINDER (Li
et al., 2023a) and Pangu (Gu et al., 2023)
all generating S-Expression. We use
KB_BINDER (1) setting for fair comparison.

There are no few-shot baselines that has bench-

7Alternate to Pangu for evaluation (as used in FlexKBQA)

marked MetaQA8.
• Direct QA: LLMs are pre-trained on a large

body of knowledge. Hence, we ask the question
directly to the LLM to obtain the answer(s).
Refer to Appendix A.6 for more details on the tech-
niques adopted by each of the baseline.

4.4 Implementation and Hyper-parameters

PyTorch9 Python framework is used to implement
SymKGQA. Greedy decoding is used to obtain the
KoPL program steps from the LLMs (for repro-
ducibility). Additionally, the program steps are ob-
tained using 2 iterations of sampling decoding (for
exploration) with temperature=0.3 and top_k=30
to handle the cases where the program steps gener-
ated from greedy decoding (after applying QUACK
resolution) results in error. We use n = 10 and
N = 100 shots for manual and dynamic demonstra-
tion selection. all-distilroberta-v110 BERT
model is used at the retrieval step in QUACK.
Hits@1 for KQA Pro and MetaQA, F1 score for
WebQSP are the evaluation metrics used to evalu-
ate and compare the performance of SymKGQA
with baselines.

5 Results and Analysis

We discuss the results of SymKGQA on each
dataset in detail. Qualitative analysis examples
are provided in Appendix A.5.

8Benchmarking FlexKBQA, KB_BINDER and Pangu was
not feasible due to closed access of GPT3.5 models.

9https://pypi.org/project/torch/
10https://huggingface.co/sentence-transformers/

all-distilroberta-v1
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Model Overall Multihop Qualifier Comparison Logical Count Verify Zero-Shot

CodeLlama Ins. 51.11 44.29 32.50 49.02 37.28 36.95 54.32 56.99
Llama-2 45.62 38.28 29.90 40.80 28.84 34.90 44.57 54.06
Palm-2 42.75 33.61 17.57 40.89 28.03 31.34 50.52 45.07

Table 4: Category-wise accuracy of different models on KQA Pro dataset.

5.1 Results on KQA Pro

The results of SymKGQA compared with differ-
ent baselines are shown in Table 3. The detailed
category-wise performance is provided in Table
4. As shown, SymKGQA with CodeLlama In-
struct model outperforms all few-shot baselines
and achieves a new SOTA in the few-shot setting for
KQA Pro. Specifically, SymKGQA beats FlexK-
BQA by 8% and LLM-ICL by 24% (both generates
SPARQL using GPT-3 variants).

The performance with PaLM 2 and Llama-2
LLMs are comparable but inferior to what we ob-
serve with CodeLlama Instruct. The performance
with dynamic demonstration selection is higher
than the manual selection method. SymKGQA
even outperforms all fully-supervised baselines ex-
cept BART + KoPL and GraphQ IR. For the sam-
pled test set with 100 questions (shown in Table 6),
the performance of SymKGQA with GPT3.5-turbo
beats all other LLMs by a huge margin. Hence,
this encourages us to believe that SymKGQA when
used with GPT3.5-turbo has the potential to sur-
pass BART + KoPL and GraphQ IR baselines when
evaluated on a full test set.

5.2 Results on WebQSP

The results of SymKGQA for the WebQSP dataset
are shown in Table 2a. As shown, SymKGQA
achieves a new SOTA in the few-shot setting
for WebQSP outperforming all few-shot baselines.
All few-shot baselines generates S-Expression.
SymKGQA even beats all fully supervised base-
lines except DecAF where the performance of
SymKGQA is slightly less. The performance with
dynamic demonstration selection is higher than the
manual selection method. For the sampled test set
with 100 questions (see Table 6), the performance
of SymKGQA with GPT3.5-turbo is a bit lower
than other LLMs except for CodeLlama Instruct.

5.3 Results on MetaQA

The results of SymKGQA for the MetaQA dataset
are shown in Table 2b. As shown, SymKGQA
achieves a new SOTA for 1-hop with all 3 LLMs.
For 2-hop and 3-hop, SymKGQA even beats

all fully supervised baselines except TransferNet
where the performance is nearly the same. The per-
formance with dynamic demonstration selection is
slightly higher than the manual selection method.
For the sampled test set (shown in Table 6), the
performance of SymKGQA with GPT3.5-turbo is
nearly the same as all other LLMs.

5.4 Observations

Overall, we observed the following:
1. The low performance of the Direct QA base-

lines for all datasets indicates that LLMs in-
herently don’t have sufficient knowledge to
answer the questions and hence, are not biased
by their inherent knowledge during KoPL gen-
eration.

2. The difference in the performance with fully-
supervised baselines is attributed to the use of
a large amount of annotated LF data as strong
supervision signals during learning, whereas,
our framework addresses a more challeng-
ing few-shot setting, assuming only few-shot
availability.

3. The performance of SymKGQA with dynamic
selection is expected to increase further as N
increases.

4. GPT3.5-turbo has the better ability to provide
reasoning over complex questions (KQA Pro)
as compared to other models, whereas, all
the models possess similar ability to handle
simpler questions (MetaQA and WebSQP).

Note: Few-shot and fully supervised approaches
can not be compared directly. However, we make
this comparison only to show that SymKGQA is
able to perform better than fully supervised meth-
ods in many scenarios. There is still some perfor-
mance gap with fully supervised approaches that
suggests potential avenues for future research.

5.5 Ablation Study

Table 5 shows the SymKGQA performance when:
1. Programs generated using sampling decoding

(for exploration) are eliminated while obtaining
the answers. On this elimination, the performance
dropped by 6-14% for KQA Pro dataset. This high-
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Dataset Config CodeLlama Ins. Llama-2 PaLM 2

KQA Pro - Sampling 44.4 (↓ 6.5%) 38.0 (↓ 13%) 37.3 (↓ 14%)
- QUACK 26.0 (↓ 25%) 23.1 (↓ 28%) 23.3 (↓ 27.5%)

MetaQA - Sampling 99.7 (↓ 0.1%) 99.9 (↓ 0%) 99.1 (↓ 0.6%)
(1-hop) - QUACK 14.2 (↓ 85.6%) 14.1 (↓ 85.7%) 14.1 (↓ 85.4%)

MetaQA - Sampling 99.8 (↓ 0.1%) 99.9 (↓ 0%) 99.7 (↓ 0.1%)
(2-hop) - QUACK 0.0 (↓ 99.9%) 0.0 (↓ 99.9%) 0.0 (↓ 99.8%)

MetaQA - Sampling 99.5 (↓ 0.3%) 99.8 (↓ 0.1%) 99.6 (↓ 0.1%)
(3-hop) - QUACK 0.0 (↓ 99.8%) 0.0 (↓ 99.9%) 0.0 (↓ 99.9%)

WebQSP - Sampling 70.9 (↓ 0.3%) 71.7 (↓ 0.2%) 75.1 (↓ 0.3%)
- QUACK 13.7 (↓ 57.5%) 13.5 (↓ 58.4%) 20.0 (↓ 55.4%)

Table 5: Ablation Study (on Dynamic Few-Shot Setting)

Models KQA Pro MetaQA WebQSP

CodeLlama Ins. 46.0 98.0 62.0
Llama-2 40.0 100.0 71.0
PaLM 2 28.0 99.0 72.0
GPT3.5-turbo 88.0 99.0 68.0

Table 6: Comparison with GPT3.5 (Sampled Test Set)

lights the importance of the sampling decoding in
the framework. However, not much variation is ob-
served in the generation and hence, in performance
for MetaQA and WebQSP due to the simplicity of
the programs for this dataset.

2. QUACK resolver is eliminated while obtain-
ing the answers. For MetaQA 2 and 3-hop, none
of the generated KoPLs were directly executable
and required one or more resolutions. Hence, re-
moval of the QUACK resolver shows a huge drop
in the performance of the model. However, the
proposed QUACK resolver is able to resolve most
of the generated KoPL program steps and interpret
them semantically and not just syntactically.
The quantification of decrease in the performance
demonstrates the importance and contribution of
each stage.

5.6 Error Analysis

We analyze the following sources of errors in
SymKGQA (on an average across different LLMs):

• Entity Linking: Incorrect entity and concept
linking after the QUACK resolver is observed only
in KQA Pro, for 1.5% of questions. No such issues
are observed in MetaQA and WebQSP.

• Mismatch in Input-Output types of the gener-
ated steps: Errors in program execution due to mis-
match in input-output types of the steps generated
are seen only for KQA Pro, for 29% of questions.
No such errors are seen for MetaQA and WebQSP.

• Incorrect KG Grounding by QUACK Resolu-
tion: The wrong answers obtained due to incorrect
grounding of KG components (other than entity

and concepts) by the QUACK resolver is observed
in KQA Pro, for 14% and WebQSP, for 20% of
questions. No such issue is observed for MetaQA.
A detailed analysis is provided in Appendix A.3.

5.7 Inference Latency
We make API calls LLMs for the generation of
KoPL programs with average latency of 5s/call that
runs on CPU. We use NVIDIA V100 GPU with
32 GB RAM for QUACK resolution and execution.
On an average it consumes following GPU hours:

• 3 Hrs: Execution and Resolution for 11,797
test questions of KQA Pro

• 2 Hrs: Execution and Resolution for 1,639 test
questions of WebQSP

• 3 Hrs: Execution and Resolution for 13,031
test questions of MetaQA (average of all hops).

6 Conclusion

We propose SymKGQA, that generates and exe-
cutes symbolic programs (KoPL) in a few-shot set-
ting. To the best of our knowledge, it is the first
one to generate KoPL LF using LLMs for complex
KGQA. We provide a method for LLM prompt
generation with manual and dynamic demonstra-
tion selection for few-shot ICL. We further pro-
pose a RAG based Question-Aware Contextual
KoPL (QUACK) Resolver that grounds the gen-
erated KoPL for a KG. Our extensive experiments
shows that SymKGQA surpass all few-shot and
most of the fully supervised SOTA baselines, set-
ting a new benchmark for various complex KGQA
datasets. Our approach being independent of un-
derlying LLM knowledge, makes it applicable for
any other symbolic LF while being interpretable.
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8 Limitations

Despite the strong reasoning capabilities of SOTA
LLMs, obtaining step-by-step CoS program may be
prone to errors, which can impact the performance
of SymKGQA, as discussed in Section 5.6. Most
of the errors stem from a mismatch between the
input-output type of the subsequent generated steps.
Fortunately, these errors are generally interpretable
and can be rectified with human intervention.

9 Risks

Our work does not have any obvious risks that we
are aware of.
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A Appendix

A.1 Few-Shot ICL Prompt

Full prompt for a sample test question of KQA Pro
is shown in Figure 3.

A.2 Few-Shot ICL Prompt Templates of
Existing Methods

Full prompt for a sample test question of KQA Pro
is shown in Table 10.

A.3 RAG based QUACK Resolver

Retriever: The full set of each KG item i.e., enti-
ties, concepts, relations, attributes, qualifiers, etc.
are indexed separately in ChromaDB. The KG item
generated at each step is used as the input query to
retrieve the top-10 closest corresponding KG item.
The retrieved list is then passed to the LLM using
the prompt shown in Figure 2 (Generation). This
approach of encoding each KG item set separately
provides the following advantages over indexing
triples for retrieval:

For the grounding task, the grounding of each
generated KG item has to be done w.r.t that item
only. For example: if we consider the grounding
of the generated relations, it has to be picked from
the set of relations in the KG only. It will never
be picked up from the set of other KG items i.e.,
entities, concepts, etc. Hence, indexing each KG
item set separately provides constraint retrieval.

Given that the input query will be the generated
relation, on the other hand, if the triples of the
KG are indexed, then the retrieved triples will not
be constrained to the relations. It will contain the
corresponding entities as well that could be irrele-
vant for a given question and hence introduce some
noise in the retriever output.

We experiment with both these approaches and
found out that indexing KG items separately pro-
vides provides superior performance (8 − 10%)
than indexing KG triples.
Generation: Here, we adapt the generation step
in RAG by using the discriminative ability of the
LLM instead of generation to select the most prob-
able entity/concept from the given list to prevent
hallucinations.

We further perform in-depth analysis of effec-
tiveness of our proposed QUACK resolver on KQA
Pro dataset. Table 7 shows the QUACK perfor-
mance (Accuracy) mainly for entities/concepts and
relations/attributes.

Model Entity/Concept Relation/Attribute
CodeLlama Ins. 87.0 60.4

Llama 2 74.9 55.0
PaLM 2 70.7 52.0

Table 7: QUACK Resolution Performance on KQA Pro

A.4 List of Numerical Operators
The list of the numerical operators supported are as
follows: [<,≤, >,≥,=, ̸=, argmin, argmax]

A.5 Qualitative Analysis of the Generated
KoPLs

The examples of the generated KoPL steps that
are not directly executable before QUACK resolver
and executes correctly after QUACK resolution for
each dataset are shown in Table 8. The examples
of the generated KoPL steps that resulted in error
(failure cases) during execution even after QUACK
resolver are shown in Table 9.

A.6 Baselines
• Pangu (Gu et al., 2023) is a recent SOTA

KGQA model. It uses LLMs for discrimina-
tion rather than generation for grounding the
generated draft. It incrementally constructs
plans in a step-wise fashion to handle large
search spaces.

• KB_BINDER (Li et al., 2023a) enables few-
shot learning for KBQA using LLMs through
two key stages: Draft Generation, where given
a question, an LLM generates a preliminary
“draft” logical form using few-shot examples;
and Knowledge Base Binding, where entities
and relations in the draft are grounded to the
target KG using string matching and similarity
search.

• LLM-ICL is an in-context learning-based
baseline we implement for KQA Pro. As
there are no experimental results of Pangu and
KB_BINDER on KQA Pro, we use LLM-ICL
as an alternative. Since KQA Pro models do
not include an entity linking stage, LLM-ICL
directly generates SPARQL queries without
further grounding stage, ensuring a fair com-
parison.

• KVMemNet (Miller et al., 2016) performs
QA by first storing facts in a key-value struc-
tured memory before reasoning on them in
order to predict an answer. At each reason-
ing step, the collected information from the
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memory is cumulatively added to the original
query to build context for the next reasoning
iteration.

• SRN (Qiu et al., 2020) model starts from the
question entity and uses a path search tech-
nique to predict the relation path sequence to
reach the target entity.

• RGCN (Schlichtkrull et al., 2018) uses a
graph convolution network-based technique to
encode the KG into graph form and perform
QA.

• EmbedKGQA (Saxena et al., 2020) uses KG
embeddings to perform multi-hop reasoning
using a RoBERTa-based question encoder.

• Subgraph Retrieval (Zhang et al., 2022b) use
a dual-encoder that provides better retrieval
as compared to the existing retrieval methods.

• PullNet (Sun et al., 2019) extracts a ques-
tion specific subgraph from the entire relation
graph using a graph CNN instead of heuristics
and then retrieves the answer.

• NSM (He et al., 2021) propose a teacher-
student approach. The student network aims
to find the correct answer to the query, while
the teacher network tries to learn intermediate
supervision signals for improving the reason-
ing capacity of the student network. They
utilize both forward and backward reasoning
to enhance the learning of intermediate entity
distributions.

• BART + KoPL (Cao et al., 2022a) is an
end-to-end generation model that directly pro-
duces the corresponding KoPL program steps
given a question. It is worth noting that the
pre-trained BART model is forced to have the
capability to memorize the relations and enti-
ties present in the KG.

• GraphQ IR (Nie et al., 2022) proposes a
unified intermediate representation for graph
query languages, named GraphQ IR. It has a
natural-language-like expression that bridges
the semantic gap and formally defined syntax
that maintains the graph structure. A neu-
ral semantic parser is used to convert user
queries into GraphQ IR, which can be later
losslessly compiled into various downstream

graph query languages such as SPARQL,
Lambda DCS, etc.

• TransferNet (Shi et al., 2021) answers multi-
hop questions by attending to different parts
of the question at each step. It then computes
activated scores for relations, and then trans-
fers the previous entity scores along activated
relations in a differentiable way.

• FlexKBQA (Li et al., 2023b) utilizing Large
Language Models (LLMs) as program trans-
lators. It leverages automated algorithms to
sample diverse programs, such as SPARQL
queries, from the knowledge base, which are
subsequently converted into natural language
questions via LLMs. They use this synthetic
dataset to facilitate training of a specialized
lightweight model for a KG.

• DecAF (Yu et al., 2023) jointly generates both
logical forms and direct answers and then
combines the merits of them to get the final an-
swers. They treat logical forms as regular text
strings just like answers during generation,
reducing efforts of hand-crafted engineering.
DecAF linearizes KG into text documents and
leverages free-text retrieval methods to locate
relevant sub-graphs.
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Figure 3: Few-Shot ICL Prompt for a Sample Test Question in KQA Pro

You have to follow the below instructions to generate the logical form called as Knowledge Oriented Programming Language
(KoPL).

Always validate the output using below instructions, and don’t try to generate anything which you think is wrong.
Instructions -
- The task is to come up with the steps of functions for the test question using the list of functions provided below.
- Each function can take “functional inputs" which is the "output" from the previous step, and "textual inputs" which you have to
generate from a given question. If textual input is None for any function then you don’t have to generate any textual input for
that function.
- To generate these steps you should match "output" of the current step function with "functional inputs" of the next step function.
- Use the training examples to understand the step generation process and stick only to the output format provided in the training
examples. Do not generate any explanation text.
- Do not use entities and concepts outside of the list provided in each test question. If “None" is mentioned in concept in question
then it means that their is no concept present in the test question and you can’t generate any concept related function.
- "Functional input" of current step can be subset of previous step "output", but can’t be superset, for example if function input of
current step is (entity, entity) then previous step output can’t be entity only, it should be at least (entity, entity).
- Or function is always come by at least after two Find or FindAll functions.
- And function is always come by at least after two Find or FindAll functions.
- If Concept is None in question, then you is not allowed to generate FilterConcept function.

Each Function Information is provided using the below template:
- FunctionName:
Description - <Description of function>
Functional Inputs - <Inputs to the current step function from previous step function output >
Textual Inputs - <Textual inputs to the current step function>
Outputs - <Outputs of the current step function>

List of Functions:
- FindAll
Description - Return all entities in the knowledge graph
Functional Inputs - None
Textual Inputs - None
Outputs - Entities

- Find
Description - Return all entities with the given name in the knowledge graph
Functional Inputs - None
Textual Inputs - name
Outputs - Entities

- FilterConcept
Description - Find those belonging to the given concept in the knowledge graph
Functional Inputs - Entities
Textual Inputs - concept name
Outputs - Entities

- FilterStr
Description - Filter entities with an attribute condition of string type in the knowledge graph
Functional Inputs - Entities
Textual Inputs - (Key, Value)
Outputs - (Entities, Facts)

- FilterNum
Description - Similar to FilterStr, except that the attribute type is number in the knowledge graph
Functional Inputs - Entities
Textual Inputs - (Key, Value, Operation)
Outputs - (Entities, Facts)

- FilterYear
Description - Similar to FilterStr, except that the attribute type is year in the knowledge graph
Functional Inputs - Entities
Textual Inputs - (Key, Value, Operation)
Outputs - (Entities, Facts)
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- FilterDate
Description - Similar to FilterStr, except that the attribute type is date in the knowledge graph
Functional Inputs - Entities
Textual Inputs - (Key, Value, Operation)
Outputs - (Entities, Facts)

- QFilterStr
Description - Filter entities and corresponding facts with a qualifier condition of string type in the knowledge graph
Functional Inputs - Entities
Textual Inputs - (Qualifier Key, Qualifier Value)
Outputs - (Entities, Facts)

- QFilterNum
Description - Similar to QFilterStr, except that the qualifier type is number in the knowledge graph
Functional Inputs - Entities
Textual Inputs - (Qualifier Key, Qualifier Value, Operation)
Outputs - (Entities, Facts)

- QFilterYear
Description - Similar to QFilterStr, except that the qualifier type is year in the knowledge graph
Functional Inputs - Entities
Textual Inputs - (Qualifier Key, Qualifier Value, Operation)
Outputs - (Entities, Facts)

- QFilterDate
Description - Similar to QFilterStr, except that the qualifier type is date in the knowledge graph
Functional Inputs - Entities
Textual Inputs - (Qualifier Key, Qualifier Value, Operation)
Outputs - (Entities, Facts)

- Relate
Description - Find entities that have a specific relation with the given entity in the knowledge graph
Functional Inputs - Entity
Textual Inputs - (Predicate, Direction)
Outputs - (Entities, Facts)

- And
Description - Return the intersection of two entity sets in the knowledge graph
Functional Inputs - (Entities, Entities)
Textual Inputs - None
Outputs - Entities

- Or
Description - Return the union of two entity sets in the knowledge graph
Functional Inputs - (Entities, Entities)
Textual Inputs - None
Outputs - Entities

- QueryName
Description - Return the entity name in the knowledge graph
Functional Inputs - Entity
Textual Inputs - None
Outputs - string

- Count
Description - Return the number of entities in the knowledge graph
Functional Inputs - Entity
Textual Inputs - None
Outputs - number

- QueryAttr
Description - Return the attribute value of the entity in the knowledge graph
Functional Inputs - Entity
Textual Inputs - Key
Outputs - Value
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- QueryAttrUnderCondition
Description - Return the attribute value whose corresponding fact should satisfy the qualifier condition in the knowledge graph
Functional Inputs - Entity
Textual Inputs - (Key, Qualifier Key, Qualifier Value)
Outputs - Value

- QueryRelation
Description - Return the relation between two entities in the knowledge graph
Functional Inputs - (Entity, Entity)
Textual Inputs - None
Outputs - Predicate

- SelectBetween
Description - From the two entities, find the one whose attribute value is greater or less and return its name in the knowledge
graph
Functional Inputs - (Entity, Entity)
Textual Inputs - (Key, Operation)
Outputs - string

- SelectAmong
Description - From the entity set, find the one whose attribute value is the largest or smallest in the knowledge graph
Functional Inputs - Entities
Textual Inputs - (Key, Operation)
Outputs - string

- VerifyStr
Description - Return whether the output of QueryAttr or QueryAttrUnderCondition and the given value are equal as string in the
knowledge graph
Functional Inputs - Value
Textual Inputs - Value
Outputs - boolean

- VerifyNum
Description - Return whether the two numbers satisfy the condition in the knowledge graph
Functional Inputs - Value
Textual Inputs - (Value, Operation)
Outputs - boolean

- VerifyYear
Description - Return whether the two years satisfy the condition in the knowledge graph
Functional Inputs - Value
Textual Inputs - (Value, Operation)
Outputs - boolean

- VerifyDate
Description - Return whether the two dates satisfy the condition in the knowledge graph
Functional Inputs - Value
Textual Inputs - (Value, Operation)
Outputs - boolean

- QueryAttrQualifier
Description - Return the qualifier value of the fact (Entity, Key, Value) in the knowledge graph
Functional Inputs - Entity
Textual Inputs - (Key, Value, Qualifier Key)
Outputs - Qualifier Value

- QueryRelationQualifier
Description - Return the qualifier value of the fact (Entity, Pred, Entity) in the knowledge graph
Functional Inputs - (Entity, Entity)
Textual Inputs - (Predicate, Qualifier Key)
Outputs - Qualifier Value
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Training Examples:

Training Example 1:
Question: What is the connection between A Serious Man to Ireland (the one whose nominal GDP is 239389340720.488 United
States dollar)? Entities: [’A Serious Man’, ’Ireland’], Concepts: None. The steps to solve this question are:
Output:
Step 1: Find(A Serious Man)
Step 2: Find(Ireland)
Step 3: FilterNum(nominal GDP, 239389340720.488 United States dollar, =)
Step 4: QueryRelation()
Done

Training Example 2:
Question: Which first-level administrative country subdivision established post-1829 covers the biggest area? Entities: None,
Concepts: [’first-level administrative country subdivision’]. The steps to solve this question are:
Output:
Step 1: FindAll()
Step 2: FilterYear(inception, 1829, >)
Step 3: FilterConcept(first-level administrative country subdivision)
Step 4: SelectAmong(area, largest)
Done

Training Example 3:
Question: What is the ISNI of John Broome (the one born in 1738-01-01)? Entities: [’John Broome’], Concepts: None. The
steps to solve this question are:
Output:
Step 1: Find(John Broome)
Step 2: FilterDate(date of birth, 1738-01-01, =)
Step 3: QueryAttr(ISNI)
Done

Training Example 4:
Question: Does the sovereign state that has a diplomatic relation with Malaysia (the subject of this statement is East
Timor–Malaysia relations), have the CIVICUS Monitor country entry of saint-lucia? Entities: [’Malaysia’], Concepts:
[’sovereign state’]. The steps to solve this question are:
Output:
Step 1: Find(Malaysia)
Step 2: Relate(diplomatic relation, forward)
Step 3: QFilterStr(statement is subject of, East Timor–Malaysia relations)
Step 4: FilterConcept(sovereign state)
Step 5: QueryAttr(CIVICUS Monitor country entry)
Step 6: VerifyStr(saint-lucia)
Done

Training Example 5:
Question: What is the umber of episodes in TV series with Twitter username ThomasFriends (the subscription number of this
statement is 15947)? Entities: None, Concepts: [’television series’]. The steps to solve this question are:
Output:
Step 1: FindAll()
Step 2: FilterStr(Twitter username, ThomasFriends)
Step 3: QFilterNum(number of subscribers, 15947, =)
Step 4: FilterConcept(television series)
Step 5: QueryAttr(number of episodes)
Done

Training Example 6:
Question: When was born the person that was nominated for Tony Award for Best Actor in a Musical in 1967? Entities: [’Tony
Award for Best Actor in a Musical’], Concepts: [’human’]. The steps to solve this question are:
Output:
Step 1: Find(Tony Award for Best Actor in a Musical)
Step 2: Relate(nominated for, backward)
Step 3: QFilterYear(point in time, 1967, =)
Step 4: FilterConcept(human)
Step 5: QueryAttr(date of birth)
Done
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Training Example 7:
Question: Does Pierce County that is located in Washington or Grays Harbor County have less area? Entities: [’Washington’,
’Pierce County’, ’Grays Harbor County’], Concepts: None. The steps to solve this question are:
Output:
Step 1: Find(Washington)
Step 2: Relate(located in the administrative territorial entity, backward)
Step 3: Find(Pierce County)
Step 4: And()
Step 5: Find(Grays Harbor County)
Step 6: SelectBetween(area, less)
Done

Training Example 8:
Question: How many researchers are the occupation of Aristotle or practice motivational speaking? Entities: [’Aristotle’,
’motivational speaking’], Concepts: [’researcher’]. The steps to solve this question are:
Output:
Step 1: Find(Aristotle)
Step 2: Relate(occupation, forward)
Step 3: FilterConcept(researcher)
Step 4: Find(motivational speaking)
Step 5: Relate(practiced by, forward)
Step 6: FilterConcept(researcher)
Step 7: Or()
Step 8: Count()
Done

Training Example 9:
Question: Is the nominal GDP of Guinea-Bissau over 69000000 United States dollars on the date 1996-01-01? Entities:
[’Guinea-Bissau’], Concepts: None. The steps to solve this question are:
Output:
Step 1: Find(Guinea-Bissau)
Step 2: QueryAttrUnderCondition(nominal GDP, point in time, 1996-01-01)
Step 3: VerifyNum(69000000 United States dollar, >)
Done

Training Example 10:
Question: Which university has fewer students, George Washington University or University of Hamburg? Entities: [’George
Washington University’, ’University of Hamburg’], Concepts: None. The steps to solve this question are:
Output:
Step 1: Find(George Washington University)
Step 2: Find(University of Hamburg)
Step 3: SelectBetween(students count, less)
Done

Test Question:
Question: Who was the prize winner when Mrs. Miniver got the Academy Award for Best Writing, Adapted Screenplay?
Entities: [’Mrs. Miniver’, ’Academy Award for Best Writing, Adapted Screenplay’], Concepts: None. The steps to solve this
question are:
Output:

10137



KQA Pro Question: What is the higher education institution is headquartered in the city whose postal
code is 20157?

Gold KoPL Step 1: FindAll(), Step 2: FilterStr(postal code, 20157), Step 3: FilterConcept(city), Step 4:
Relate(headquarters location, backward), Step 5: FilterConcept(higher education institution),
Step 6: What()

Gold Answer Politecnico di Milano

Generated KoPL Step 1: FindAll(), Step 2: FilterStr(postal code, 20157), Step 3: FilterConcept(city), Step 4:
Relate(headquartered in, backward), Step 5: FilterConcept(higher education institution), Step 6:
What()

×

After QUACK Resolver Step 1: FindAll(), Step 2: FilterStr(postal code, 20157), Step 3: FilterConcept(city), Step 4:
Relate(headquarters location, backward), Step 5: FilterConcept(higher education institution),
Step 6: What()

✓

MetaQA (1-hop) Question: What is the language spoken in the movie Priceless?
Gold KoPL Step 1: Find(Priceless), Step 2: Relate(in_language)

Answer French

Generated KoPL Step 1: Find(Priceless), Step 2: Relate(language) ×

After QUACK Resolver Step 1: Find(Priceless), Step 2: Relate(in_language) ✓

MetaQA (2-hop) Question: What are the genres of the films directed by Mike Nichols?
Gold KoPL Step 1: Find(Mike Nichols), Step 2: Relate(directed_by,backward), Step 3: Re-

late(has_tags,forward), Step 4: What()

Answer Drama, Horror, Comedy, War, Thriller

Generated KoPL Step 1: Find(Mike Nichols), Step 2: Relate(directed by,backward), Step 3: Relate(has
genre,forward), Step 4: What()

×

After QUACK Resolver Step 1: Find(Mike Nichols), Step 2: Relate(directed_by,backward), Step 3: Re-
late(has_tags,forward), Step 4: What()

✓

MetaQA (3-hop) Question: who are the screenwriters that the actors in their movies also appear in the movie
Medium Cool?

Gold KoPL Step 1: Find(Medium Cool), Step 2: Relate(starred_actors,forward), Step 3: Re-
late(starred_actors,backward), Step 4: Relate(written_by,forward), Step 5: What()

Answer Dan Cohen, David Mamet, Daniel Chuba, John Sayles, William Malone, Abe Polsky, Corey
Allen, Quentin Tarantino, Alan Sharp, David C. Wilson, Elmore Leonard

Generated KoPL Step 1: Find(Medium Cool), Step 2: Relate(starred actors,forward), Step 3: Relate(starred
actors,backward), Step 4: Relate(written by,forward), Step 5: What()

×

After QUACK Resolver Step 1: Find(Medium Cool), Step 2: Relate(starred_actors,forward), Step 3: Re-
late(starred_actors,backward), Step 4: Relate(written_by,forward), Step 5: What()

✓

WebQSP Question: Who is Michael Buble?
Gold KoPL Step 1: Find(Michael Buble), Step 2: Relate(profession, forward)

Answer Actor, Singer, Songwriter

Generated KoPL Step 1: Find(Michael Buble), Step 2: Relate(occupation, forward) ×

After QUACK Resolver Step 1: Find(Michael Buble), Step 2: Relate(profession, forward) ✓

Table 8: KoPL Program Steps before and after QUACK resolution
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KQA Pro Question: Which has less mass, Chuck Connors who is in the United States Army or Chris
Carter of the Boston Red Sox?

Gold KoPL Step 1: Find(United States Army), Step 2: Relate(military branch, backward), Step 3:
Find(Chuck Connors), Step 4: And(), Step 5: Find(Boston Red Sox), Step 6: Relate(member of
sports team, backward), Step 7: Find(Chris Carter), Step 8: And(), Step 9: SelectBetween(mass,
less)

Gold Answer Chuck Connors

Generated KoPL Step 1: Find(United States Army), Step 2: Relate(member, backward), Step 3: Find(Chuck
Connors), Step 4: And(), Step 5: Find(Boston Red Sox), Step 6: Relate(member, backward),
Step 7: Find(Chris Carter), Step 8: And(), Step 9: SelectBetween(mass, less)

×

After QUACK Resolver Step 1: Find(United States Army), Step 2: Relate(part of, backward), Step 3: Find(Chuck
Connors), Step 4: And(), Step 5: Find(Boston Red Sox), Step 6: Relate(member of sports team,
backward), Step 7: Find(Chris Carter), Step 8: And(), Step 9: SelectBetween(mass, less)

×

Predicted Answer Chris Carter
MetaQA (1-hop) Question: Who stars in Psycho II?

Gold KoPL Step 1: Find(Psycho II), Step 2: Relate(starred_actors,forward), Step 3: What()

Gold Answer Vera Miles, Anthony Perkins, Robert Loggia, Meg Tilly

Generated KoPL Step 1: Find(Psycho I), Step 2: Relate(starred actors,forward), Step 3: Find(starred actors.0),
Step 4: Relate(starred in,forward), Step 5: What()

×

After QUACK Resolver Find(Psycho), Step 2: Relate(starred_actors,forward), Step 3: Find(actors), Step 4: Re-
late(has_tags), Step5: What()

×

Predicted Answer Treasure Island
MetaQA (2-hop) Question: Who are movie co-writers of Bob Badway?

Gold KoPL Step 1: Find(Bob Badway), Step 2: Relate(written_by,backward), Step 3: Re-
late(written_by,forward), Step 4: What()

Gold Answer Michael Emanuel

Generated KoPL Step 1: Find(Bob Badway), Step 2: Relate(co-writer,backward), Step 3: What() ×

After QUACK Resolver Step 1: Find(Bob Badway), Step 2: Relate(written_by,backward), Step 3: What() ×

Predicted Answer Scary or Die
MetaQA (3-hop) Question: Which person wrote the films directed by the director of The Leading Man?

Gold KoPL Step 1: Find(The Leading Man), Step 2: Relate(directed_by,forward), Step 3: Re-
late(directed_by,backward), Step 4: Relate(written_by,forward), Step 5: What()

Gold Answer Naomi Wallace, Dick Christie, John Duigan

Generated KoPL Step 1: Find(The Leading Man), Step 2: Relate(directed by,forward), Step 3: Relate(written
by,forward), Step 4: What()

×

After QUACK Resolver Step 1: Find(The Leading Man), Step 2: Relate(directed_by,forward), Step 3: Re-
late(written_by,forward), Step 4: What()

×

Predicted Answer The Year My Voice Broke, Flirting, Careless Love, Sirens, Head in the Clouds
WebQSP Question: What countries are part of the UK?

Gold KoPL Step 1: Find(United Kingdom), Step 2: Relate(administrative_children), Step 3: Filter-
Str(administrative_area_type, UK constituent country)

Gold Answer England, Northern Ireland, Scotland, Wales

Generated KoPL Step 1: Find(United Kingdom), Step 2: Relate(countries, forward) ×

After QUACK Resolver Step 1: Find(United Kingdom), Step 2: Relate(continent, forward) ×

Predicted Answer Europe

Table 9: Case-based error analysis of KoPL Program Steps before and after QUACK resolution
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Method Prompt Templates Logical Form
Pangu Please translate the following questions to Lisp-like programs. S-Expression

question: <> program: <>; question: <> program: <>;.....;
question: <> program:

KB_BINDER Question: <> Logical Form: <>; Question: <> Logical Form:
<>;.....; Question: <> Logical Form:

S-Expression

FlexKBQA Convert the s-expressions to natural language questions. SPARQL and S-Expression
question: <> s-expression: <>; question: <> s-expression:
<>;.....; question: <> s-expression:

SymKGQA You have to follow the below instructions to generate the logical
form called as Knowledge Oriented Programming Language (KoPL).

KoPL

Instructions
Function Definitions
ICL Examples

Table 10: Prompt Templates used by Existing Methods
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